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1. Introduction

The AdS/CFT correspondence [1, 2, 3, 4, 5] is a non-trivial map between two integrable

theories, string theory on AdS5×S5 and the maximally supersymmetric N = 4 super Yang-

Mills SU(N) gauge theory (SYM). In the planar limit N → ∞, the string coupling vanishes

and the correspondence relates a finite superconformal four dimensional theory and free

string theory on a non-trivial background. Massive string states are predicted to be dual

to certain composite operators in the gauge theory, with the string spectrum matching the

gauge anomalous dimensions. In terms of the planar ’t Hooft coupling λ = g2
YMN , the

duality is of the weak-strong coupling type. Hence, any test of the correspondence must

exploit some kind of non-perturbative knowledge on at least one of the two sides.

The large λ limit is particularly interesting since the string side can be controlled in

the supergravity approximation. A quite general prediction is the scaling E ∼ 2
√
nλ1/4 for

the energy of level n massive string states as λ→ ∞ [2]. In the gauge theory, a check of this
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prediction requires the knowledge of the anomalous dimensions of suitable dual composite

operators in the nonperturbative regime. Such a formidable task is made possible by

the integrability properties of N = 4 SYM. The scaling operators are eigenstates of the

dilatation operator D that can be identified with the Hamiltonian of integrable (super)

spin chains in various sectors closed under perturbative renormalization. The integrable

operator D can be treated by Bethe Ansatz techniques [6, 7, 8]. In particular, all-loop

conjectured gauge Bethe Ansatz (GBA) equations are available in the compact su(2),

su(1|1) and non-compact sl(2) sectors [9, 10].

Unfortunately, the GBA equations are only asymptotically exact. For operators with

classical dimension L, they predict the exact anomalous dimension up to wrapping terms

appearing at a certain order increasing with L, for instance terms O(λL) in the su(2)

sector [11]. Due to wrapping terms, the GBA equations are not reliable at strong coupling,

although in some cases they are believed to give the correct leading term. Remarkably,

in the su(2) sector, a local version of the GBA equations has been proposed in the form

of a Hubbard-like model [12]; it has been conjectured to be free from wrapping problems,

but the reconciliation of its strong coupling predictions with string theory is far from

clear [12, 13, 14].

In general, the gauge and string calculations overlap in BMN-like limits [15] where

L is large. In this case, it is well known that the perturbative comparison in powers of

λ is plagued by the different order of the limits λ → 0, L → ∞ on the two sides. For

instance, the exact three-loop anomalous dimension of two- and three-magnon operators

in the near-BMN limit [15] exhibits a three-loop discrepancy when compared with the

leading curvature correction computed in string theory [16, 17, 18, 19]. Similar three-loop

discrepancies also occur in the expansion around spinning string solutions [20, 11].

Along a different route, one can start from the classical string theory (at large λ) and

derive thermodynamical Bethe Ansatz equations at L → ∞. The discretization of these

string Bethe Ansatz equations (SBA) have been proposed to compute the leading 1/L

effects, i.e. one-loop worldsheet quantum corrections [21, 9, 10]. The validity of the SBA

equations at finite L or small λ is not guaranteed and indeed they are known to receive

several kinds of corrections [22, 23, 24, 25]. These corrections have been evaluated for

various classes of Frolov-Tseytlin spinning string solutions [26, 27, 28, 29, 30, 31, 32]. They

suggest the emergence of an interpolating set of Bethe Ansatz equations working at all λ

and L [33, 34] and hopefully solving the three-loop discrepancies.

In this paper, we take a complementary approach by comparing the GBA and SBA

equations at strong coupling. Indeed, it is not totally clear to what extent the GBA

equations are able to predict the correct results in the string regime λ → ∞ as discussed

for instance in [13, 14, 35]. We attempt to answer this question for the states with highest

anomalous dimension in the two compact rank-one su(2) and su(1|1) subsectors where we

are able to solve the GBA and SBA equations at fixed L and generic λ. To appreciate the

special role of the highest states, we briefly summarize some relevant facts about them.

In the su(2) sector, the highest state is the so-called antiferromagnetic (AF) opera-

tor [36]. It can be defined in the multiplet of operators with fixed classical dimension L.
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At the perturbative level, it mixes with the other states and its explicit expression is not

available in closed form at finite L. In the L→ ∞ limit, the GBA equations can be solved

and give the anomalous dimension

lim
L→∞

∆
su(2)

L
= 1 +

√
λ

π

∫ ∞

0

ds

s

J0

(√
λ

2π s
)

J1

(√
λ

2π s
)

e s + 1
. (1.1)

This expression is obtained by taking the L → ∞ limit at fixed λ. Hence, it is legitimate

to expand at weak coupling and one obtains

lim
L→∞

∆
su(2)

L
= 1 + 4 ln 2

λ

16π2
− 9 ζ(3)

(
λ

16π2

)2

+ 75 ζ(5)

(
λ

16π2

)3

+ . . . . (1.2)

On the other hand, the strong coupling expansion of Eq. (1.1) is

lim
L→∞

∆
su(2)

L
=

1

π2

√
λ+

3

4
+ . . . . (1.3)

The same leading term is obtained in the Hubbard model formulation of the GBA equa-

tions [13, 14]. As discussed in [36] this expansion is formal due to the uncontrolled effect of

wrapping terms. The usual attitude toward this problem is rather optimistic and Eq.(1.3)

with its ∼ λ1/2 signature is expected to be correct apart from a possible correction in the

numerical prefactor 1/π2. As a support to the this scenario, it has been proposed to identify

its dual string state with a suitable string solution in the spirit of similar correspondences

found in the lowest part of the spectrum [37]. The slow-string solution described in [38]

exhibits the λ1/2 scaling of Eq. (1.3) although with a different numerical prefactor. This

quantitative discrepancy has been attributed in [38] to the subtle double limit λ,L → ∞.

However, the Hubbard model formulation [12] suggests that this scenario is not entirely

satisfactory. There, limit ambiguities and wrapping problems are absent and nevertheless

the same prediction ∆/L ∼
√
λ/π2 is recovered including the prefactor [13, 14]. A more

convincing proof should at least include the analysis of the solution of the SBA equations,

valid in the strong coupling limit.

