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Differential Antibody Responses to Plasmodium
falciparum Merozoite Proteins in Malawian Children
with Severe Malaria

Carlota Dobaño,1,3,5 Stephen J. Rogerson,2,3,a Margaret J. Mackinnon,1,a David R. Cavanagh,1 Terrie E. Taylor,4,6

Malcolm E. Molyneux,2,3 and Jana S. McBride1

1Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, and 2Liverpool
School of Tropical Medicine, University of Liverpool, Liverpool, England, United Kingdom; 3Malawi–Liverpool–Wellcome Trust Clinical Research
Programme and 4Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; 5Barcelona Centre for International Health
Research (CRESIB), Hospital Clínic/Institut d’Investigacions Biomèdicas August Pí i Sunyer, Universitat de Barcelona, Barcelona, Spain; 6College of
Osteopathic Medicine, Michigan State University, East Lansing

Cerebral malaria (CM) and severe malarial anemia (SMA) are 2 major causes of death in African children infected
with Plasmodium falciparum. We investigated levels of naturally acquired antibody to conserved and variable
regions of merozoite surface protein (MSP)–1 and MSP-2, apical membrane antigen (AMA)–1, and rhoptry-
associated protein 1 in plasma samples from 126 children admitted to the hospital with CM, 59 with SMA, and 84
with uncomplicated malaria (UM) in Malawi. Children with SMA were distinguished by very low levels of immu-
noglobulin (Ig) G to the conserved C-terminus of MSP-1 and MSP-2 and to full-length AMA-1. Conversely, chil-
dren with CM had significantly higher levels of IgG to the conserved regions of all antigens examined than did
children with UM (for MSP-1 and AMA-1, P<.005; for MSP-2, P<.05) or SMA (for MSP-1 and MSP-2, P<.001;
for AMA-1, P<.005). These distinct IgG patterns might reflect differences in age, exposure to P. falciparum,
and/or genetic factors affecting immune responses.

Plasmodium falciparum malaria kills 0.5–2 million peo-

ple each year, mainly young children in sub-Saharan Af-

rica. Why only a small proportion of infected children

develop severe malaria is unknown [1]. In African chil-

dren, severe malarial anemia (SMA) and cerebral ma-

laria (CM) are 2 of the most life-threatening presenta-

tions of severe malaria [2].

Children who develop different clinical manifesta-

tions of malaria could have different preceding levels of

naturally acquired immunity. Antibodies probably con-

tribute to immune protection, as suggested by immuno-

globulin passive-transfer experiments [3]. Protein tar-

gets of such immunity, many of which are putative

vaccine candidates, include the asexual blood-stage pro-

teins merozoite surface protein (MSP)–1 [4, 5] and

MSP-2 [6], apical membrane antigen (AMA)–1 [7], and

internal rhoptry-associated protein (RAP)–1 [8]. In

malaria-endemic areas, numerous seroepidemiological

studies of responses to MSP-1 and, to a lesser extent,

MSP-2, AMA-1, and RAP-1 have shown that these anti-

gens are naturally immunogenic in humans [9 –13].

Some studies have suggested a role for IgG antibodies in

protection from infection and/or clinical disease [6 – 8,

14, 15], although results have been inconsistent [16, 17].

Several studies have investigated the relationship be-

tween IgG antibody responses to P. falciparum antigens

and disease severity [18 –28], but none has distinguished
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between CM and SMA syndromes within the same population.

We investigated whether children who develop CM, SMA, or

uncomplicated malaria (UM) are characterized, at the time of

their admission to the hospital, by different levels of antibodies

to P. falciparum merozoite antigens implicated in immune pro-

tection by earlier studies [6 – 8, 14, 15]. To make this determina-

tion, we measured levels of specific IgG antibodies by means of

recombinant proteins based on domains of MSP-1, MSP-2,

AMA-1, and RAP-1 in 269 Malawian children infected with P.

falciparum with well-defined and distinctly different malaria dis-

ease phenotypes.

