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1. Introduction

The current description of strong interactions is based on QCD, whose dynamics becomes

nonperturbative at energies of order ΛQCD. Confinement, which can be defined as the

absence in the observed spectrum of asymptotic states that carry a color charge, is com-

monly associated to a nonperturbative, linearly rising potential between color sources - for

recent discussions on confinement see e.g. [1, 2] and references therein. Such a potential is

indeed consistent with the Regge trajectories observed in the hadronic spectrum and hints

to a picture where hadrons are made of quarks joined by flux tubes of chromoelectric field.

String theory was originally introduced as an effective theory to describe the dynamics

of these flux tubes. Numerical simulations of gauge theories regulated on a lattice are

an effective tool to investigate nonperturbative properties from first principles; they have

confirmed the existence of such a linear potential, have provided good evidence in favor

of a bosonic string description, and have studied in some details the structure of the flux

tubes.

While this picture is generally accepted nowadays, the mechanism which is responsible

for confinement is still under active debate. New aspects of the mechanism of confinement

may be evidentiated by studying SU(N) gauge theories for N > 3, under the assumption

that all these theories share the same basic properties with corrections that are organised

in powers of 1/N . These ideas have triggered a recent interest in the spectrum of k-strings

in SU(N) gauge theories. A k-string is defined as the confining flux tube between sources

in higher representations, carrying a charge k with respect to the center of the gauge group

ZN , i.e. representations with nonvanishing N -ality. These sources can be seen as the

superposition of k fundamental charges, and charge conjugation exchanges k- and (N −k)-
strings, so that non trivial k-strings exist only for N > 3 1; their string tensions σk can

1We shall not consider in this work high-dimensional representations that are screened by gluons and

do not yield a genuine asymptotic string tension.
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be - and should be - used to constrain mechanisms of confinement [3, 4]. Results for the

values of σk can be obtained by various approaches. Early results, based on dimensional

reduction arguments, suggest the so-called “Casimir scaling” hypothesis for the ratio of

string tensions [5]:

R(k,N) ≡ σk
σ1

=
k(N − k)

N − 1
≡ C(k,N) (1.1)

where σ1 is the fundamental string tension. Recent studies in supersymmetric Yang-Mills

theories and M-theory suggest instead a “Sine scaling” formula:

R(k,N) =
sin (kπ/N)

sin (π/N)
. (1.2)

Corrections are expected to both formulae, but the form of such corrections is unknown

for the physically relevant case of a four dimensional, nonsupersymmetric, SU(N) gauge

theory.

In the large-N limit, where the interactions between flux tubes are suppressed by

powers of 1/N , the lowest energy state of the system should be made of k fundamental

flux tubes connecting the sources; hence:

R(k,N)
k−fixed
N→∞−→ k. (1.3)

Both the Casimir and the Sine scaling formulae satisfy this constraint; they also remain

invariant under the replacement k → (N−k), which corresponds to the exchange of quarks

with antiquarks. However, it has been argued in Refs. [6, 7] that the correction to the

large-N behavior should occur as a power series in 1/N2 rather than 1/N . 2 Clearly such

a behavior would exclude Casimir scaling as an exact description of the k-string spectrum.

Recent lattice calculations have provided new results for the spectrum of k-strings both

in three and four dimensions [8, 9, 10, 11, 12, 13]. They all confirm that Casimir scaling is a

good approximation to the Yang-Mills results. To be more quantitative, one could say that

all lattice results are within 10% of the Casimir scaling prediction, and that deviations

from it are larger in four than they are in three dimensions, in agreement with strong-

coupling predictions [12]. The taming of systematic errors is a crucial matter for such

lattice calculations, and it can only be achieved by an intensive numerical analysis. In four

dimensions, the higher statistics simulations presented in Ref. [12] show that corrections to

the Casimir scaling formula are statistically significant, and actually favor the Sine scaling.

Finally, it has been pointed out in Ref. [13] that higher-dimensional representations with

common N -ality do yield the same string tension, as expected because of gluon screening.

These numerical results trigger a few comments on Casimir scaling. The original

argument [5] was based on the idea that a 4-d gauge theory in a random magnetic field

could be described by a 2-d theory without such a field. Besides the numerical results,

there is little support for such an argument in QCD; moreover it is not clear that the same

2One should study with some care whether the arguments presented in Refs. [6, 7] hold independently

of the space-time dimensionality.
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hypothesis could explain the approximate Casimir scaling observed in three dimensions.

On the other hand, Casimir scaling appears “naturally” as the lowest order result, both at

strong-coupling in the case of k-strings in the hamiltonian formulation of gauge theories,

and in the case of the spectrum of bound states in chiral models. Corrections can be

computed in the strong-coupling formulation and they turn out to be ∝ (d−2)/N - see e.g.