A similar analysis can be attempted for the highest operator in the other compact

sector su(1|1) [35]. Here the precise form of the operator is known at finite L and simply

reads Tr(ψL) where ψ is the highest weight component of the Weyl spinor in the vector

multiplet. Unfortunately, a closed formula like Eq. (1.1) is not known in this sector. In [35],

the GBA equations for the highest state are studied at weak and strong coupling in the

L → ∞ limit. The weak coupling expansion turns out to have a finite but rather small

convergence radius and is not immediately useful to reach the strong coupling regime. On

the other hand, the strong coupling expansion is ambiguous and depends on assumptions

about the large λ behavior of the Bethe parameters [21]. Two asymptotic solutions for the

Bethe momenta have been proposed in [35]. The leading term in the anomalous dimension

is the same in both cases and scales like λ1/2.

To summarize, the present knowledge on the strong coupling behavior of the maximal

states in the compact sectors of N = 4 SYM is (we write only the leading term at large λ
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and define L to be the number of Bethe momenta in both sectors)

lim
L→∞

∆gauge
su(2)

2L
=

1

π2
λ1/2, (exact)

∆gauge
su(1|1)
L

= cL λ
1/2, (conjecture [35])

lim
L→∞

∆string
su(2)

2L
= ?,

lim
L→∞

∆string
su(1|1)
L

= ?,

(1.4)

cL → 3
√

3

2π2
, as L→ ∞,

where the superscripts gauge/string label the results obtained with the GBA/SBA equa-

tions.

In this paper, we pursue the analysis of these states with the aim of filling the gaps

in the above predictions. We begin with the su(1|1) sector which is particularly favorable

from the technical point of view. At weak coupling we present high-order results for the

anomalous dimension computed by the GBA equations. We show that a resummation is

possible by a non-linear acceleration method, the Weniger algorithm. It permits to evaluate

the anomalous dimension for rather large values of the coupling λ. This leads to results

supporting the λ1/2 asymptotic behavior, although with a different coefficient with respect

to the proposals in [35].

To investigate further the flow from weak to strong coupling we present a numerical

solution of the GBA equations. It is worthwile to emphasize that the analysis is quite

robust and can be extended to very large values of λ following in a clean way the evolution

of Bethe momenta. Our analysis reveals several subtleties involved in the strong coupling

expansion of the GBA equations. The final result is simple and we are able to compute very

precisely the leading strong-coupling term of the anomalous dimension. Not suprisingly,

the agreement with the weak coupling resummation is quite good. At this point, the

information about the highest state is similar to what is known in the su(2) sector. We

have accurately computed the weak coupling expansion and the leading asymptotic λ1/2

term, but we do not know to what extent the GBA are reliable in the strong coupling

region. We remark that, in the su(1|1) sector, we do not have a slow-string limit solution

to be identified with the highest state.

The next obvious step is to analyze the SBA equations in this sector by the same

methods. Once again the string Bethe Ansatz equations can be integrated numerically. The

result is very interesting. All Bethe momenta flow to zero at large λ with a simple leading

term pk ∼ αk λ
−1/4, and the asymptotic coefficients αk can be computed numerically. We

also determine analytically the prefactor in the leading term ∼ λ1/4 in the anomalous

dimension.

The same analysis can be applied to the su(2) sector. The weak coupling resummation

does not apply here because the precise form of the highest AF state depends on L. How-

ever, the numerical and analytical study of the strong-coupling behavior of GBA and SBA

equations can be performed without difficulty. We find a pattern similar to the su(1|1)
one. Our results are summarized in the following table which has to be compared with
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Eqs. (1.4). In the right hand sides, we only report the leading term at large λ and finite L

∆gauge
su(2)

2L
=

1

2πL sin
π

2L

λ1/2,

∆gauge
su(1|1)
L

= cL λ
1/2,

∆string
su(2)

2L
=

1

2
λ1/4,

∆string
su(1|1)
L

=
1√
2

(

1 − 1

L2

)

λ1/4,

(1.5)

cL → 0.1405(1), as L→ ∞.

The ratio ∆string
su(2) /(2L) is independent on L. Also, in the L→ ∞ limit, we recover the

exact prefactor 1/π2 for ∆gauge
su(2) /(2L).

The physical contents of Eqs. (1.5) will be discussed in Sec. 6, after heving illustrated

the technical details of the derivation. These will be organized as follows. In Sec. 2, we

present the gauge Bethe Ansatz equations for the su(1|1) sector. In Sec. 2.1 and 2.2 we

analyze them for the highest state obtaining in particular the strong coupling expansion of

the anomalous dimension. Sec. 3 presents the string Bethe Ansatz equations, again for the

su(1|1) sector and Sec. 3.1 and 3.2 repeat the previous analysis. In this case, the strong

coupling expansion of the anomalous dimension is determined exactly. In Sec. 4 and 5 we

present a similar analysis for the other compact su(2) sector.

2. The gauge Bethe Ansatz equations for the highest state in the su(1|1)

sector

The dilatation operator in the su(1|1) sector can be associated with a super spin chain [39,

19]. The all-loop gauge Bethe Ansatz equations have been proposed in [9, 10] and read

ei L pk =
∏

j 6=k

1 − g2

2x+(pk)x−(pj)

1 − g2

2x−(pk)x+(pj)

, k = 1, . . . , L, (2.1)

where L ∈ 2N + 1 and

x±(p) =
e±i p

2

4 sin p
2

(

1 +

√

1 + 8 g2 sin2 p

2

)

. (2.2)

The coupling g is related to the ’t Hooft coupling by λ = 8π2 g2. The anomalous dimension

of the state associated with the solution {pk(g
2)} is

∆ =
3

2
L+

L∑

k=1

(√

1 + 8 g2 sin2 pk

2
− 1

)

. (2.3)

The Bethe momenta of the highest state at g = 0 are

pk =
2π

L
nk, nk = −L− 1

2
, . . . ,

L− 1

2
. (2.4)
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The GBA equations in logarithmic forms are

pk =
2π

L
nk −

i

L

∑

j 6=k

log

1 − g2

2x+
k x

−
j

1 − g2

2x−k x
+
j

, (2.5)

where nk are given in (2.4). They are suitable for weak coupling expansions since the

second term in the r.h.s. is O(g2).

2.1 Weak coupling expansion and Weniger resummation

The weak-coupling expansion of the anomalous dimension is easily obtained. We simply

start with the zero-th order value of Bethe momenta for a certain fixed L, Eq. (2.4).

Then, we replace them in the GBA equation and expand the r.h.s. at first order in g2.

Repeating this procedure and expanding the expression for ∆ order by order, we obtain

the perturbative expansion of ∆.