METHODS

Patient samples. Blood samples were collected from children

consecutively admitted to the pediatric research ward between

1996 and 1997. Patients had CM (Blantyre coma score �3 [29],

with asexual parasitemia and no other obvious cause of coma) or

SMA (hemoglobin level �5 g/dL or hematocrit �15%). All chil-

dren admitted to the research ward were treated with intrave-

nous quinine, according to standardized protocols [30]. Control

patients with UM were also recruited sequentially, from 3 sour-

ces: (1) ambulant children screened for enrolment in malaria

drug studies at Ndirande Health Centre, (2) patients discharged

from the hospital with a final diagnosis of UM, and (3) ambulant

children attending the hospital outpatient clinic for a febrile ill-

ness who were found to have malaria with no other identifiable

illness and were treated as outpatients. None of the control pa-

tients had a recent history of coma or convulsions, and all were

fully conscious (Blantyre coma score of 5). Informed consent

was obtained from parents or guardians, and the study obtained

ethical approval from the investigators’ institutions.

Five milliliters of venous blood was drawn in lithium heparin

or EDTA on admission, and plasma was separated and stored at

�70°C for serological analyses. Acute-phase plasma samples

were obtained from a total of 356 children (n � 34 in 1996; n �

322 in 1997). Clinical and parasitological data were recorded for

all children, including state of consciousness, history of convul-

sions, prior drug treatment, parasite density, hematocrit, and

basic demographic information. Patients were asked to return

for a follow-up sample after a month, or earlier if they were sick.

A total of 237 convalescent-phase blood samples were obtained

(n � 22 in 1996; n � 215 in 1997). For this study, children with

overlapping CM and SMA (n � 53) and children with severe

nonmalarial diseases (n � 34) were excluded.

A summary of patient characteristics is given in table 1. Neg-

ative control serum samples were obtained from 50 Scottish

adults who had not been exposed to malaria. A pool of serum

samples from immune African individuals was used as a positive

control in ELISAs.

Recombinant proteins and ELISA. Expression, purifica-

tion, and characterization of the recombinant proteins used here

have been reported elsewhere, as specified below. MSP-1 con-

structs were derived from block 2, and from the C-terminal re-

gion of the molecule. Three glutathione S-transferase (GST) fu-

sion proteins represented block 2 of RO33, K1, and MAD20

types of MSP-1 [31]. Two constructs represented the MSP-1

C-terminal regions: a GST fusion protein containing most of

block 17 of the Wellcome isolate, corresponding to the 19-kDa

fragment [32], and a baculovirus-expressed recombinant pro-

tein representing the 42-kDa fragment of the CAMP isolate (do-

nated by J. Lyon). Three GST fusion proteins were derived from

MSP-2 [11]. The protein denoted K1 17/14 represented a highly

conserved sequence from the C-terminus (aa 207–263 in MSP-2

of the K1 isolate). Two proteins represented the 2 major dimor-

phic types of MSP-2, IC1/3D7 and FC27. The IC1/3D7-type pro-

tein T9/96 13/14 comprised almost the full-length MSP-2 of the

T9/96 isolate (aa 22–286). The FC27-type protein contained aa

151–237 from isolate T9/105 (T9/105 12/6). The C2 fragment of

RAP-1, a GST fusion protein corresponding to aa 169 –366 of the

antigen, included an inhibitory monoclonal antibody epitope

[33]. Recombinant P. falciparum AMA-1 antigen consisted of

the full ectodomain of the 3D7 form of AMA-1, expressed in

Table 1. Clinical and parasitological data for the patients with malaria.

Type of
malaria Acutea

Mean age,
yearsb

Area of residencec Geometric mean
parasite density

(95% CI)d

Duration of
symptoms,

hb

Prior
treatmente Sequelae Deaths ConvalescentfA B C D

CM 126 3.42 � 2.03 49 52 13 10 25,428 (14,820–43,636) 54 � 41 50 25 17 100

SMA 59 2.37 � 1.37 17 17 16 7 15,075 (6728–33,778) 82 � 50 20 1 7 48

UM 84 2.76 � 1.52 71 13 0 0 24,233 (14,504–40,487) 53 � 38 7 0 0 29

NOTE. CI, confidence interval; CM, cerebral malaria; SMA, severe malarial anemia; UM, uncomplicated malaria.
a No. of patients from whom a blood sample was obtained on admission to the hospital. Other data in this table refer to these patients.
b Arithmetic means � SDs. The duration of symptoms (fever, vomiting, cessation of eating, cessation of drinking/sucking, diarrhea, convulsions, and

unconsciousness) was recorded by interviewing parents.
c No. of patients by area of residence (A, town of Blantyre; B, periurban areas; C, villages; D, towns other than Blantyre); data were unavailable for 4 patients

(2 with CM and 2 with SMA).
d Parasite density was calculated as parasites (ring forms) per microliter of blood. There were no significant differences between groups.
e No. of patients with a history of antimalarial treatment (sulfadoxine-pyrimethamine and/or quinine) in the past week.
f No. of patients who came back to the hospital for a follow-up visit 1 month after admission.
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Escherichia coli as an N-terminal His6 fusion protein [34] (do-

nated by R. F. Anders). The GST protein alone was purified from

cultures transformed with pGEX-2T vector (without MSP1,

MSP2, or RAP1 inserts) and was used as a negative control

antigen.