Ref. [12] for a summary of results and references. While we are aware that strong-coupling

calculations are not directly relevant to describe the physics of the continuum theory, we

think that it is nonetheless instructive to have some quantitative analytic control within

that framework. Last but not least, Casimir scaling also appears at the lowest order in the

stochastic model of the QCD vacuum [14]. In view of these considerations, it is fair to say

that approximate Casimir scaling should be a prerequisite for any model of confinement,

that corrections should be expected, and that these corrections are liable to yield further

informations about the non-perturbative dynamics of strong interactions. Moreover, it

would be very interesting to improve our understanding of some other aspects of the k-

string spectrum, like e.g. the origin of the Sine scaling for non-supersymmetric theories,

or the structure of the corrections to this scaling form.

In order to get more insight in the dynamics underlying the k-string spectrum, we

compute in this paper the ratio R(k,N) in the 3-d SU(N) Georgi-Glashow model. This

model, in the (N = 2)-case, is a classic example [15] of a theory, which allows for an

analytic description of confinement. The latter is due to the plasma of point-like magnetic

monopoles, which produce random magnetic fluxes through the contour of the Wilson loop.

In the weak-coupling regime of the model (which is assumed henceforth), this plasma is

dilute, and the interaction between monopoles is Coulombic, being induced by the dual-

photon exchanges. Since the energy of a single monopole is a quadratic function of its flux,

it is energetically favorable for the vacuum to support a configuration of two monopoles

of unit charge (in the units of the magnetic coupling constant, gm), rather than a single,

doubly-charged monopole. Owing to this fact, monopoles of unit charge dominate in the

vacuum, whereas monopoles with higher charges tend to dissociate into them. Summing

over the grand canonical ensemble of monopoles of unit charge, interacting with each other

by the Coulomb law, one arrives at an effective low-energy theory, which is a 3-d sine-

Gordon theory of a dual photon. The latter acquires a mass (visible upon the expansion

of the cosine potential) by means of the Debye screening in the Coulomb plasma. The

appearance of this (exponentially small) mass and, hence, of a finite (albeit exponentially

large) vacuum correlation length is crucial for the generation of the fundamental string

tension, i.e., for the confinement of the external fundamental matter. It is worth noting

that a physically important interpretation of these ideas in terms of spontaneous breaking

of magnetic Z2 symmetry has been presented in reviews [16] and refs. therein.

In the next section, we formalize this qualitative discussion and describe the SU(N)-

generalization of the model, thereby introducing the notations used throughout this paper.

In section 3, we proceed directly with the evaluation of the k-string tensions in the SU(N)-

version of the model, first in the dilute-plasma approximation, and then with the leading

non-diluteness correction taken into account. In section 4, we consider other possible

corrections, which stem from the finiteness of the Higgs-boson mass and from the closed
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electric strings, present in the model. Finally, in section 5, the main results of the paper

are summarized, and possible generalizations to the 4-d case are discussed.

2. The model

The Euclidean action of the 3-d Georgi-Glashow model reads [15]

S =

∫

d3x

[

1

4g2

(

F aµν
)2

+
1

2
(DµΦ

a)2 +
λ

4

(

(Φa)2 − η2
)2
]

, (2.1)

where the Higgs field Φa transforms by the adjoint representation, i.e., DµΦ
a ≡ ∂µΦ

a +

εabcAbµΦ
c. The weak-coupling regime g2 ≪ mW parallels then the requirement that η

should be large enough to ensure the spontaneous symmetry breaking from SU(2) to U(1).

At the perturbative level, the spectrum of the model in the Higgs phase is made of a

massless photon, two heavy, charged W -bosons with mass mW = gη, and a neutral Higgs

field with mass mH = η
√

2λ.

What is however more important is the nonperturbative content of the model, repre-

sented by the famous ’t Hooft-Polyakov monopole [17, 18]. It is a solution to the classical

equations of motion, which has the following Higgs- and vector-field parts

• Φa = δa3u(r), u(0) = 0, u(r)
r→∞−→ η − e−mHr

gr ;

• A1,2
µ (~x)

r→∞−→ O (e−mW r), Hµ ≡ εµνλ∂νA
3
λ =

xµ

r3 − 4πδ(x1)δ(x2)θ(x3)δµ3;

• as well as the following action S0 = 4πǫ
κ . Here, κ ≡ g2/mW is the weak-coupling

parameter, ǫ = ǫ (mH/mW ) is a certain monotonic, slowly varying function, ǫ ≥ 1,

ǫ(0) = 1 (BPS-limit) [19], ǫ(∞) ≃ 1.787 [20].

The following approximate saddle-point solution (which becomes exact in the BPS-

limit) has been found in ref. [15]:

S = NS0 +
g2
m

8π

N
∑

a,b=1
a 6=b

(

qaqb
|~za − ~zb|

− e−mH |~za−~zb|

|~za − ~zb|

)

+ O
(

g2
mmHe−2mH |~za−~zb|

)

+ O
(

1

mWR

)

,

where m−1
W ≪ R ≪ |~za − ~zb|, ggm = 4π, [gm] = [mass]−1/2. Therefore, while at mH → ∞,

the usual compact-QED action is recovered, in the BPS-limit one has

S ≃ NS0 +
g2
m

8π

N
∑

a,b=1
a 6=b

qaqb − 1

|~za − ~zb|
,

i.e., the interaction of two monopoles doubles for opposite and vanishes for equal charges.

