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Coexistence and criticality of fluids with long-range potentials
Philip J. Camp
Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
and Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ,
United Kingdom

G. N. Patey
Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

~Received 15 September 2000; accepted 5 October 2000!

Using mixed-field finite-size scaling simulations, we have investigated the liquid–vapor critical
behavior of three-dimensional fluids with algebraically decaying attractive pair interactions, which
vary like 21/r 31s with s53, 1, and 0.1. The finite-size scaling analysis was carried out by
matching the critical ordering operator distribution,pL(x), against the limiting Ising form, i.e., Ising
criticality was assumed. When the potential is short-ranged (s53) the simulation results are
entirely consistent with the expected Ising critical behavior. When the potential is long-ranged~s
51, 0.1!, however, marked deviations from Ising behavior are observed, particularly in the form of
the critical ordering operator distribution, and in the estimated values ofb/n. The results are
consistent with non-Ising criticality which is predicted theoretically in fluids with long-range
interactions. Some results from Gibbs ensemble simulations are also provided in order to sketch the
shape of the liquid–vapor coexistence envelope. We discuss the relevance of our results to the
current issue of criticality in ionic fluids. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1329134#
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I. INTRODUCTION

The criticality of phase separation in ionic fluids h
received a great deal of attention recently. In experime
Ising-like criticality,1 classical criticality,2,3 and a crossove
between classical and Ising-like regimes4 have been ob-
served in a variety of systems. From simulation studies of
restricted primitive model~RPM! of ionic solutions5 it is
known that there is a high degree of ion association in
vicinity of the critical point. Therefore, the ionic fluid migh
be best considered as a mixture of dipolar ion pairs an
small concentration of free ions.6 In this case, the predomi
nant interactions are those between ion pairs, which vary
1/r 3, and those between free ions and ion pairs, which v
like 1/r 2, bearing in mind that all of these interactions wou
be screened at least over very large distances by the
concentration of free ions. Although there are many thr
dimensional fluids with prominent dipole–dipole intera
tions, positional and orientational averaging produces
asymptotic attractive ‘‘effective pair interaction’’ that varie
like 21/r 6 for which the usual Ising criticality is expected7

In the case of ionic fluids, positional and orientational av
aging similarly produces an asymptotic attractive interact
that varies like21/r 4. This is a ‘‘long-range’’ interaction
~defined below! that may be a source of non-Ising criticalit
The consensus amongst previous simulation studies of R
criticality is that the phase separation is Ising-like,8–10 al-
though it is unclear how non-Ising critical behavior wou
manifest itself in finite-size simulation results. It is therefo
of interest to explore the effects of long-range interactions
fluid criticality, and how they become apparent in simulati
results.
3990021-9606/2001/114(1)/399/10/$18.00
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Amongst the earliest theoretical investigations of the
fect of long-range attractive interactions on the critical b
havior of one-component fluids was that by Stell,11 who ana-
lyzed the behavior of near-critical correlations using t
Ornstein–Zernike equation. On the assumption of homo
neity of the direct correlation function, it was found that
the range of the potential was sufficiently large, then o
should expect exponents which deviate from the usual Is
exponents.12,13 Subsequent work by Fisheret al.,14 and by
Sak,15 largely involved renormalization group calculation
on lattice models with algebraically decaying interactions.
all of these studies the pair potential under consideration
the asymptotic formv(r );21/r D1s as r→`, whereD is
the dimensionality, and the range parameters.0 for the
thermodynamic limit to exist. On the basis of the work b
Stell,11–13Fisheret al.,14 and Sak,15 three regimes of critical
behavior are predicted, strictly forD,4: ~i! with s>2
2hSR the potential is short-ranged and the exponents sho
assume the usual Ising values;hSR is the Ising value of the
correlation decay exponent, equal to 0.033560.0025 in three
dimensions;16 ~ii ! with D/2,s,22hSR, the exponents
should be functions ofs that interpolate between the Isin
and classical values;~iii ! with s,D/2 the exponents should
be equal to the classical~mean-field! values. The critical be-
havior in the latter regime has been rigorously determin
for a ferromagnetic Ising model with algebraically decayi
interactions by Aizenman and Ferna´ndez.17 From these con-
siderations we shall take ‘‘long-range interactions’’ to me
those for which v(r );21/r D1s as r→`, with s,2
2hSR.