The ELISA procedure was as described elsewhere [10, 35]. In

brief, wells of microtiter plates (Immunolon-4; Dynatech) were

coated with 0.05 �g/100 �L of antigen per well in 0.1 mol/L

carbonate buffer (pH 9.6), with GST protein, or with buffer

alone. The plates were washed 3 times with PBS– 0.05% Tween

20 and blocked with skimmed milk powder (1% wt/vol) in PBS-

Tween. Malawian plasma and control samples were diluted

1:500 in the same blocking buffer. Plates were washed again, and

100 �L of diluted serum/plasma per well was added to duplicate

wells and incubated overnight at 4°C. IgG bound to the wells was

detected with horseradish peroxidase– conjugated rabbit anti–

human IgG (Dako) at 1:5000 dilution in PBS-Tween. The reac-

tions were developed with 0.012% H2O2 as the substrate and

o-phenylendiamine (Sigma) as the chromagen (100 �L/well)

and stopped after 10 min with 20 �L of 2 mol/L H2SO4 per well.

Optical density was measured at 492 nm.

Specific reactivity of plasma/serum IgG with a recombinant

protein was calculated by subtracting optical density values for

the GST or buffer controls from the value obtained for the re-

combinant protein, thus obtaining specific optical density val-

ues. These values were then used as a continuous variable for

statistical analysis or were converted to a binary variable (posi-

tive vs. negative), using a cutoff defined for each antigen as the

mean for the 50 Scottish control serum samples plus 2 SDs.

Statistical analysis. IgG antibody responses to distinct re-

gions of P. falciparum MSP-1, MSP-2, AMA-1, and RAP-1 were

compared among groups of children presenting with different

malaria syndromes. Using multiple regression analysis, we

looked for statistically significant associations between disease

severity and levels of antibodies, assessed here by concentrations

(expressed as optical density values read at 492 nm) and preva-

lence rates of antibody-positive individuals (those with optical

density values above the cutoff). Antibody levels were compared

between different clinical forms of malarial disease in the acute

stage and were measured again at 1 month of follow-up, to assess

the ability of children with different malaria symptoms to mount

antibody responses to acute infection and to estimate the dura-

tion of these antibodies. Paired t tests were used to compare

antibody levels between acute and convalescent phases, using

pairs of plasma samples from 73 patients with CM, 39 with SMA,

and 15 with UM.

Data were analyzed using standard multiple regression tech-

niques, with the SAS statistical analysis package (SAS Institute,

1990). Associations between antibody levels, age, and parasite

density were analyzed by fitting a generalized linear model

(PROC GLM) appropriate for continuous dependent variables.

The relationship between host disease status as a binary trait and

antibody levels (optical density values or prevalence rates) as an

explanatory variable was analyzed by PROC GENMOD (cate-

gorical linear model), using a binomial distribution for the de-

pendent variable. The models were adjusted for the possible con-

founding effects of parasite density, age, sex, area of residence,

admission date, duration of symptoms, history of prior antima-

larial treatment, and disease outcome (death, neurological se-

quelae, or full recovery). Antibody levels in each disease group

are reported as least-squares means of corrected optical density

values with 95% confidence intervals, as calculated by PROC

GLM. Significance was defined at the 5% level.

RESULTS

Levels of antibody to MSP-1. A differential pattern of levels

and prevalence rates of antibodies was found in clinically differ-

ent forms of malaria. Children who presented with SMA were

distinguished from children with CM or UM by lower mean

levels of antibodies to the C-terminal regions of MSP-1 (19- and

42-kDa fragments) (table 2). Children admitted with CM had

significantly higher mean levels of IgG to these proteins than did

children with UM (P � .05 for 19 and 42 kDa; PROC GEN-

MOD) or SMA (P � .01 for 19 and 42 kDa) (figure 1). When

analyzed as a binary trait, the proportion of children with posi-

tive IgG to the C-terminus was also significantly higher in chil-

dren with CM than in those with UM (P � .001 for 19 kDa;

P � .05 for 42 kDa) or SMA (P � .01 for 19 kDa; P � .05 for 42

kDa) (table 2). These differences remained significant after al-

lowances had been made for differences in parasite density, age,

sex, area of residence, duration of symptoms, and prior antima-

larial treatment between the disease groups.