Therefore, in this limit, the standard monopole-antimonopole Coulomb plasma recom-

bines itself into two mutually noninteracting subsystems, consisting of monopoles and an-

timonopoles. The interaction between the objects inside each of these subsystems has a

double strength with respect to the interaction in the initial plasma.
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When mH < ∞, the summation over the grand canonical ensemble of monopoles has

been performed in ref. [21] and reads

Zmon = 1 +

∞
∑

N=1

ζN

N !

N
∏

a=1

∫

d3za
∑

qa=±1

e−S =

=

∫

DχDψ exp

{

−
∫

d3x

[

1

2
(∂µχ)2 +

1

2
(∂µψ)2 +

m2
H

2
ψ2 − 2ζegmψ cos(gmχ)

]}

. (2.2)

Here, χ is the dual-photon field and ψ is the field additional with respect to compact QED,

which describes the Higgs boson. Furthermore, the monopole fugacity (i.e., the statistical

weight of a single monopole), ζ, has the following form [15]

ζ = δ
m

7/2
W

g
e−S0 . (2.3)

The function δ = δ (mH/mW ) is determined by the loop corrections. It is known [22]

that this function grows in the vicinity of the origin (i.e., in the BPS limit). However, the

speed of this growth is such that it does not spoil the exponential smallness of ζ in the

weak-coupling regime under study.

For the analysis of k-strings in the next sections, we will need the SU(N)-generalization

of the partition function (2.2), which reads

ZN
mon =

∫

D~χDψ ×

× exp



−
∫

d3x





1

2
(∂µ~χ)2 +

1

2
(∂µψ)2 +

m2
H

2
ψ2 − 2ζegmψ

N(N−1)/2
∑

i=1

cos (gm~qi~χ)







 . (2.4)

It has been taken into account here that, in the SU(N)-case, monopole charges are dis-

tributed along the (N − 1)-dimensional positive root vectors ~qi’s of the group SU(N) [23],

while charges of antimonopoles are represented by roots, that are negative symmetric

to those of monopoles. Clearly, the dual-photon field is now described by the (N − 1)-

dimensional vector ~χ. In the next section, we will study k-strings in the compact-QED

limit of this theory, while corrections due to the propagation of the Higgs field will be

addressed in section 4.

3. k-strings in the weakly coupled SU(N) 3-d Georgi-Glashow model

In the compact-QED limit, the partition function (2.4) takes the following sine-Gordon–

type form:

Zmon =

∫

D~χ exp



−
∫

d3x





1

2
(∂µ~χ)2 − 2ζ

N(N−1)/2
∑

i=1

cos (gm~qi~χ)







 . (3.1)
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Owing to the orthonormality of roots,
N(N−1)/2
∑

i=1
qαi q

β
i = N

2 δ
αβ , α, β = 1, . . . , N − 1, the

following value of the Debye mass of the dual photon stems from eq. (3.1): m = gm
√
Nζ.

The k-string tension is defined by means of the k-th power of the fundamental Wilson

loop. The surface-dependent part of the latter is contained in the following expression

〈Wk(C)〉mon =

N
∑

a1,...,ak=1

〈

exp

[

−ig
(

k
∑

i=1

~µai

)

∫

d3xΣ (~x) ~χ (~x)

]〉

mon

, (3.2)

which is a consequence of the formula

tr exp
(

i ~O ~H
)

=

N
∑

a=1

exp
(

i ~O~µa
)

.

Here, ~O is an arbitrary (N − 1)-component vector, ~H is the vector of diagonal generators

and ~µa, a = 1, . . . , N , are the weight vectors of the fundamental representation of the group

SU(N). Furthermore, in eq. (3.2)

Σ (~x) ≡
∫

Σ(C)

dσµ (~x(ξ)) ∂xµδ (~x− ~x(ξ)) ,

where Σ(C) is an arbitrary surface bounded by the contour C and parametrized by the

vector ~x(ξ), with ξ =
(

ξ1, ξ2
)

standing for the 2-d coordinate, ξ ∈ [0, 1] × [0, 1].

The independence of eq. (3.2) of the choice of Σ(C) can readily be seen in the same

way as for the (k = 1)-case (see e.g. ref. [24]). 3 The Σ-dependence rather appears

in the weak-field, or low-density, approximation, when one may keep only the quadratic

term in the expansion of the cosine in eq. (3.1). It has been shown in ref. [24] that the

notion “low-density” implies that the typical monopole density is related to the mean one,

ρmean = ζN(N − 1), by the following sequence of inequalities:

ρtypical ≪ ζ · O(N) ≪ ρmean = ζ · O
(

N2
)

.

Below in this section, we will discuss in some more details the correspondence between the

low-density approximation and the large-N one.