Recently, Luijten and Blo¨te18 performed extensive finite
size scaling computer simulations to confirm the existence
© 2001 American Institute of Physics
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classical critical behavior in ferromagnetic Ising models w
algebraically decaying interactions inD51,2,3, with s
,D/2. Their analysis involved measuring the cumulant ra
Q(T,L)5^M2&T,L

2 /^M4&T,L , where M is the spontaneou
magnetization, as a function of lattice size,L, and tempera-
ture, T, in the vicinity of the critical point.Q(T,L) can be
expanded as a universal constant,Q0 , plus terms involvingL
andT with exponents that characterize the universality cl
to which the critical behavior belongs.18,19 After fitting this
form to the simulation data, the exponents andQ0 so ob-
tained were in excellent agreement with the predicted cla
cal values. The rangeD/2,s,22hSR remains untested
however.

Real fluids lack the trivial up-down symmetry of th
ferromagnetic Ising Hamiltonian, and this requires that
parameter analogous to the magnetization is not just the
der parameter~the number density!. Rehr and Mermin20 have
given a modification of Widom’s original scalin
hypothesis21 for the equation of state in the region of th
liquid-vapor critical point. If the coexistence chemical pote
tial is an analytic function of temperature at the critical poi
which is true for some solvable asymmetric models,22–24

then the analog of the magnetization is an ordering opera
M}r2su, wherer is the number density,u is the energy
density, ands is a nonuniversal mixing parameter~s is con-
nected with the presence of a singularity in the coexiste
diameter at the critical point!. Bruce and Wilding25,26 have
exploited field-mixing to locate the critical points of simp
fluids by comparing the distribution ofM measured in a
finite-size simulation, with the distribution ofM in the Ising
model at its critical point. To be clear, the form of the orde
ing operator distribution function,p(x), is expected to be
characteristic of the universality class to which the critic
behavior belongs. The distributions appropriate to two- a
three-dimensional short-range potentials,pIs

! (x) , have been
measured in large-scale computer simulations of the co
sponding two-dimensional27 and three-dimensional28 Ising
models. The apparent critical parameters of the fluid,mc(L)
andTc(L), are those at whichpL(x) collapses onto the uni
versal form,pIs

! (x). The infinite-volume critical parameter
are then estimated by extrapolating the values measure
several different system sizes to the limitL21→0. Since
most simple fluids are expected to belong to the Ising u
versality class, this has been assumed in all published stu
of three-dimensional fluid criticality. In principle this metho
could also be used to locate the critical points of fluids t
belong to any known universality class, provided the cor
sponding critical distribution of the ordering operator
known a priori.

With regard to the identification ofM, it is commonly
assumed that the coexistence chemical potential in real fl
is an analytic function of temperature. Recently, howev
Fisher and Orkoulas29,30 have analyzed previously publishe
experimental data for propane, and carbon dioxide, wh
suggest that (]2m/]T2) along the critical isochorediverges
at the critical point, i.e., the coexistence chemical potentia
not analytic at the critical point. This possibility was consi
ered by Rehr and Mermin,20 and for the particular case of
diverging second derivative they state that, ‘‘the scal
ownloaded 09 Aug 2013 to 129.215.221.120. This article is copyrighted as indicated in the abstrac
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equation would be rather uncomfortable to work with
Fisher and Orkoulas suggest that terms involving the p
sure should appear in the prescription ofM,29,30 but as yet
no concrete conclusions have been put forward.

This problem notwithstanding, we have carried out
simulation study of vapor–liquid coexistence and critical
in three-dimensional fluids with long-range potentials. O
of the motivations for this work is to investigate whether t
effects of long-range interactions can be detected in fin
size simulations, which would clearly be of relevance to si
ations where the criticality is, as yet, uncertain, e.g., in io
fluids. We have explored the criticality of a fluid of har
spheres interacting via an algebraically decaying attrac
tail. The model pair potential we consider,v(r ), is defined
by

v~r !5H ` r ,d

2e~d/r !31s r>d
, ~1!

wherer is the pair separation,d is the hard-sphere diamete
e is the well-depth, ands is the interaction range paramete
We have investigated the long-range potentials withs50.1
ands51, for which classical critical behavior is predicte
For comparison, we have also studied the cases53 which is
expected to exhibit the usualD53 Ising critical behavior.
We have utilized the grand canonical finite-size scal
method proposed by Bruce and Wilding25,26 ~including the
original definition of M! to analyze extensive simulatio
results. Unfortunately, the mean-field critical ordering ope
tor distribution, pcl