The same trend was found for levels and prevalence of anti-

bodies specific for the least variable of the MSP-1 block 2 types,

the RO33 type (table 2). Children with CM had significantly

higher mean levels of antibodies to the RO33 block 2 than chil-

dren with UM (P � .05) or SMA (P � .01). In addition, a

higher proportion of patients with CM than of patients with UM

had antibodies to this antigen (P � .05). IgG levels and preva-

lence rates to the other 2 allelic forms of block 2, K1 and MAD20

types, were also higher in patients with CM than in those with

SMA, but the difference was not significant (data not shown).

For the patients with CM, we analyzed antibody levels in relation

to outcome (death, neurological sequelae, or full recovery). High

levels of antibodies to RO33 type MSP1 block 2 were signifi-

cantly associated with full recovery (P � .01); none of the other

IgG responses were associated with the outcome of CM.

From acute to convalescent phases, there was a significant

decline in mean levels of antibody to the conserved C-terminal

regions of MSP-1 in patients with either form of severe malaria

(P � .001; paired t test) (figure 1) and in antibody responses to

MSP-1 block 2 RO33 (P � .05) among patients with CM.
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Among patients with UM, there were no significant changes in

antibody levels between presentation and convalescence, but

numbers were small. Convalescent-phase samples were not ob-

tained from all patients, and only results for pairs of acute- and

convalescent-phase samples were included in these analyses.

Levels of antibody to MSP-2. Children who had SMA were

distinguished by almost universally undetectable antibodies to

the conserved C-terminal region of MSP-2 (K1 17/14 construct).

Patients with SMA had significantly lower mean levels of anti-

bodies to this region than did children with CM (P � .05) or

UM (P � .01) (figure 2), after adjustment for confounders. The

percentage of children with antibodies to K1 17/14 was signifi-

cantly higher in patients with CM than in those with SMA

(P � .05) (table 2). Consistently, antibody detectable with a

protein containing a short part of the dimorphic region of the

FC27 type, but mostly consisting of sequences from the con-

served C-terminus, followed the same trend (protein T9/105

12/6) (table 2). Thus, adjusted antibody levels detected with the

T9/105 12/6 protein were lower in patients with SMA than in

those with UM (P � .01) or CM (P � .01). The prevalence of

antibodies to this protein was also higher in patients with CM

than in those with UM (P � .05) or SMA (P � .02) (table 2). A

significantly higher proportion of patients with CM than of

those with SMA had antibodies reactive with the IC1/3D7-type

protein T9/96 13/14 (P � .01) (table 2); this difference was

probably largely attributable to antibodies directed to the con-

served C-terminus of this protein. No significant differences

were found in antibodies to a full-length FC27-type protein or to

polymorphic regions of MSP-2 (data not shown).

Comparing acute- and convalescent-phase samples, there was

a significant decrease in levels of antibody to all MSP-2 antigens

examined in patients with CM (P values between .05 and .001;

paired t test). No significant decline in anti–MSP-2 antibody

levels was found in patients with SMA, who had the lowest levels

at admission. In patients with UM, there was no significant de-

crease in IgG levels, except for IgG directed to the conserved

C-terminus (P � .01) (figure 2).

Levels of antibody to AMA-1 and RAP-1. Consistent with

the above findings, mean levels of antibodies to AMA-1 ectodo-

main were significantly higher in patients with CM than in those

with SMA (P � .05), after adjustment for confounders (table 2).

The prevalence rate of anti–AMA-1 antibody was also higher in

CM than in SMA (P � .05), but that difference was not signifi-

cant after adjustment for age. With regard to RAP-1, children

with CM had higher anti-C2 levels and prevalence rates than did

children with UM, but there was no significant difference with

levels in children with SMA (table 2).

In convalescence, there was a significant decrease in anti–

AMA-1 and anti–RAP-1 antibody levels in patients with CM

(P � .05; paired t test) and a significant decrease in anti-RAP-1

antibodies in patients with SMA (P � .001). Antibody levels

remained stable in patients with UM.