Denoting for brevity ~a ≡ −g
∫

d3xΣ (~x) ~χ (~x), we can rewrite eq. (3.2) as

〈Wk(C)〉mon =
N
∑

( a1,...,ak=1
with possible repetitions)

〈

ei~a(~µa1+···+~µak)
〉

, (3.3)

where in the low-density approximation the average is defined with respect to the action

∫

d3x

[

1

2
(∂µ~χ)2 +

m2

2
~χ2

]

. (3.4)

3It is a mere consequence of the quantization condition ggm = 4π and the fact that the product ~µa~qi is

equal either to ± 1
2

or to 0.
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Note that, in this approximation, the string tension for a given k is the same for all surfaces

Σ(C), which are large enough in the sense
√
S ≫ m−1, where S is the area of Σ(C) (see the

discussion in ref. [24]). In particular, the fundamental string tension reads [24] σ1 = N−1
2N σ̄,

where σ̄ ≡ 4π2
√
ζN
gm

, and the factor N−1
2N is the square of a weight vector.

To evaluate eq. (3.3) for k > 1, we should calculate the expressions of the form



n~µai +
k−n
∑

j=1

~µaj





2

, (3.5)

where (k−n) weight vectors ~µaj ’s are mutually different and also different from the vector

~µai . By virtue of the formula ~µa~µb = 1
2

(

δab − 1
N

)

, we obtain for eq. (3.5):

N − 1

2N

(

n2 + k − n
)

− 1

2N

[

2n(k − n) + 2

k−n−1
∑

l=1

l

]

=
k(N − k)

2N
+

1

2

(

n2 − n
)

. (3.6)

We should further calculate the number of times a term with a given n appears in the

sum (3.5). In what follows, we will consider the case k < N , although k may be of the

order of N . Then, Cnk ≡ k!
n!(k−n)! possibilities exist to choose out of k weight vectors n

coinciding ones, whose index may acquire any values from 1 to N . The index of any weight

vector out of other (k− n) ones may then acquire only (N − 1) values, and so on. Finally,

the index of the last weight vector may acquire (N − k+ n) values. Therefore, the desired

number of times, a term with a given n appears in the sum (3.5), reads:

CnkN · (k − n)(N − 1) · (k − n− 1)(N − 2) · · · 1(N − k + n) =

= CnkA
k−n+1
N (k − n)! =

k!N !

n!(n+N − k − 1)!
, (3.7)

where Ak−n+1
N ≡ N !

(N−k+n−1)! . Equations (3.6) and (3.7) together yield for the monopole

contribution to the Wilson loop, eq. (3.3):

〈Wk(C)〉mon = k!N !e−Cσ̄S ·
k
∑

n=1

1

n!(n+N − k − 1)!
e−

n2−n
2

σ̄S , (3.8)

where C ≡ k(N−k)
2N is proportional to the Casimir of the rank-k antisymmetric represen-

tation of SU(N). We have thus arrived at a Feynman-Kac–type formula, where, in the

asymptotic regime of interest, S → ∞, only the first term in the sum is essential. The

k-string tension therefore reads σk = Cσ̄, that yields the Casimir-scaling law (1.1). It is

interesting to note that the Casimir of the original unbroken SU(N) group is recovered.

This is a consequence of the Dirac quantization condition [23], which distributes the quark

charges along the weights of the fundamental representation and the monopole ones along

the roots. The orthonormality of the roots then yields the action (3.4), which is diago-

nal in the dual magnetic variables; the sum of the weights squared is responsible for the
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Casimir factor, since C = (~µa1 + · · · + ~µak
)2, where all k weight vectors are different from

each other. Therefore, terms where all k weight vectors are mutually different yield the

dominant contribution to the sum (3.3). Their number in the sum is equal to k!N !
(N−k)! , that

corresponds to the (n = 1)-term in eq. (3.8).

Let us further address the leading correction to the obtained Casimir scaling, which

originates from the non-diluteness of plasma. Expanding the cosine on the r.h.s. of eq. (3.1)

up to the quartic term, we obtain the action 4

∫

d3x

[

1

2
(∂µ~χ)2 +

m2

2

(

~χ2 − g2
m

12(N + 1)
~χ4

)]

. (3.9)

By virtue of this formula, one can analyse the correspondence between the 1/N -expansion

and corrections to the low-density approximation. The natural choice for defining the

behavior of the electric coupling constant in the large-N limit is the QCD-inspired one,

g = O(N−1/2). To make some estimates in this case, let us use an obvious argument that

a ~χ-field configuration dominating in the partition function is the one, where every term

in the action (3.9) is of the order of unity. When applied to the kinetic term, this demand

tells us that the characteristic wavelength l of the field ~χ is related to the amplitude of this

field as l ∼ |~χ|−2. Substituting further this estimate into the condition l3m2|~χ|2 ∼ 1, we

get |~χ|2 ∼ m. The ratio of the quartic and mass terms, being of the order |~χ|2g2
m/N , can

then be estimated as mg2m
N = g3

m

√

ζ
N ∼ N

√
ζ. With the exponentially high accuracy, this

ratio is small, provided

N . O
(

eS0/2
)

. (3.10)

Therefore, the non-diluteness corrections are suppressed not at large N , but rather at N ’s

bounded from above by a certain exponentially large parameter.