In the ratio ∆/L, the terms up to O(g2L−2) do not change if L is increased. For

instance,

(
∆

L

)

L=3

=
3

2
+ 2 g2 − 4 g4 + 14 g6 − 235

4
g8 +

2209

8
g10 + · · · , (2.6)

(
∆

L

)

L=5

=
3

2
+ 2 g2 − 4 g4 +

29

2
g6 − 259

4
g8 +

2611

8
g10 + · · · , (2.7)

(
∆

L

)

L=7

=
3

2
+ 2 g2 − 4 g4 +

29

2
g6 − 259

4
g8 +

1307

4
g10 + · · · , (2.8)

This remark allows one to compute the L → ∞ limit of the expansion at a fixed order in

g by simply taking a sufficiently large L. The procedure can be performed at the semi-

numerical level. In other words, we work with finite high precision using numerical values

of the momenta in a symbolic algebra calculation. If the precision is suitably high, the

identification of the coefficients of the energy expansion can be unambiguously identified

with rational numbers. We have performed the calculation up to the term g68. This
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requires L ≥ 35. The result is

lim
L→∞

∆

L
= 3

2 + 2 g2 − 4 g4 + 29
2 g

6 − 259
4 g8 + 1307

4 g10 − 1790 g12 + 10396 g14 − 504397
8 g16

+6324557
16 g18 − 40702709

16 g20 + 8561442701
512 g22 − 114529021311

1024 g24

+777307887947
1024 g26 − 2670717561365

512 g28 + 37098574647961
1024 g30 − 4161069724993527

16384 g32

+29408079892945107
16384 g34 − 104670245742870895

8192 g36 + 5999052730939686071
65536 g38

−86452214868942845981
131072 g40 + 626162974135003430373

131072 g42 − 4556537471418865642837
131072 g44

+66598702591887298874029
262144 g46 − 244303906058015917431755

131072 g48

+7195137546781961772111605
524288 g50 − 106303776929607820974312023

1048576 g52

+49230031886653815687152661
65536 g54 − 45726319914455572899079305

8192 g56

+348843198908576206971428650203
8388608 g58 − 2605279742772089252587976183821

8388608 g60

+39003030225010830621366145740085
16777216 g62 − 2340608578131628813286501122058923

134217728 g64

+35185861176795745832756768610959237
268435456 g66

−264968465576189708105542064159612145
268435456 g68 + O(g70). (2.9)

We have identified the rational numbers by working with 200 digits arithmetics 1. This

power series is convergent for g2 . 1
8 , a rather small convergence radius. It is definitely

useless to evaluate strong coupling behavior at least in this form. We need an analyti-

cal continuation beyond the convergence radius. Since the series is alternating, we have

attempted such continuation by means of the non-linear Weniger algorithm [41] that we

describe in Appendix A.

In our case, the Weniger algorithm is found to work very well. As an example, we

consider g2 = 1 which is far beyond the convergence radius. The Weniger approximants

are shown in the first curve of Fig. (1) where a clear and definite convergence is achieved.

Going to higher values of the coupling, we find that the resummation algorithm gives stable

results up to g2 ≃ 20, which is a fairly high value. The other two curves of Fig. (1) shows

the behavior of Weniger approximants for g2 = 10, 30.

The plot of ∆/L− 3/2 at L→ ∞ in the stability region is shown in Fig. (2) where we

also draw the results from the numerical analysis of the GBA equations that are discussed

in the next Section. From the Weniger algorithm, we recover clearly the asymptotic
√
λ

behavior. A numerical fit gives the estimate

lim
L→∞

∆

L
∼ 0.1404

√
λ. (2.11)

1For instance, with such a precision, the coefficient of g68 appears in the calculation as a floating point

number r such that

268435456 r = 264968465576189708105542064159612145. 000 · · · 0
︸ ︷︷ ︸

163 null digits

, (2.10)

allowing for a safe identification of the numerator of the rational coefficient. Standard packages like

Mathematica [40] allows easily this kind of high precision numerical calculations.
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The numerical prefactor is different than the one predicted in [35]. The question is whether

the resummation is failing or the strong coupling expansion is revealing some surprise. In

the next Section, we shall answer this question in favor of the second hypothesis.

2.2 Numerical solution and strong coupling behavior

2.2.1 Preliminary remarks

The form of the GBA equations at strong coupling depends crucially on certain a priori

assumptions about the asymptotic form of Bethe momenta. For the highest state, it is

necessary to consider separately three different cases, motivated by the following numerical

analysis. If we denote by p(g) a particular running Bethe momentum, we consider the

three special large-g behaviors

I : p(g) → p > 0,

II : p(g) ∼ α g−1/2, (2.12)

III : p(g) ∼ α g−1.

The ratio g/x±(p) has the following limit

g

x±(p)
→







I:
√

2 e∓i p

2 ε(sin p
2),

II:
√

2 ε(α),

III:
2α

1 +
√

1 + 2α2
,

(2.13)

where ε(x) = x/|x| is the sign function. For better uniformity, it is convenient to write the

case II as √
2 ε(α) ≡

√
2 e∓i p

2 ε(sin
p

2
), (2.14)

where p = 0 in this case, and ε(0) = ±1 according to the sign of α. With these conventions,

cases I and II are expressed by the same formula.

2.2.2 The Arutyunov-Tseytlin Ansatz

An Ansatz for the strong coupling behavior of the Bethe momenta of the highest state

is described in [35]. As we shall discuss, it is closely related to the actual solution. The

Arutyunov-Tseytlin Ansatz assumes that one p remains zero and the other tend to non-

zero limits symmetrically distributed around zero. This Ansatz is quite reasonable since

the symmetric pattern is valid at g = 0 and remains true at all orders in the weak coupling

expansion.

Under this assumption, we can look at the positive p only. Using the expressions (2.13),

the GBA equation for any of them reduces at strong coupling to

eiLpk = e−ipk

L−1
2∏

j=1

j 6=k

1 − e−
i
2
(pk−pj)

1 − e
i
2
(pk−pj)

1 + e−
i
2
(pk+pj)

1 + e
i
2
(pk+pj)

= −
L−1

2∏

j=1

(−e−ipk) (2.15)
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This gives

Lpk =
L− 3

2
π − L− 1

2
pk + 2πmk, mk ∈ Z, (2.16)

or

pk =
4πmk

3L− 1
+ π

L− 3

3L− 1
. (2.17)

2.2.3 Explicit results at various L

As we discussed, the result (2.17) implies an asymptotic anomalous dimension which does

not agree with the resummation results. To understand what is happening, we have solved

numerically the gauge Bethe Ansatz equations according to the following recipe

1. we start with the solution at g = 0,

2. we progressively increase g and solve step by step the Bethe equations by Newton’s

algorithm [42],

3. at each step, we use the solution at the previous g as a starting guess for Newton’s

algorithm.