! (x), is not yet known with any confi-
dence, but there is one approximate analytical expression
pcl

! (x) given by Hilfer31 which depends solely on th
equation-of-state exponent,d; d53 for mean-field critical
points, andd54.8 for D53 Ising critical points.32 We have
therefore carried out much of the mixed-field finite-size sc
ing analysis assuming Ising criticality. We will, howeve
assess the consistency of the results with Ising critical beh
ior by extracting the exponent ratiob/n from the finite-size
scaling analysis, and also by comparing the measured or
ing operator distributions with the Ising form. We shall sho
that there are marked inconsistencies in the results fos
50.1 ands51. In particular we shall show that the appare
critical ordering operator distributions for the long-range p
tentials cannot be well matched with the limiting Ising form
and that the measured exponent ratiob/n disagrees with the
accepted Ising value. It shall also be noted that in the lo
range systemspL(x) does not agree with Hilfer’s form for
pcl

! (x) either; this may not be particularly significant, how
ever, due to the approximate nature of the theoretical univ
sal distribution. For comparison, we show that the results
s53 are in excellent agreement with the expected Ising
havior.

To obtainrough estimatesof the critical parameters fo
each potential, we assume Ising forms and make the
possible fits ofpL(x) to pIs

! (x). The critical parameters so
obtained are then used to test a relation, due to Brillian
and Valleau,33 which links the range of the potential with th
critical temperature and density arising from the Gauss
approximation~see, e.g., Ref. 34!. We shall show that this
mean-field relation becomes more reliable as the range o
t. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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TABLE I. Critical parameters determined from mixed-field finite-size scaling, using the method of Bruce
Wilding assuming Ising criticality~see text!. Tc* is the reduced critical temperature,rc* is the reduced critical
density,uc* is the reduced critical configurational energy density,mc* is the reduced critical chemical potentia
ands is the mixing parameter.

Model Tc* rc* uc* mc* b/n s

s53 0.5972~1! 0.3757~4! 20.548(2) 22.577(1) 0.54~1! 20.04
s51 1.3724~1! 0.2993~1! 20.6594(7) 22.6143(2) 0.80~5! 20.03
s50.1 11.452~8! 0.247~5! 23.8(2) 22.791(1) 0.82~4! 20.006
D53 Isinga 0.518~7!
Classical 1

aReference 32.
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potential increases, which suggests that classical criticalit
being approached. Finally, for each potential we also prov
some results from Gibbs ensemble Monte Ca
simulations,35,36 in order to sketch the subcritical portions
the vapor–liquid coexistence curves.

This paper is organized as follows. We shall begin
summarizing the finite-size scaling analysis in Sec. II.
Sec. III we give details of the grand canonical and Gib
ensemble Monte Carlo simulations. The results are prese
in Sec. IV, and a discussion in Sec. V concludes the pap

II. FINITE-SIZE SCALING

For reference, we shall summarize the various relati
and scaling laws which are used in the simulation of criti
points.37 In mixed-field finite-size scaling, an ordering oper
tor, M, is identified as being analogous to the magnetizat
in the Ising model,

M}r2su. ~2!

In order to compare the distribution ofM at the critical point
with a universal limiting form, a variable,x, is defined by,

x5~M2^M&L!/dML , ~3!

where ^¯&L denotes an expectation value in a finite-s
system with dimensionL, anddML is the standard devia
tion. With this definition, the normalized probability distr
bution,pL(x), has zero mean and unit variance. The stand
deviation measured in a finite-size system follows
asymptotic scaling law,

dML5aML2b/n, ~4!

whereaM is a nonuniversal constant, andb and n are the
order parameter and correlation length exponents, res
tively. For the D53 Ising model, b50.326(4), n
50.6294(2), andb/n50.518(7).32 The Ising and classica
values ofb/n are also recorded in Table I. In Bruce an
Wilding’s method, the apparent finite-size critical paramet
are those for whichpL(x) collapses onto the appropriate un
versal limiting form, which must be knowna priori. The
finite-size critical temperature and chemical potential th
scale like,

Tc~L !2Tc~`!}L2(u11)/n, ~5!