To proceed with the study of the non-diluteness correction, one needs to solve itera-

tively the saddle-point equation, corresponding to the average (3.2) taken with respect to

the approximate action (3.9). Since it has been demonstrated above that the string ten-

sion is defined by the averages
〈

ei~a(~µa1+···+~µak)
〉

, where all k weight vectors are mutually

different, let us restrict ourselves only to such terms in the sum (3.3). Solving then the

saddle-point equation with the Ansatz ~χ = ~χ0 + ~χ1, where |~χ1| ≪ |~χ0|, we obtain for such

a term:

− ln
〈

ei~a(~µa1+···+~µak)
〉

=
g2

2
C

∫

d3xd3yΣ (~x)Dm (~x− ~y)Σ (~y) + ∆S, (3.11)

where Dm (~x) = e−m|~x|/(4π|~x|) is the Yukawa propagator. The first term on the r.h.s.

of eq. (3.11) yields the string tension σk = Cσ̄, while the second term yields the desired

correction. This term reads

4One should use the formula

N(N−1)/2
∑

i=1

q
α
i q

β
i q

γ
i q

δ
i =

N

2(N + 1)

(

δ
αβ

δ
γδ + δ

αγ
δ

βδ + δ
αδ

δ
βγ
)

,

which stems from the orthonormality of roots.
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∆S = −2π2

3

(gmC)2

N + 1

∫

d3x

4
∏

l=1

[
∫

d3xlDm (~x− ~xl)Σ (~xl)

]

=

= −π
2

6

(gmC)2

N + 1

∫

dσµν (~x1) dσµν (~x2) dσλρ (~x3) dσλρ (~x4) ∂
x1
α ∂

x2
α ∂

x3
β ∂

x4
β I, (3.12)

where I ≡
∫

d3x
4
∏

l=1

Dm (~x− ~xl). The action (3.12) can be represented in the form

∆S = − (gC)2

(N + 1)m5

∫

dσµν(~x1)dσµν(~x2)D(~x1 − ~x2) ×

×
∫

dσµν(~x3)dσµν(~x4)D(~x3 − ~x4) × G(~x1 − ~x3). (3.13)

Here, D and G are some positive functions, which depend on m|~xi − ~xj | and vanish ex-

ponentially at the distances & m−1. They can be represented as D(~x) = m4D(m|~x|),
G(~x) = m4G(m|~x|), where the functions D and G are dimensionless. 5

The derivative expansion yields as leading terms the Nambu-Goto actions:

∫

dσµν(~x1)dσµν(~x2)D(~x1 − ~x2) = σD

∫

d2ξ
√

g(~x1) + O
(

σD/m
2
)

. (3.14)

Here, σD = 2m2
∫

d2zD(|z|) (with z being dimensionless) and g(~x) = det ‖gab(~x)‖ is the de-

terminant of the induced-metric tensor gab(~x) = (∂a~x)(∂b~x), where ∂a ≡ ∂/∂ξa. Next, the

infinitesimal world-sheet element dσµν(~x) can be represented as dσµν(~x) =
√

g(~x)tµν(~x)d
2ξ,

where tµν(~x) = εab(∂a~x)(∂b~x)/
√

g(~x) is the extrinsic-curvature tensor of Σ. We may further

take into account that we are interested in the leading term of the derivative expansion of the

action ∆S, which corresponds to the so short distance |~x1 − ~x3|, that tµν (~x1) tµν (~x3) ≃ 2.

(Higher terms of the derivative expansion contain derivatives of tµν and do not contribute

to the string tension.) This yields for the integral in eq. (3.13):

σ2
D

2

∫

dσµν (~x1) dσµν (~x3)G (~x1 − ~x3) =
σ2
D

2

[

σG

∫

d2ξ
√

g + O
(

σG/m
2
)

]

,

where σG = 2m2
∫

d2zG(|z|). We finally obtain from eq. (3.13):

∆σk ≃
(gC)2σ2

DσG
2(N + 1)m5

=
α

4

(gC)2m

N + 1
= α

σ̄C2

N + 1
,

where α is some dimensionless positive constant. This yields

σk + ∆σk = σ̄C

(

1 +
αC

N + 1

)

.

5Our investigations can readily be translated to the Stochastic Vacuum Model of QCD [14] for the

evaluation of a correction to the string tension, produced by the four-point irreducible average of field

strengths. In that case, the functions D and G would be proportional to the gluonic condensate.
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In the limit k ∼ N ≫ 1 of interest, the obtained correction is O(1), while for k = O(1) it

is obviously O(1/N). The latter fact enables one to write down the following final result

for the leading correction to eq. (1.1) due to the non-diluteness of monopole plasma:

R(k,N) + ∆R(k,N) ≡ σk + ∆σk
σ1 + ∆σ1

= C(k,N)

[

1 + α
(k − 1)(N − k − 1)

2N(N + 1)

]

. (3.15)

This expression is as invariant under the replacement k → N − k as the expression (1.1),

which does not account for non-diluteness. The fact that at k ∼ N ≫ 1 the obtained

correction to the Casimir-scaling law is O(1), indicates that non-diluteness effects, once

being taken into account, can significantly distort the Casimir-scaling behavior.