Figure 1. Antibody levels against MSP-1 (42 kDa). Dot plots show that mean antibody levels (optical density at 492 nm) in patients with cerebral
malaria (126 acute and 100 convalescent) were higher than those in patients with uncomplicated malaria (84 acute and 29 convalescent) or severe
malarial anemia (59 acute and 48 convalescent). The least-squares mean optical density value and 95% confidence interval for each group are indicated
by a thick horizontal line and 2 dashed lines, respectively; P values were calculated by use of PROC GLM (SAS Institute). The cutoff level (OD of 0.45)
for positive serum samples is indicated by a thin horizontal line.
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DISCUSSION

We investigated the relationship between malarial disease in pe-

diatric patients in Malawi and levels of IgG antibodies specific

for defined regions of the asexual merozoite antigens MSP-1,

MSP-2, AMA-1, and RAP-1. Antibodies were measured at ad-

mission, at a point when P. falciparum infection has already

made a child sick enough to come to the hospital. Limitations to

such a study include a lack of knowledge about the participants’

history of exposure to P. falciparum infection and uncertainty

regarding the duration and progression of the current infection.

We do not know whether antibody levels at admission reflect

preexisting immune responses or whether they are a response to

the current infection. Because these unknown factors could dif-

fer between the different disease groups, we have interpreted our

results with caution.

We find that children suffering from different disease pheno-

types are distinguished by different presenting patterns and con-

centrations of antibodies directed against various merozoite an-

tigens tested. Children with CM are distinguished by higher

antibody levels to all antigens tested. In particular, antibody lev-

els against conserved rather than variable regions of these pro-

teins are significantly higher in the CM group than in the UM

group. In contrast, these antibody levels are lower in the SMA

group than in the UM group. Children with SMA are character-

ized by lower IgG levels against relatively conserved regions of

the merozoite proteins, whereas IgG levels against variable re-

gions appear not to differ between clinical syndromes. These

results are compatible with studies in Thailand showing that

patients with CM had higher mean ELISA titers than patients

with UM, and a subgroup of patients with CM who had compli-

cations (e.g., anemia) had reduced antibody responses com-

pared with patients with uncomplicated CM or UM [18].

Two general observations arise from these data. First, CM and

SMA are characterized by different IgG antibody patterns, and

thus it is not appropriate to pool them together, as most previous

seroepidemiological studies have done [18, 19, 21–25, 27]. Sec-

ond, there is a consistent general trend for antibody levels to be

highest in children with CM, intermediate in children with UM,

and low in children with SMA.

The differences in antibody patterns between clinical groups

could reflect differences antedating the current infection or dif-

ferences in response to it. We cannot exclude the possibility that

levels are higher in CM because of a larger or more protracted

antigenic stimulus with the current infection, although mean

parasite densities in peripheral blood at admission were similar

between CM and UM groups (table 1). For example, children in

the CM group could harbor more sequestered parasites, and this

difference could have contributed to their greater immune re-

sponse.

Epidemiological studies indicate that in areas of high malaria

transmission, antibody levels tend to increase with age and ex-

posure as immunity is acquired [36 –39], and, within a malaria-

Figure 2. Antibody levels against MSP-2 K1 17/14 (conserved C-terminus). Dot plots show that mean antibody levels (optical density at 492 nm) in
patients with cerebral malaria (126 acute and 100 convalescent) were higher than in patients with uncomplicated malaria (84 acute and 29 convalescent)
or severe malarial anemia (59 acute and 48 convalescent). The least-squares mean optical density value and 95% confidence interval for each group
are indicated by a thick horizontal line and 2 dashed lines, respectively; P values were calculated by PROC GLM (SAS Institute). The cutoff level (OD
of 0.18) for positive serum samples is indicated by a thin horizontal line.
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endemic area, antibody levels vary in relation to malaria season-

ality [38]. It has been proposed that immunity to severe malaria

(particularly noncerebral) is acquired rapidly [40], after only 1

or 2 infections, and may depend on conserved antigens [41]. A

possible confounder in our analyses could be differences in in-

tensity of exposure to P. falciparum between patients with severe

malaria and those with UM, related to area of residence. Chil-

dren from urban areas (which included most patients with UM)

could have had less exposure to malaria than rural children.

When we controlled for area of residence as a surrogate for ex-

posure in our analysis, this factor did not appear to alter signif-

icance. However, we cannot rule out differences in antibodies

due to differences in prior exposure, because our population is

quite mobile, frequently traveling between Blantyre and their

traditional homes.