The procedure turns out to be very stable and can be extended up to very large λ values.

In particular it is possible to increase g in logarithmic scale. The stability of the algorithm

is checked by varying the numerical precision used in the intermediate computations. We

never encountered any singularity. By means of this numerical method, we have investi-

gated the GBA equations at several L in order to discover why and when the Ansatz (2.17)

fails.

Data for L = 3 and L = 5 are reported in Fig. (3); they confirm the Ansatz (2.17). We

show the positive Bethe momentum and the prediction with k = 1 for L = 3, and k = 0, 2

for L = 5. Notice that convergence is achieved at quite large λ.

At L = 7, the Bethe momenta are shown in Fig. (4). Here, something new happens.

One of the Bethe momenta tends to zero. Nevertheless, the Ansatz (2.17) is still working,

with k = 0, 2. The reason is that the vanishing momentum tends to zero like λ−1/4 (case

II) and the limiting form of the GBA equations is the same as it would be in case I. The

asymptotic form of the vanishing momentum is illustrated in Fig. (5).

At L = 9, the Bethe momenta are shown in Fig. (6). Here again one of the momenta

tends to zero. Now, the Ansatz (2.17) fails to predict the correct asymptotic values of the

non-vanishing momenta. Indeed, the vanishing momentum tends to zero like λ−1/2 (case

III) as shown in Fig. (7) and the limiting form of the GBA equations is changed. The

dashed lines predicting the actual asymptotic non-zero p are obtained as follows. Using

again Eqs. (2.13), the GBA equation for any positive p reads in the strong coupling limit

(L = 9)

eiLp = e−3 i p 1 − ρ2 e−ip

1 − ρ2 eip
, ρ =

√
2α

1 +
√

1 + 2α2
, (2.18)

where α appears in the asymptotic form of the vanishing momentum which is α/
√
λ. For

each ρ we can determine the three positive p nearest to the numerical asymptotic values.
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Then, we fix the parameter ρ by using the strong coupling limit of the GBA equation for

the vanishing momentum

1 =
∏

j=1,2,3

1 − ρ ei
pj

2

1 − ρ e−i
pj

2

1 + ρ e−i
pj

2

1 + ρ ei
pj

2

, (2.19)

The numerical solution is easily found. With 25 digits, it reads

ρ = 0.7261948032180057677773276, (2.20)

p1 = 0.6047720145641787805731663,

p2 = 1.648738996485669279031225,

p3 = 2.646257150202204974776960.

The agreement, shown in Fig. (6) is excellent. In the following of this paper, we shall often

have to solve equations like Eqs. (2.18-2.19). Whenever we claim that a numerical solution

is easily found, we mean that standard packages, like Mathematica [40], can determine the

solution with high precision in a straightforward way. For simplicity, we shall give just a

relatively small number of digits for such results, but in all cases, we have checked their

stability by increasing the precision and checking that the result is unchanged.

At L = 11, the Bethe momenta are shown in Fig. (8). Here again one of the momenta

tends to zero like λ−1/2 (case III) and the limiting form of the GBA equations is changed.

As before, we can compute the dashed lines showing the asymptotic non-zero p. The GBA

equations for the positive p read (L = 11)

eiLp = −e−4 i p 1 − ρ2 e−ip

1 − ρ2 eip
, (2.21)

Again, for each ρ we can determine the four positive p nearest to the numerical asymptotic

values. Then, ρ is fixed by the GBA equation for the vanishing momentum which reads

1 =
∏

j=1,2,3,4

1 − ρ ei
pj

2

1 − ρ e−i
pj

2

1 + ρ e−i
pj

2

1 + ρ ei
pj

2

, (2.22)

The solution is now

ρ = 0.616048, (2.23)

p1 = 0.227432,

p2 = 1.09891,

p3 = 1.92557,

p4 = 2.73741.

The agreement is shown in Fig. (8).

At L = 13, the Bethe momenta are shown in Fig. (9). Here two momenta tend to

zero, one like λ−1/2 and the other like λ−1/4. We repeat the exercise of computing the

asymptotic p. The GBA equation for the positive p reads (L = 13)

eiLp = e−5 i p 1 − ρ2 e−ip

1 − ρ2 eip
, (2.24)
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For each ρ we can determine the four positive p nearest to the numerical asymptotic values.

Then, we fix the parameter ρ as before by the GBA equation for the vanishing momentum

which reads

1 =
∏

j=1,2,3,4

1 − ρ ei
pj

2

1 − ρ e−i
pj

2

1 + ρ e−i
pj

2

1 + ρ ei
pj

2

, (2.25)

The solution is

ρ = 0.53244,

p1 = 0.72414,

p2 = 1.42787, (2.26)

p3 = 2.11751,

p4 = 2.80082.

The agreement is shown in Fig. (9).

If L is further increased, the pattern of vanishing and non vanishing momenta turns

out to be quite regular. In the following table we show for each L the number N1/4 of

positive momenta vanishing like λ−1/4 and the number N1/2 of those vanishing like λ−1/2.

The general formulas expressing the Z3 regularity of the Table are

L 7 9 11 13 15 17 19 21 23 25 27 29 · · ·
N 1

2
0 1 1 1 2 2 2 3 3 3 4 4 · · ·

N 1
4

1 0 0 1 0 0 1 0 0 1 0 0 · · ·

Table 1: Periodicity of the number of vanishing Bethe momenta.

N 1
2

= ⌊L− 1

6
⌋ − 1 +







0,
L− 1

2
mod 3 = 0,

1, otherwise

(2.27)

N 1
4

=







1,
L− 1

2
mod 3 = 0,

0, otherwise

(2.28)

For instance, if L = 43 we expect 6 momenta vanishing like λ−1/2 and one like λ−1/4. The

full set of momenta is shown in Fig. (10). It can be checked that the vanishing momenta

have precisely these asymptotic behaviors.