4. Corrections due to the Higgs field and closed strings

As we have seen in section 2, when one deviates from the compact-QED limit, i.e., makes

the Higgs field not infinitely heavy, it starts propagating and opens up an interaction in the

monopole plasma via the scalar (rather than vector) component of the monopole solution.

The respective partition function is given by eq. (2.4). Averaging in that equation over

the Higgs field by means of the cumulant expansion one gets in the second order of this

expansion [25]:

Zmon ≃
∫

D~χ exp



−
∫

d3x





1

2
(∂µ~χ)2 − 2ξ

N(N−1)/2
∑

i=1

cos (gm~qi~χ)



+

+2ξ2
∫

d3xd3y

N(N−1)/2
∑

i,j=1

cos (gm~qi~χ(~x))K(~x− ~y) cos (gm~qj~χ(~y))



 . (4.1)

In this equation, ξ ≡ ζ exp
[

g2m
2 DmH

(

m−1
W

)

]

is the modified fugacity (which can be shown

to remain exponentially small as long as the cumulant expansion is convergent) and K(x) ≡
eg

2
mDmH

(x) − 1. The Debye mass of the dual photon, stemming from eq. (4.1), reads

m = gm
√

Nξ

[

1 + ξI
N(N − 1)

2

]

,

where I ≡
∫

d3xK(x). At mH ∼ mW , the following value of I has been obtained [25]:

I ≃ 4π

mHm2
W

exp

(

4π

κ
e−mH/mW

)

. (4.2)

The parameter of the cumulant expansion is O
(

ξIN2
)

. By virtue of eqs. (2.3) and (4.2),

one can readily see that the condition for this parameter to be (exponentially) small reads

N2 < exp
[

4π
κ

(

ǫ− 1
e

)]

. Approximating ǫ by its value at infinity, we find

N < e8.9/κ. (4.3)
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Therefore, when one takes into account the propagation of the heavy Higgs boson, the

necessary condition for the convergence of the cumulant expansion is that the number of

colors may grow not arbitrarily fast, but should rather be bounded from above by some

parameter, which is nevertheless exponentially large. A similar analysis can be performed

in the BPS limit, mH ≪ g2. There, one readily finds I ≃ (gm/mH)2, and

ξIN2 ∝ N2 exp

[

−4π

κ

(

ǫ− 1

2

)]

.

Approximating ǫ by its value at the origin, we see that the upper bound for N in this limit

is smaller than in the vicinity of the compact-QED limit and reads

N < eπ/κ. (4.4)

Note that both constraints (4.3) and (4.4) are more severe, in the respective limits, than

the constraint (3.10). Indeed, at mH ∼ mW , eq. (3.10) reads [with the same accuracy as

eq. (4.3)] N . O
(

e11.2/κ
)

, and in the BPS limit it obviously takes the form N . O
(

e2π/κ
)

.

Upon the expansion of cosines in eq. (4.1), one can see that the action (3.9) becomes

replaced by

∫

d3x

[

1

2
(∂µ~χ)2 +

m2

2

(

~χ2 − g2
m

12(N + 1)
(1 + 3ξIN(N + 1)) ~χ4

)]

.

Following further the same steps which led from eq. (3.9) to eq. (3.15), we arrive at the

following correction to the latter:

R(k,N) + ∆R(k,N) = C(k,N)

{

1 + α
(k − 1)(N − k − 1)

2

[

1

N(N + 1)
+ 3ξI

]}

. (4.5)

The obtained correction is therefore exponentially small as long as the parameter of the

cumulant expansion is.

Another correction to eq. (1.1) is produced by closed k-strings. Such strings are always

present in the sector of a theory, where open k-strings are present (see e.g. ref. [26]).

Owing to the above-established fact that the open-string tension is saturated by such

configurations where all k weight vectors are mutually different, we may restrict ourselves

to consideration of closed strings of the same kind only. Then, according to eq. (3.2), the

statistical weight of the interaction of the dual photon with such a closed string reads

exp

[

ig (~µa1 + · · · + ~µak
)

∫

d3xΣµ∂µ~χ

]

, (4.6)

where Σµ(~x,Σ) ≡
∫

Σ

dσµ (~x(ξ)) δ (~x− ~x(ξ)) is the vorticity tensor current defined at the

closed-string world-sheet Σ. To model the grand canonical ensemble of closed strings, one

can proceed along the lines of ref. [27]. Namely, one can use the fact that these strings

are short-living (virtual) objects, whose typical sizes are much smaller than the typical dis-

tances between them; therefore, similarly to monopoles in the 3-d Georgi-Glashow model,
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closed strings form a dilute plasma. The vorticity tensor current of the N -string config-

uration, i.e. the N -string density, (N ≥ 1) reads 6 ΣN
µ =

N
∑

i=1
niΣµ (~x,Σi), where ni’s are

winding numbers. Similarly to monopoles, only strings with minimal winding numbers,

ni = ±1, survive, whereas those with |ni| > 1 dissociate into them. The summation over

the grand canonical ensemble of closed strings replaces then eq. (4.6) by

∞
∑

N=0

ζ̄N

N !