mc~L !2mc~`!}L2(u11)/n, ~6!
 129.215.221.120. This article is copyrighted as indicated in the abstrac
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whereTc(`) andmc(`) are the infinite-volume critical pa
rameters, andu is the Wegner38 correction-to-scaling expo
nent. For D53 Ising criticality, Chenet al.39 estimateu
.0.54(5). Ignoring corrections to scaling, the finite-siz
number density and energy density scale like

rc~L !2rc~`!}L2(12a)/n, ~7!

uc~L !2uc~`!}L2(12a)/n, ~8!

wherea is the specific-heat exponent. For nonclassical cr
cal points, the hyperscaling relation 22a5Dn implies that
the number density and energy density scale withL2(D21/n),
which is the scaling law we shall use where Ising critical
is assumed.

Another method of extracting critical parameters and
ponents is to measure the moment ratioQ(K,L)
5^M 2&K,L

2 /^M 4&K,L , whereK51/kBT, for many tempera-
tures and system sizes, and fit the results to an approp
expansion. For Ising critical points a Taylor expansion inK
2Kc andL yields19

Q~K,L !5Q01a1~K2Kc!L
yt1a2~K2Kc!

2L2yt

1a3~K2Kc!
3L3yt1¯1b1Lyi1¯ , ~9!

whereQ0 , yt , andyi are universal. The corresponding equ
tion for classical critical points was given in Ref. 18 as

Q~T,L !5Q0* 1p1~T2Tc!L
yt* 1p2~T2Tc!

2L2yt*

1p3~T2Tc!
3L3yt* 1¯1q1L2D/2

1q2Lyi* /21q3Lyi* 1¯ . ~10!

The universal Ising and classical values in Eqs.~9! and~10!,
respectively, are given in Table II. The drawback of th

TABLE II. Critical parameters determined from mixed-field finite-size sc
ing, using the moment ratio method~see text!. Tc* is the reduced critical
temperature,Q0 and yt are the universal Ising exponents appearing in E
~9!, andQ0* and yt* are the universal classical exponents appearing in
~10!.

Model Tc* Q0 yt Q0* yt*

s53 0.5972~3! 0.64~2! 1.64~5!
D53 Isinga 0.623 1.538
Classicalb 0.457 1

aReference 19.
bReference 45.
t. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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method is that the two-dimensional fits involve many fr
parameters, and so it can prove difficult to obtain satisfact
results.

III. COMPUTER SIMULATIONS

In the following it will be useful to define various re
duced quantities in terms of the interaction parameters,
temperature,T, the volume,V, and Boltzmann’s constan
kB : the reduced temperature,T* 5kBT/e; the reduced recip-
rocal temperature,K* 51/T* ; the reduced number density
r* 5rd3, wherer5N/V andN is the number of particles
the reduced configurational energy,U* 5U/e; the reduced
configurational energy density,u* 5ud3/e, whereu5U/V;
the reduced chemical potential,m* 5m/kBT23 ln(L/d),
wherem is the chemical potential, andL is the de Broglie
thermal wavelength.

All of the simulations were performed with cubic simu
lation cells of sideL, and with periodic boundary condition
applied. In all of the simulations the pair potential was tru
cated at a distancer cut5L/2. This choice ofr cut is necessary
for the finite-size scaling calculations, since in the limitL
→` the energy must correspond to that for the full poten
in Eq. ~1!. The long-range contribution,ULR , was calculated
by assuming that the pair-correlation functiong(r )51 for
r>r cut, in the usual way,40

ULR52pNrE
r cut

`

r 2g~r !v~r !dr .2
2pNr* e

s
•S d

r cut
D s

. ~11!

A. Gibbs Ensemble Monte Carlo simulations

To sketch out the vapor–liquid coexistence curves
each of the systems, Gibbs Ensemble Monte Carlo~GEMC!
simulations35,36 were performed with a total ofN5512 par-
ticles. One MC sweep consisted of, on average, an attem
translation of each particle, one attempted volume trans
and N attempted particle transfers. The maximum trans
tional displacement in each box, and the maximum volu
change were adjusted to give a 50% acceptance rate.
simulation was started with random configurations at
same density for each subsystem. The total volume of
subsystems was chosen so that, on average, approxim
100 particles were in the vapor phase. In every case the
consisted of 105 MC sweeps for equilibration, followed by
production run of 93105 MC sweeps. Averages of thermo
dynamic quantities were accumulated over blocks of 103 MC
sweeps. Statistical errors were estimated by assuming
the block averages were uncorrelated. The chemical po
tials in the two coexisting phases were estimated using
expression due to Smit and Frenkel.41