2.2.4 Asymptotic form of ∆

The asymptotic form of the anomalous dimension at fixed L and large λ is

∆

L
∼ cL

√
λ with cL =

1

Lπ

L∑

k=1

∣
∣
∣sin

pk

2

∣
∣
∣ , (2.29)
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where the pk are the asymptotic non-zero values of the Bethe momenta. Due to the above

periodicity, we can estimate c∞ by considering separately our data for cL for the three

values of ((L − 1)/2)mod 3. The result from a fit of the data at L > 5 by using a cubic

polynomial in 1/L are shown in Fig. (11). The three subsequences have clearly the same

limit. We find

c∞ = 0.1405(1), (2.30)

where the error is a conservative estimate of the finite L fit.

A remark about the order of the two limits L, λ → ∞ is in order. We applied the

resummation algorithm to estimate the leading term at large λ of limL→∞ ∆/L. Here,

solving the GBA equations, we are fixing L and taking the large λ leading term ∼ cL
√
λ.

Then, we evaluate c∞ = limL→∞ cL. Therefore, the double limit L, λ→ ∞ is taken in two

different orders. Nevertheless, the agreement of the leading term in the two calculations is

not surprising. This is precisely what happens for the AF state in the su(2) sector. There,

one can start from Eq. (1.1) and take after the λ → ∞ limit. Alternatively, one can take

the large λ limit at fixed L, e.g. in the Hubbard model formulation. The result for the

first three terms in the expansion is the same as discussed in [14].

3. The string Bethe Ansatz equations for the highest state in the su(1|1)

sector

The analysis of the GBA equations is certainly interesting, but the ultimate goal is the

comparison with string theory. As discussed in the Introduction, it is not clear to what

extent the GBA predicts correct results at strong coupling. This question can be investi-

gated by studying the string Bethe Ansatz equations [9, 10] expected to predict the correct

strong coupling behavior of string states, at least at large L.

In order to write the SBA equations in a compact way, we define x±k = x±(pk) and

uk = u(pk) where

u(p) =
1

2
cot

p

2

√

1 + 8 g2 sin2 p

2
. (3.1)

The string Bethe Ansatz equations are then

ei L pk =
∏

j 6=k

1 − g2

2x+
k x

−
j

1 − g2

2x−k x
+
j

eiϑ(pk,pj), (3.2)

where the scattering phase ϑ is

eiϑ(pk,pj) =








1 − g2

2x+
k x

−
j

1 − g2

2x−k x
+
j








−2 






1 − g2

2x+
k x

−
j

1 − g2

2x−k x
−
j

1 − g2

2x−k x
+
j

1 − g2

2x+
k x

+
j








2 i (uk−uj)

. (3.3)
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In logarithmic form we have

pk =
2π

L
nk −

i

L

∑

j 6=k







− log

1 − g2

2x+
k x

−
j

1 − g2

2x−k x
+
j

+ 2 i (uk − uj) log

1 − g2

2x+
k x

−
j

1 − g2

2x−k x
−
j

1 − g2

2x−k x
+
j

1 − g2

2x+
k x

+
j







.

(3.4)

These equations are considerably more involved than the GBA ones. Nevertheless, we have

been able to repeat step by step the previous analysis as we now discuss.

3.1 Weak coupling expansion and Weniger resummation

We repeat the semi-numerical algorithm that we followed for the weak coupling expansion

of the GBA equations. We take again L = 35 and obtain the result

lim
L→∞

∆string

L
= 3

2 + 2 g2 − 4 g4 + 25
2 g

6 − 601
12 g

8 + 2849
12 g10 − 25141

20 g12 + 429809
60 g14 − 9022721

210 g16

+149821573
560 g18 − 8640293477

5040 g20 + 1812303079883
161280 g22 − 88730558092937

1182720 g24

+1804497110708207
3548160 g26 − 26846650998855167

7687680 g28 + 279571052498891591
11531520 g30

−125402745492098095339
738017280 g32 + 9738744677918359729

8110080 g34 − 6703245537745284313789
784143360 g36

+1024647660942740023729097
16728391680 g38 − 2525524043347946614344579101

5721109954560 g40

+18296543439438265154466562553
5721109954560 g42 − 1331791971895366969823043659509

57211099545600 g44

+9735683703553399316563746438049
57211099545600 g46 − 345964047352595964568301174322841

277022166220800 g48

+48414229366853228412090322467734657
5263421158195200 g50 − 2689943057205158649159985079500991

39574595174400 g52

+5303581496963536951888629403691895353
10526842316390400 g54

−19710992154318324101213041165671461761
5263421158195200 g56

+870504639734489849012829744121725553
31190643900416 g58

−10693434560671288576899374290035763214898727
51286775765454028800 g60

+76039980287752685716954083401449551327779
48705390090649600 g62

−10643182102443547953784209313106048717253607517
908508599273757081600 g64

+2240647681205846470476844290367422504232816365029
25438240779665198284800 g66

−5626138712126728829417020286414076511813854415733
8479413593221732761600 g68 + O(g70). (3.5)

The Weniger resummation algorithm is convergent for g2 . 10. We show the resummed

expression for ∆ in the left panel of Fig. (12) for the gauge and string cases. The right

panel shows the derivative
d

d log λ
log

(

lim
L→∞

∆string

L

)

, (3.6)

which estimates at large λ the exponent of the leading term. In the gauge case, it ap-

proaches the value 1/2 at large λ, as we discussed. In the string case, the asymptotic

value appears to be definitely smaller and the figure is qualitatively compatible with an

asymptotic behavior ∼ λ1/4.
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To support this conclusion, we have fitted the whole data with the functional form

lim
L→∞

∆string(λ)

L
= c0 λ

ν + c1 + c2 λ
−ν + c3 λ

−2ν . (3.7)

The standard χ2 is a quantitative measure of the deviation from the supposed dependence

on λ. The best values for the exponent ν are

gauge BA : νfit = 0.496, string BA : νfit = 0.24, (3.8)

which are very close to 1/2 and 1/4. If we now fix the exponent ν = 1/2 or 1/4, we find

the following χ2 for the two curves:

fixed exponent ν = 1/2 ν = 1/4

χ2(gauge BA) 2.3 · 10−5 0.02

χ2(string BA) 0.03 1.4 · 10−4

(3.9)

As a conclusion, the resummed anomalous dimension favors the choice ν = 1/4 in the

string case. The leading term with its numerical prefactor is

lim
L→∞

∆string

L
= 0.70(1)λ1/4 . (3.10)

The prefactor is difficult to estimate and a better determination would require a stable

resummation at larger λ.