N
∏

i=0

∫

d3yi
∑

ni=±1

〈

exp

[

ig (~µa1 + · · · + ~µak
)

∫

d3xΣN
µ ∂µ~χ

]〉

~zi(ξ)

. (4.7)

Here, ζ̄ is the fugacity of a single closed string, which has the dimensionality [mass]3, and

is an exponentially small quantity in the sense that the mean distance between neighbors

in the string plasma, O
(

ζ̄−1/3
)

, is exponentially large with respect to the characteristic

string size. Also, in eq. (4.7), the world-sheet coordinate of the i-th strings has been

split as ~xi(ξ) = ~yi + ~zi(ξ), where the vector ~yi =
∫

d2ξ~xi(ξ) describes the position of the

string, whereas the vector ~zi(ξ) describes its shape. Furthermore, the translation- and O(3)

invariant measure of integration over string shapes has been denoted as 〈. . .〉~zi(ξ)
. The final

expression for the average does not depend on a particular form of this measure. (The only

thing which matters is the normalization 〈1〉~zi(ξ)
= 1.) The result of the average rather

does depend on the choice of the UV cutoff, which in the theory under study is, however,

unambiguous: Λ = mW .

Equation (4.7) produces then the following factor to the r.h.s. of eq. (3.1):

exp

{

2ζ̄

∫

d3x cos

[

g (~µa1 + · · · + ~µak
) |∂µ~χ|

m2
W

]}

, (4.8)

where
∫

d3x is nothing else, but the integration over the string position. Also, in eq. (4.8),

the absolute value is taken with respect to the Lorentz indices only 7. In the case of a dilute

string plasma under study, we may approximate the cosine in eq. (4.8) by the quadratic

term only, that yields the following addendum to the action (3.4):

ζ̄

m3
W

κ

∫

d3x [(~µa1 + · · · + ~µak
) ∂µ~χ]2 .

To evaluate with respect to this modified action the average (3.3) (approximated again

by a single term where all weight vectors are mutually different), we solve the respective

saddle-point equation with the natural Ansatz ~χ = (~µa1 + · · · + ~µak
)χ. The saddle-point

equation,

[

−(1 + β)∂2 +m2
]

χ = −igΣ, β ≡ 2κC
ζ̄

m3
W

,

due to the smallness of the parameter β, has an approximate solution

6We also set by definition ΣN=0
µ = 0.

7I.e., |∂µ~χ|α =

√

3
∑

µ=1

(∂µχα)(∂µχα).
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χs.p.(~x) ≃ −ig(1 − β)

∫

d3yDm∗(~x− ~y)Σ(~y),

where m∗ = m
(

1 − β
2

)

is the shifted Debye mass. (This shift can be interpreted as an

“antiscreening” of the dual photon by closed strings, which carry an electric flux and

therefore diminish the effect of screening by magnetic monopoles.) The string tension

accordingly reads [cf. the Casimir-scaling expression σk = Cσ̄] σk = C
(

1 − 3β
2

)

σ̄, so that

eq. (1.1) becomes modified as follows:

R(k,N) + ∆R(k,N) = C(k,N)

[

1 − 3κ

2

ζ̄

m3
W

(k − 1)(N − k − 1)

N

]

. (4.9)

Although the numerator of the obtained correction is the same as that of eq. (3.15), the

denominator is obviously different in the factor (N + 1). Consequently, although the

correction due to closed strings is small in the factor O
(

κζ̄/m3
W

)

, at k ∼ N it scales

as O
(

N1
)

, rather than O
(

N0
)

, as the correction in eq. (3.15) does. Besides the N -

dependence, the obtained correction differs from that of eq. (3.15) by its sign. However,

eq. (4.9) never becomes negative. Indeed, at k ∼ N & O
(

m3
W

κζ̄

)

, when this could have

happened, the parameter β becomes of the order of unity, i.e. the original approximation

β ≪ 1, under which eq. (4.9) has been derived, breaks down. Therefore, at such values of

k and N , eq. (4.9) becomes merely invalid.

5. Summary and discussion

In the present paper, we have explored k-string tensions in the SU(N) 3-d Georgi-Glashow

model. The advantage of this model for such an analysis is that confinement holds in it at

weak coupling and is therefore under a full analytic control. We have first addressed the

case of a very dilute monopole plasma and found there the Casimir-scaling behavior for the

k-string tension. After that, we have proceeded with the leading non-diluteness correction

and found that, at k ≪ N it behaves as O(1/N), whereas at k ∼ N this correction is of the

order of the leading term. The latter fact means that, in the regime k ∼ N ≫ 1, the non-

diluteness effects can significantly change the Casimir-scaling behavior. The non-diluteness

correction increases the value of the ratio of string tensions.

