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Abstract

We compute, in SU(3) pure gauge theory, the vacuum expectation value (vev) of the
operator which creates a Z3 vortex wrapping the lattice through periodic boundary
conditions (dual Polyakov line). The technique used is the same already tested in
the SU(2) case. The dual Polyakov line proves to be a good disorder parameter
for confinement, and has a similar behaviour to the monopole condensate. The new
features which characterise the construction of the disorder operator in SU(3) are
emphasised.
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1 Introduction

A creation operator µ(C) of Z2 vortices was recently introduced for the SU(2)
pure Yang-Mills theory [1], in order to investigate their relevance for confine-
ment. We recall that, for a generic SU(N) theory, µ(C) creates a defect along
the line C; it is defined by the following algebraic relation with the Wilson
loop W (C ′) [2]:

µ(C)W (C ′) = W (C ′)µ(C) exp
(

i2πnCC′

N

)

(1)
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nCC′ being the linking number of the curves C and C ′. As discussed in [2], two
operators satisfying Eq. 1 are dual to each other: in the phase characterised
by an area law for W , µ has a perimeter behaviour and viceversa.

µ(C) can be viewed as a dual parallel transport along the line C. In what
follows we shall choose for C a straight line, say along the z direction, closing
at infinity through periodic boundary conditions (PBC). µ(C) on this line
can be considered as a dual Polyakov line. In Ref. [1] the behaviour of 〈µ(C)〉
for this line was studied across the SU(2) deconfining phase transition, us-
ing techniques introduced in Refs. [3–5] to study monopole condensation. The
result was that 〈µ(C)〉 is a good disorder parameter for the deconfinement
phase transition, and a finite size scaling analysis allowed a satisfactory de-
termination of the critical temperature and indices. In addition it was found
that 〈µ(C)〉 coincides within errors with the disorder parameter describing
monopole condensation.

In this paper, we perform a similar analysis for the SU(3) pure gauge theory,
and again we determine the critical temperature and the critical exponents ν
and δ. As in previous works, instead of 〈µ(C)〉, we study

ρ =
∂

∂β
log〈µ〉 (2)

which is more convenient from the numerical point of view, and provides the
same information as 〈µ(C)〉. Again we compare with the analogous quantities
defined by magnetic charge condensation, finding a similar behaviour.

The existing literature on the subject [6–8] deals with the SU(2) case and was
already compared to our approach in [1].

2 From SU(2) to SU(3)

The definition of the vortex creation operator µ presented in [1] can be ex-
tended to the case of a Z3 vortex in a straightforward manner. The peculiari-
ties of this new definition are summarised in this section, while the reader is
referred to [1] for a detailed discussion of the method.

The expectation value of µ in an SU(N) gauge theory is defined as the ratio
of two partition functions:

〈µ(t0, x0, y0)〉 =
Z̃

Z
= Z−1

∫

[dU ]e−β S̃[U ] (3)
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where Z is the usual partition function with the Wilson action,

S[U ] =
1

N

∑

x,µν

Tr Re [1 − Pµν(x)] (4)

and S̃ is obtained from S by multiplying a line of plaquettes in the 0y plane
by an element of the center:

P0y(t0, x > x0, y0, z) 7→ zP0y(t0, x > x0, y0, z), ∀z (5)

where z ∈ ZN .

For the SU(3) case discussed in this paper

z = exp {i n 2π/3} , with n = 0, 1, 2 , (6)

corresponding to the case of zero, one vortex and one antivortex. Following [1],
it can be shown by suitable changes of variables in the definition of Z̃ that
such a prescription amounts to create a vortex string closed by PBC in the z
direction at (x0, y0, t0), together with an antivortex line at (Ns − 1, y0, t0) due
to PBC in the x direction.

It is worthwhile emphasizing that the vortex creation operator defined here
does not depend on a specific gauge choice. At finite temperature, it is related
to the increase of the free energy when a vortex is produced in the vacuum of
the theory [6–9]. It is gauge-invariant by construction and relies neither on the
identification of the vortices locations nor on their density nor on any choice
of the gauge.