While this result is quite pleasing, it must be criticized because of the moderate re-

summation range. Based on the weak coupling arguments [presented so far, it can not be

ecluded that the string curve in the right panel of Fig. (12) could rise at larger λ and flow

back to the gauge value 1/2. To pursue the analysis, as in the gauge case, we turn to a

numerical iterative solution of the SBA equations. Indeed, it should be clear that several

solutions are possible at strong coupling and the problem is again that of choosing the right

one.

3.2 Exact solution at strong coupling

We now determine the numerical solution of the SBA equations. We follow the same

procedure we described for the gauge BA equations. The result is fully consistent with the

weak coupling resummation: All Bethe momenta pk vanish at large λ with an asymptotic

behavior pk ∼ αk λ
−1/4 for all pk! We illustrate this noticeable result by showing in Fig. (13)

the evolution of Bethe momenta scaled by λ1/4 in the four cases L = 3, 5, 15, 29.

The coefficients αk are symmetrically distributed around zero. Qualitatively, L − 2

coefficients αk are almost evenly spaced around zero. Two special momenta have instead

coefficients αk well separated from the central band. Looking in more details at the explicit
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solution, one finds that the αk in the central band have a non-trivial asymptotic density.

The analysis of the large L form of this density if deferred to future work.

It is not difficult to find an exact equation for the asymptotic coefficients αk. As we

said, one of them is zero, (L− 1)/2 are positive, and (L− 1)/2 are opposite to the positive

ones. Expanding the SBA equations at large λ is a bit tricky but straightforward. We

obtain the following equation determining the positive αk > 0

exp




i

2π
αk

∑

αj>0

αj



 =
∏

αj>0

j 6=k

− i
2(αk − αj) + 2π(α−1

k + α−1
j )

i
2 (αk − αj) + 2π(α−1

k + α−1
j )

×

×
∣
∣
∣
∣
∣

i
2 (αk − αj) + 2π(α−1

k + α−1
j )

− i
2(αk + αj) + 2π(α−1

k + α−1
j )

∣
∣
∣
∣
∣

4i(h(αk)−h(αj))

(3.11)

h(α) =
π

α2
− α2

16π
.

where in the l.h.s. the sum includes the case j = k.

Although Eq. (3.11) is rather complicated, it can be solved numerically without dif-

ficulties, at least starting from the numerical p obtained at a reasonably large λ. As an

example, at L = 5, 7, 9 we find the following (numerical) solutions

L = 5

α1 = 2.9213116645,

α2 = 7.9614845209,

L = 7

α1 = 2.1234902933,

α2 = 4.0857786417,

α3 = 9.1813290270,

L = 9

α1 = 1.6905819725,

α2 = 3.1495210704,

α3 = 4.8259074880,

α4 = 10.203166001

(3.12)

These values are in perfect agreement with the numerical solution of the string Bethe

Ansatz equations as illustrated in Fig. (14).

Actually, if we are interested in the asymptotic form of ∆string, we do not need the full

information encoded in the αk, but just their sum. Indeed,

∆string

L
∼ cL λ

1/4, (3.13)

where

cL =
1

2Lπ

L∑

k=1

|αk| =
1

Lπ

∑

αk>0

αk. (3.14)

We now take the product of Eqs. (3.11). The right hand sides cancel perfectly. Evaluating

the product of the left hand sides we obtain

exp




i

2π




∑

αj>0

αj





2

 = 1, =⇒




∑

αj>0

αj





2

= (2π)2 NL, (3.15)

where NL ∈ N. These integers can be determined by solving Eqs. (3.11) at a certain L. The

starting point for Newton’s algorithm is taken from the solution of the SBA equations at a
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reasonably large λ. Given the solution for the αk coefficients, we can compute NL. Indeed,

the solution of Eqs. (3.11) can be accomplished easily with an arbitrarily high number of

digits and the identification of the integer NL is totally straightforward and unambiguous.

The first values of NL are

L : 5 7 9 11 13 15 17 19 21 . . .

NL : 3 6 10 15 21 28 36 45 55 . . .
(3.16)

The following simple formula holds

NL =
1

8
(L2 − 1), (3.17)

leading to the prediction

cL =
1

Lπ

∑

αk>0

αk =
1

Lπ
2π

√

NL =
1√
2

(

1 − 1

L2

)1/2

. (3.18)

Now, we do not observe any particular Z3 structure. The values of cL are perfectly smooth

as L increases. As a further check of this analytical expression, we show in Fig. (15) the

fit of c∞ with a simple quadratic polynomial in 1/L. There is perfect agreement with the

prediction

c∞ =
1√
2
. (3.19)

The numerical solution of the SBA equations and the resummation in the stable region

g2 . 10 are in perfect agreement.

Of course, the appearance of the integer NL in the asymptotic form of ∆ at large λ is

not surprising. Indeed, this is a general feature of the SBA equations as discussed in [21].

If the Bethe momenta vanish like λ−1/4 at large λ, then the asymptotic form of ∆ is

∆ ∼ 2
√
nλ1/4, (3.20)

where n is a sum of mode numbers. This is the celebrated string prediction of [2] where n

is the level of a massive string state. The calculation that we have described identifies the

precise value of n ≡ NL for the state dual to the highest operator in the su(1|1) sector.

4. The gauge Bethe Ansatz equations for the AF state in the su(2) sector

It is straightforward to extend the analysis to the highest state in the su(2) sector. The

gauge Bethe Ansatz equations read

ei L pk =
∏

j 6=k

x+(pk) − x−(pj)

x−(pk) − x+(pj)

1 − g2

2x+(pk)x−(pj)

1 − g2

2x−(pk)x+(pj)

, k = 1, . . . , L, (4.1)

Now, we consider L ∈ 2 N.
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At g = 0 the above equations reduce to those of the Heisenberg model. The Bethe

momenta pk are non-trivial and can be determined numerically at each L as follows. At g =

0 we have uk = 1
2 cot pk

2 . The variables uk can be determined by solving (e.g. iteratively)

2π Jk = 2
L∑

j=1

arctan(uk − uj) − 4L arctan(2uk), (4.2)

where the Bethe quantum numbers {Jk} for the AF state are

{Jk} =

{

−L− 1

2
,−L− 3

2
, . . . ,

L− 3

2
,
L− 1

2

}

. (4.3)

Here, it is not useful to compute the weak coupling expansion of ∆. Indeed, due to the

appearance of the non-trivial one-loop Bethe roots, all the coefficients of the expansion

depend on L.