Epidemiological studies also suggest that the incidence rates

of CM and SMA vary with age and depend on endemicity [42].

In African children, the peak incidence of CM occurs later in life

than the peak of SMA [42], and this difference was seen in our

study (table 1). However, mean IgG levels in children with CM

remained significantly higher than levels in children with SMA,

after adjustment for age.

Differential antibody patterns might also be related to differences

in age at first exposure. Early P. falciparum infections, occurring

when the immune system is immature, may result in less efficient

IgG responses on subsequent boosts, as suggested by serological

studies in the context of trials of intermittent preventive antimalar-

ial treatment in infants (D. Quelhas [Barcelona Centre for Interna-

tional Health Research] and C.D., unpublished data). Conversely,

malarial infections at a later age may induce a better priming of the

immune system, which could translate into more efficient memory

responses to subsequent infections. A difference of �1 year in the

age at first encounter with P. falciparum antigens might account for

the different IgG levels observed at the time when SMA and CM

diseases manifest. Again, the persisting differences between CM and

SMA after adjustment for age makes this unlikely to be a sufficient

explanation for the observed differences.

Clinical features of SMA are consistent with successive or

chronic infections due to poorly developed antimalarial immu-

nity. In light of published data and the information in table 1, it

is plausible to presume that children with SMA have a more

prolonged course of infection than do children with CM or UM.

Studies in Gabon also found significantly lower levels of IgG

antibodies to sporozoite and schizont antigens [22], to variant

surface antigens [23], and to MSP-119 [24] in children with SMA

than in those with UM. Taken together, these data suggest that

the low antibody levels seen in children with SMA might be ex-

plained by some sort of immunological “tolerance” or antigen-

specific B and T cell anergy [43]. Different regions of MSP-1

have previously been shown to elicit different types of antibody

responses [44], and symptomatic malaria has been associated

with impaired antibody responses to epitopes within MSP-119

but not to epitopes located elsewhere in the antigen [45]. This

suggests the presence of different immunoregulatory mecha-

nisms in clinical malaria controlling antibody responses in an

epitope-specific manner.

Findings of other studies suggest that a degree of immunolog-

ical sensitization by prior malarial infections could predispose

an individual to developing CM. In Thai patients, previous UM

infections were more frequent in subjects with CM than in those

presenting with noncerebral forms of malaria [46]. Although in

previous studies IgG responses to P. falciparum antigens did not

differ significantly between patients with and without CM [18 –

20, 26], in many other studies blood levels of several humoral

factors were found to be raised in patients with CM, compared

with those in patients with other forms of falciparum malaria.

Differences in antibody level may reflect differences in Th1/Th2

cytokine balance [47], which may be due to disease [48] or host

genetics [49]. Thus, increased levels of specific antibodies in chil-

dren presenting with CM may reflect a history of numerous in-

fections that could be related to genetic factors, HIV status, or

nutrition, or simply to environmental factors.

Antibody levels declined significantly from the acute to the

convalescent phase, and this change was more pronounced in

children with severe malaria than in those with UM; admission

levels in patients with SMA were already very low. Previous stud-

ies suggest that IgG responses to blood-stage antigens tend to be

short-lived [10, 13, 50], but the reasons for this finding remain

speculative (e.g., severity may contribute to the shut off of

plasma and/or memory B cells, or IgG catabolism may be in-

creased, resulting in shortened antibody persistence). Given the

short life of this antibody, the most plausible interpretation of

the data is that the high IgG levels measured at admission in

patients with CM are indeed predominantly reflective of the cur-

rent infection rather than of preexisting antibodies.

To elucidate more fully the relationship between naturally ac-

quired antibody responses to blood stages of P. falciparum infec-

tion and malarial disease, large prospective cohort studies

should be performed, including detailed immunological analy-

ses of IgG isotypes, fine specificity, inhibitory activity and affin-

ity/avidity of antibodies, and assessment of cytokine responses,

HIV and nutritional status, and host genetic factors. Immuno-

logical studies conducted in the context of randomized placebo-

controlled trials of malaria intervention strategies that control

exposure to P. falciparum infection at certain ages, or longitudi-

nal newborn cohort studies in areas with demographic and mor-

bidity surveillance systems, could help clarify the role that anti-

bodies to these malaria-vaccine candidate antigens may have in

the development of protective immunity to severe malaria.
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