Similarly to the SU(2) case, the measurement of a single operator 〈µ〉 is needed
at finite temperature, with C∗ boundary conditions to ensure that the net
effect of µ is the creation of a single vortex as explained in [5]. The free energy
of the vortex configuration is given by:

〈µ〉 ∝ exp {−F/T} (7)

In pure gauge theory, the confined phase is characterised by the area law for
the Wilson loop, corresponding to a linearly rising potential between static
quarks. With a compact time-dimension, the potential can also be determined
from the correlation of two Polyakov lines according to:

〈Tr P (R) Tr P †(0)〉 ∝ e−V (R)Nt (8)

where Nt is the lattice extension in the compact dimension. Eq. 8 and cluster
property imply that the vev of a single Polyakov line has to vanish in the
confined phase, that is whenever the Wilson loop has an area law. One can
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argue that the dual loops exhibit a similar behaviour: a non-zero value for
their vev corresponds to the confined phase, characterised by a perimeter law
for the dual loop, while a vanishing vev for the dual Polyakov line corresponds
to the phase where the dual loop has an area law (i.e. the deconfined phase).
Perturbative calculations at high temperature show that indeed 〈µ〉 has an
area law in this phase [10], implying vanishing vev for the dual Polyakov line.
In the following section, we shall present non-perturbative lattice results for
〈µ〉 as a function of the temperature.

3 Numerical results

In this paper, we present data only for straight vortex lines wrapping in the z
direction by PBC.

Due to the exponential in its definition, 〈µ〉 has large fluctuations, which
make a direct measurement of its expectation value a challenging task. As
usual [1,3–5], we focus on the quantity:

ρ =
∂

∂β
log〈µ (t0, x0, y0)〉 = 〈S〉S − 〈S̃〉S̃ (9)

ρ is easy to compute and yields all the relevant information. At finite temper-
ature, ρ is expected to have a sharp negative peak in the critical region [3–5],
if 〈µ (t0, x0, y0)〉 is a disorder operator for the deconfinement phase transition.

Our results for ρ are displayed in Fig. 1, for several lattice sizes. Fig. 1 shows
the characteristic peak at the critical coupling, already observed for SU(2). As
a check of our code, we have verified on a 123 × 4 lattice, that ρ has the same
behaviour for a vortex and an antivortex, as expected due to the invariance
under charge conjugation. The results are shown in Fig. 2.

The results for SU(3) are qualitatively very similar to the ones already pre-
sented for SU(2) in [1]. The value of ρ in the deconfined phase tends to −∞ in
the thermodynamic limit, so that 〈µ〉 vanishes in that limit, in agreement with
the result obtained using perturbation theory in [10]. The small β behaviour
of ρ is reported in Fig. 3. Since no change in ρ is observed as the volume goes
large compared to the physical correlation length, we conclude that in the
confined phase 〈µ〉 has a a non-vanishing vev in the thermodynamic limit.

Finite size scaling techniques yield a quantitative description of the behaviour
of ρ in the critical region. The following equation

ρ

N
1/ν
s

= f
(

N1/ν
s (βc − β)

)

(10)
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Fig. 1. ρ vs. β for the n = 1 vortex on N3
s × 4 lattices. The analogous result for

monopoles[5] is superimposed for comparison.
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Fig. 2. Comparison of ρ defined for a vortex and an antivortex configuration.

with Ns being the lattice size, summarises the fact that the rescaled quantity
ρ/N1/ν

s is a universal function of the scaling variable

x = N1/ν
s (βc − β) (11)

For a detailed discussion of the finite size scaling of ρ we refer to [3,5,1]. In the

5



2 3 4 5 6
−1000

−500

0

500

Ns=12
Ns=16
Ns=20
Ns=24
Ns=32

Fig. 3. Small β ehaviour of ρ.

SU(3) case, we know that the transition is first order and there are scaling
violations which we parametrise in the form [5]

ρ

N
1/ν
s

= f
(

N1/ν
s (βc − β)

)

+
d

N3
s

(12)

Assuming ν = 1/3, one can fit the data to Eq. 12 to extract βc, δ, c and d. We
find βc = 5.6924(5) in agreement with the result βc = 5.6925 quoted in [11]. A
value for δ can also be extracted. It is however less stable towards variations of
the fitting range and also depends on the value of βc. A conservative estimate,
including a large systematic error, is δ = 0.51(5), which is in agreement with
the value 0.54(4) obtained in [5] from the monopole condensate. The system-
atic error is estimated by comparing different fits to the same data, with a
subset of the parameters being kept fixed, or from the same fit to a subset of
the data. The variation in the fitted parameters is used to estimate the error.
The data together with the fitted curve are displayed in Fig. 4.

The data in Fig. 1 display a difference in the shapes for the monopole and
the vortex peaks on the left of the phase transition. However, the behaviour
inside the peak is described by the same critical indices.

4 Discussion

Similarly to SU(2), the dual Polyakov line is a good disorder parameter for
deconfinement also in the case of SU(3). It can be viewed as the dual of the
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Fig. 4. Plot of rescaled data.

usual Polyakov line, the order parameter. Once again, its behaviour is similar
to that of the disorder parameter describing condensation of magnetic charges,
which in turn is independent of the choice of the Abelian projection.

We consider these results a step forward in the understanding of the yet un-
known dual fields describing the confined phase.
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