On the other hand, we can integrate numerically the equations. The result is not

surprising and could be expected on the basis of the Hubbard model solution at finite L

discussed in [14]. At large λ, all Bethe momenta flow to constant values pk → pk given by

{p1, . . . , pL} =

{

±π
L
,±3π

L
,±5π

L
, . . . ,±L− 1

L
π

}

. (4.4)

Hence, the asymptotic form of the anomalous dimension is

∆

2L
∼ 1

2L

√
λ

π

∑

p

∣
∣
∣
∣
sin

p

2

∣
∣
∣
∣
= (4.5)

=

√
λ

Lπ

∑

p>0

sin
p

2
=

√
λ

Lπ

L/2−1
∑

s=0

sin
(2s+ 1)π

2L
=

√
λ

2π L sin π
2L

(4.6)

In particular, taking L→ ∞ we find

lim
L→∞

∆

2L
=

√
λ

π2
+ . . . . (4.7)

The factor 2L in the scaled anomalous dimension is the correct one, i.e. the length of the

associated lattice model. Indeed, in the su(2) sector, the spin zero cyclic state associated

with the AF state with L Bethe momenta has 2L spins, L with spin up and L with spin

down.

We remark that the above leading term is obtained both from the GBA equations and

from the Hubbard model. It is quite interesting to see what happens at the level of string

Bethe Ansatz equations.

5. The string Bethe Ansatz equations for the AF state in the su(2) sector

The string Bethe Ansatz equations in the su(2) sector are modified by the same universal

dressing factor we introduced in the su(1|1) sector. Thus, they read

ei L pk =
∏

j 6=k

x+(pk) − x−(pj)

x−(pk) − x+(pj)

1 − g2

2x+(pk)x−(pj)

1 − g2

2x−(pk)x+(pj)

eiϑ(pk,pj), (5.1)
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where the scattering phase ϑ(pk, pj) has been defined in Eq. (3.3).

We solve numerically these equations and the outcome is that all Bethe momenta

vanish like pk → αkλ
−1/4 precisely as in the su(1|1) case. Again we can work out an exact

equation for the asymptotic coefficients {αk}. Taking the limit of the SBA equation we

find the following modified form of Eq. (3.11)

exp




i

2π
αk

∑

αj>0

αj



 =

∏

αj>0

j 6=k

i
2(αk + αj) + 2π(α−1

k − α−1
j )

− i
2(αk + αj) + 2π(α−1

k − α−1
j )

− i
2(αk − αj) + 2π(α−1

k + α−1
j )

i
2(αk − αj) + 2π(α−1

k + α−1
j )

×

×
∣
∣
∣
∣
∣

i
2(αk − αj) + 2π(α−1

k + α−1
j )

− i
2(αk + αj) + 2π(α−1

k + α−1
j )

∣
∣
∣
∣
∣

4i(h(αk)−h(αj ))

(5.2)

h(α) =
π

α2
− α2

16π
.

where in the l.h.s. the sum includes the case j = k.

As in the su(1|1) sector, we can solve numerically this equation to cross check the

numerical solution of the SBA equations. For instance, at L = 8 we have four positive

vanishing momenta and the above equation predicts

α1 = 2.7192199579, (5.3)

α2 = 4.1578685742,

α3 = 5.7295537708,

α4 = 12.5260989258.

The actual comparison with the solution of the SBA equations is shown in Fig. (16).

To find the asymptotic expression of the anomalous dimension we can follow the same

strategy as we did in the su(1|1) sector. The extra factors in Eq. (5.2) also cancel when all

the equations are multiplied together. Hence, we find again the fundamental relation




∑

αj>0

αj





2

= (2π)2 NL, (5.4)

with a different sequence NL. Evaluating the solution to Eq. (5.2) we find the table

L : 4 6 8 10 12 14 16 18 20 . . .

NL : 4 9 16 25 36 49 64 81 100 . . .
(5.5)

Hence, the following simple formula holds

NL =
1

4
L2 (5.6)
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leading to the prediction
∆string

2L
∼ cL λ

1/4, (5.7)

with

cL =
1

2Lπ

∑

αk>0

αk =
1

2Lπ
(2π)

L

2
=

1

2
. (5.8)

This is an exact result holding at any finite L. For instance, it can be checked that it is

valid for the L = 8 solution up to the quoted accuracy.

Again, the integer NL appears in the asymptotic expression for ∆ at large λ in the

form

∆ ∼ 2
√

NL λ
1/4, (5.9)

identifying NL with the level of the massive string state dual to the AF operator.

6. Discussion

Quantitative tests of AdS/CFT require a perturbative window allowing reliable calculations

on both sides of the correspondence. Such a window does not exist for generic sectors of

the spectrum, but is available for semiclassical string states with large quantum numbers.

In these BMN-like limits, a perturbative check of AdS/CFT at weak effective ’t Hooft

coupling can be attempted, but is known to fail at three loops. This discrepancy can be

seen as a limitation to our capability of capturing the strong quantum dynamics of string

theory beyond the BMN limit, i.e. the small λ regime for states with fixed finite classical

dimension L.

On one hand, the GBA equations are effective in computing all-loop perturbative gauge

theory properties, like anomalous dimensions. However, the implicit order of limits (L→ ∞
after λ→ 0) spoils the agreement with string calculations beyond two loops. On the other

hand, the SBA equations are valid at large λ, but already the leading quantum corrections

are known to receive important and non-trivial corrections at small λ [22, 23, 24, 25], not

yet under full control despite recent progresses [33, 34].

At large λ, the picture is quite different. In principle, the GBA equations should not

be trusted because the wrapping terms cannot be neglected. Instead, the SBA equations

are expected to match string calculations, including leading quantum corrections. Hence,

we can make predictions on the string side, but we cannot test the AdS/CFT correspon-

dence. Actually, this general statement is very conservative. Specific cases must be treated

with care and a matching between the solutions of the two sets of equations is possible.

Indeed, the structural difference between GBA and SBA equations lies only in the dressing

scattering phase Eq. (3.3) and the relevance of this extra term should be considered case

by case.