We have further addressed two other corrections to the Casimir scaling. One of these

is produced by the Higgs-mediated interaction of monopoles, while the other is due to

closed k-strings. The Higgs-inspired effect appears as an addendum to the non-diluteness

correction and has the same sign as that correction (i.e., increases the ratio of string

tensions). However, the effect of the Higgs field is small with respect to the non-diluteness

correction, as long as the cumulant expansion, one applies for the average over the Higgs

field, is convergent. On the opposite, the correction to the Casimir scaling, produced by

closed strings, becomes significant at k ∼ N ≫ 1. Contrary to the non-diluteness and

Higgs effects, this correction diminishes the value of the Casimir-scaling ratio.

To conclude, notice that the obtained leading Casimir-scaling behavior may, with a

certain care, be translated to the SU(N)-analogue of 4-d compact QED. Obviously, this
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model can only be viewed as a continuum limit of the respective lattice action [15]. Its

crucial difference from the above-discussed 3-d counterpart is that, in this model, confine-

ment holds at strong (rather than weak, as in 3-d) coupling, and instead of the dilute

plasma of point-like monopoles one has a non-dilute ensemble of proliferating monopole

loops (currents). However, as we have argued in section 3, the non-diluteness corrections

to the quadratic dual-photon action are small, provided N is bounded from above by some

exponentially large parameter and we will exploit this fact below. One may, neverthe-

less, take non-diluteness into account by noting that it changes the interaction between

monopoles from Coulombic (as in 3-d) to a different type, described by some unknown

kernel. On general grounds, one should accept that momenta, transferred by the dual pho-

ton in the interactions between monopoles, are conserved. Therefore, the above-mentioned

kernel should be translation-invariant, i.e. the interaction of two N -monopole currents 8,

~jNµ (x) = gm
N
∑

a=1
~qia
∮

dxaµ(τ)δ (x− xa(τ)), should have the form ~jNµ (x)K(x− y)~jNµ (y).

Further, to sum over the grand canonical ensemble of monopoles, let us proceed in the

same way as we did for closed strings in the preceeding section. Namely, let us split xaµ(τ)

as xaµ(τ) = yaµ + zaµ(τ), where yaµ =
1
∫

0

dτxaµ(τ) is the position of the monopole trajectory,

whereas the vector zaµ(τ) describes its shape. Let us also introduce the fugacity of a single-

monopole loop, ζ, which has the dimensionality [mass]4, ζ ∝ e−Smon . Here, the action of

a single a-th loop, obeying the estimate Smon ∝ g2
m

1
∫

0

dτ
√

(

żaµ
)2

, is assumed to be of the

same order of magnitude for all loops. The summation over the grand canonical ensemble

then reads:

∞
∑

N=0

ζN

N !

N
∏

a=1

∫

d4ya
∑

ia=±1,...,±N(N−1)
2

〈

exp

(

igm~qia

∮

dzaµ~χµ(xa)

)〉

=

= exp



2ζ

N(N−1)/2
∑

i=1

∫

d4y

〈

cos

(

gm~qi

∮

dzµ~χµ(y + z)

)〉



 =

= exp







2ζ

N(N−1)/2
∑

i=1

∫

d4y

∞
∑

k=1

(−1)k

2k!

〈

gm~qi

[

∮

dzµ

∞
∑

n=0

(zν∂
y
ν )
n

n!
~χµ(y)

]〉2k






, (5.1)

where ~χµ is the dual-photon field, and 〈· · · 〉 denotes some rotation- and translation-

invariant average over shapes of the loops,
{

zaµ
}

. The term in the action with k = 1,

n = 0 generates the Debye mass of the dual photon. Indeed, this term yields

2ζ · N
2

· g
2
m

2

〈
∮

dzµ

∮

dz′ν

〉
∫

d4y~χµ(y)~χν(y),

8The magnetic coupling constant, gm, is obviously dimensionless in four dimensions. Note also that we

set by definition ~jN=0
µ (x) = 0.
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and, due to the rotation and translation invariance of the measure 〈. . .〉, the average
〈∮

dzµ
∮

dz′ν
〉

has the form Lδµν , where L is some parameter of dimensionality [length]2.

The Debye mass then reads m = gm
√

2NζL. In the leading low-energy approximation, we

may disregard terms with n ≥ 1 in the sum (5.1). As for the terms with k ≥ 2 (which

account for non-diluteness), as it has been discussed above, they are small and can be

disregarded at [cf. eq. (3.10)]

N . O
(

eSmon/2
)

. (5.2)

Therefore, the leading part of the dual-photon action reads

1

2

∫

d4x~χµ
[

K−1(x) +m2
]

~χµ,

where K−1 stands for the inverse operator. This action is the 4-d analogue of the ac-

tion (3.4), while, as it has already been discussed, the rest of the derivation of eq. (3.8)

is entirely based on the properties of weights of the fundamental representation. 9 There-

fore, at N bounded from above according to the inequality (5.2), one obtains the Casimir

scaling also within the leading low-energy approximation to the SU(N)-analogue of four-

dimensional compact QED.
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