Important examples of such exceptions can be found in various BMN-like limits. For

instance, the exact all loop expression of plane wave string levels reads in the strict BMN

limit

∆M − J =
M∑

k=1

√

1 + n2
k λ

′, λ′ =
λ

J2
, J → ∞, (6.1)
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and scales like (λ′)1/2 at large λ′. This result is valid both in the framework of GBA [11]

and SBA [21] equations. In this case, the matching of the two predictions is due to the

fact that the impurities are fixed in number and their diluteness prevents scattering effects

in the thermodynamical limit. A related example is the Hofman-Maldacena limit which

also displays asymptotic (λ′)1/2 scaling laws closely related to the BMN case [43, 44, 46,

45, 47]. Again, in the Hofman-Maldacena limit, the dressing factor in the SBA equations

has been shown to decouple, making the prediction from the GBA exact, at least in the

thermodynamical limit [48].

These examples should be regarded as exceptions, precisely because the irrelevance of

the dressing phase is not expected to be generic feature. A more involved example where

an explicit strong coupling discrepancy appears is the folded string (FS) solution [27] in

the su(2) sector. The energy of this solution is a function ∆FS(λ, J). In the AdS/CFT

correspondence, it must be matched with the anomalous dimension of an operator with

L = 2J constituent scalar fields. The scaling operator is well known, at least in the L→ ∞
limit and is the double contour solution of the GBA equations described in [37]. It has

been studied in some details also in the Hubbard model formulation [14]. Setting, as usual

λ′ = λ/J2 we have

lim
J→∞

∆string
FS (λ′ J2, J)

2J
= f(λ′), (6.2)

where the function f(λ′) is explicitely known. The leading term is obtained by expanding

at large λ′:

f(λ′) ∼ 1√
2

(λ′)1/4. (6.3)

One can ask whether it is possible to reproduce Eq. (6.3) with the GBA equations. The

anomalous dimension ∆gauge
FS of the double contour solution is known at strong coupling

and finite J in the Hubbard model GBA equations [14]. It reads

∆gauge
FS (λ, J)

2J
∼ 1

π
√

2
cos

π

4J
(λ′)1/2 J→∞−→ 1

π
√

2
(λ′)1/2. (6.4)

With the usual remarks about the order of limits, we see that the GBA/SBA equations

predict an asymptotic behaviour ∼ (λ′)ν with ν = 1/2 and 1/4 respectively. Here the

number of impurities in the folded string solution gets large as J → ∞ and their finite

density makes the role of the dressing scattering phase non-trivial.

Following these remarks, it seems interesting to look at other explicit non-trivial ex-

amples where the GBA and SBA equations can be compared in the strong-coupling region.

From a slightly different perspective, one is considering a special class of states and wonders

about the role of the SBA scattering phase. Following this line of reasoning, this work an-

alyzes the highest state in the su(1|1) and su(2) sectors of N = 4 SYM. We have been able

to solve all ambiguities appearing in the strong coupling expansion of the Bethe Ansatz

equations. Our results have been cross-checked with a resummation technique which is

able to connect smoothly the weak- and strong-coupling regions. Our main results have
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already been summarized in Eqs. (1.5) and are repeated below for the reader’s advantage.

∆gauge
su(2)

2L
=

1

2πL sin
π

2L

λ1/2,

∆gauge
su(1|1)
L

= cL λ
1/2,

∆string
su(2)

2L
=

1

2
λ1/4,

∆string
su(1|1)
L

=
1√
2

(

1 − 1

L2

)

λ1/4,

(6.5)

cL → 0.1405(1), as L→ ∞.

The main outcome of our analysis is the following. For any fixed L, the highest states

in the su(2) or su(1|1) sectors have a large λ anomalous dimension scaling like ∆ ∼ λν

where ν = 1/2 in the GBA equations and ν = 1/4 in the SBA equations. At large λ (and L)

the SBA equations can be trusted without subtleties. Hence, the λ1/2 scaling predicted by

the GBA equations is not a true feature of the highest states. Their anomalous dimension

immediately scales like λ1/4 and uniformly in L as soon as they are treated by the string

Bethe Ansatz equations.

We remark that our result is somewhat novel. Indeed, in the su(2) sector, it is common

lore to believe in the
√
λ scaling of the AF operator, after its identification with the dual of

the slow-string limit solution in [38]. From our analysis, we see that it is certainly possible

to force the SBA equations to exhibit λ1/2 scaling. However, this must be done by assuming

a large λ behavior of the Bethe momenta that is ruled out by the explicit solution of the

equations, at least for the highest states.

Notice also that it is possible to quantize the superstring equations of motion after

truncation to the su(1|1) sector [49, 50]. The spectrum contains long string solutions with

non-vanishing winding w =
∑

k pk with λ1/2 scaling. On the contrary, short strings with

vanishing winding exhibit the usual λ1/4 scaling. The observed symmetry p→ −p of Bethe

momenta favors the w = 0 option.

In conclusion, apart from the above mentioned special cases, it seems definitely dan-

gerous to rely on the GBA equations to estimate the strong coupling limit of general states,

as our analysis of the highest states has shown. Instead, the full solution of the SBA equa-

tions, even at the discussed semi-analytical level, appears to be an effective predictive tool.

For instance, our result 2

∆string
L,su(1|1) = 2

√

NL λ
1/4, NL =

1

8
(L2 − 1),

∆string
L,su(2) = 2

√

NL λ
1/4, NL =

1

4
L2,

(6.6)

gives a simple formula for the level of the string state dual to the highest state in the two

compact sectors.

2NL is integer in both sectors since it has been derived with L odd (even) in su(1|1) (su(2)).
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A. The Weniger resummation algorithm

Given the power series

lim
L→∞

∆

L
=

∑

n≥0

cn g
2n, (A.1)

we can evaluate the partial sums

sn =
n∑

k=0

ck. (A.2)

From the partial sums, we form the Weniger approximants

δn =

n∑

j=0

(−1)j
(
n

j

)
(1 + j)n−1

(1 + n)n−1

sj

cj+1

n∑

j=0

(−1)j
(
n

j

)
(1 + j)n−1

(1 + n)n−1

1

cj+1

, (A.3)

where (a)m = Γ(a+m)/Γ(a) is the Pochhammer symbol. If g2 is beyond the convergence

radius, the partial sums do not converge and oscillate wildly. For better stability we have

performed all calculations in exact arithmetics. If the Weniger algorithms succeeds in

resumming the series, then the Weniger approximants converge.
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Figure 1: Weniger convergents δn(g2) for the weak coupling expansion of the GBA equations at

the three values g2 = 1, 10, 30.
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Figure 14: Check of the finite L prediction of asymptotic coefficients αk from the solution of

Eq. (3.11).
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