B. Grand Canonical Monte Carlo simulations

For the investigation of the critical points, Grand C
nonical Monte Carlo~GCMC! simulations40 were performed
with box sizes in the rangeL/d59 – 15. Fors50.1 we also
carried out simulations withL/d517. One MC sweep con
sisted of about 2̂N& insertion/deletion attempts, where^N&
is the average number of particles in the box—this leads
similar statistical accuracy for each of the box sizes sim
ownloaded 09 Aug 2013 to 129.215.221.120. This article is copyrighted as indicated in the abstrac
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lated. No particle translations were attempted, rather,
sampling of configuration space was achieved solely by
insertion and deletion of particles.

For each potential and system size, the joint probabi
distributionpL(r,u) was calculated during a preliminary ru
close to where the critical point was indicated by the GEM
simulations. Using standard histogram reweighti
techniques,42 we determined, by inspection, the temperatu
chemical potential, and mixing parameter,s, for which the
distribution pL(x) most closely matched the limiting Isin
form, pIs

! (x). Using these parameters, a much longer run w
used to generatepL(r,u), from which the final estimates fo
Tc* (L), mc* (L), and s were fine tuned. For each potenti
and system size, the final run consisted of 107 MC sweeps.

IV. RESULTS

A. sÄ3

To check the accuracy of our mixed-field finite-size sc
ing analysis, and to provide a benchmark for the results
long-range potentials, we have performed calculations on
system withs53, for which the criticality is expected to
belong to the Ising universality class. The results of GEM
calculations are reported in Table III. In Fig. 1 we show
portion of the vapor-liquid coexistence curve as determin
by GEMC simulations, along with the liner* 5 1

2 (rvapor*
1r liquid* ); clearly the coexistence diameter singularity cann
be resolved in the simulation results. Also shown is the cr
cal point determined by the Bruce and Wilding method,
follows.

In Fig. 2 the critical ordering operator distribution
pL(x), is shown for the two largest system sizes,L/d513
and L/d515, along with the universal distribution,pIs

! (x),
reported in Ref. 28. The simulation curves in Fig. 2 we
symmetrized with a mixing parameters520.04. It is clear
that the finite-size distributions collapse almost perfec
onto the universal form. A similar level of agreement w
found for the smaller systems as well.

In Fig. 3 we show the standard deviation,dML , as a
function ofL2b/n, with b/n50.518(7) being the establishe
Ising value.32 The plot is linear for the three largest syste
sizes, and an extrapolation of these results toL21→0 ap-
pears to intercept the ordinate at the origin, in accorda
with Eq. ~4!. In fact, a fit of the results for the three large
system sizes to Eq.~4! yields the exponent ratiob/n
50.54(1), which is in good agreement with the establish
Ising value, taking into account the uncertainties.

In Fig. 4 we show the apparent finite-size critical tem
peratures and densities.Tc* (L), mc* (L), rc* (L), anduc* (L)
for the three largest system sizes were fitted to Eqs.~5!–~8!
with the Ising exponents to yield estimates of the infini
volume critical parameters given in Table I. The resulti
critical point in ther* -T* plane is shown in Fig. 1.

Also shown in Fig. 1 is a fit of the liquid-phase coexis
ence density (r1* ) and the vapor-phase coexistence dens
(r2* ) to the form,

r6* 2rc* 5AuT* 2Tc* u6BuT* 2Tc* ub8. ~12!
t. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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TABLE III. Properties of coexisting vapor and liquid phases as a function of reduced temperature,T* , from
GEMC simulations ofN5512 particles:r* is the reduced density,U* /N is the reduced configurational energ
per particle, andm* is the reduced chemical potential. The numbers in parentheses denote the sta
uncertainty in the last digit.

T*

Vapor phase Liquid phase

r* U* /N m* r* U* /N m*

s53
0.50 0.034~4! 20.09(3) 23.49(6) 0.83~1! 23.12(6) 23.4(4)
0.52 0.056~6! 20.27(3) 23.31(6) 0.78~1! 22.89(6) 23.3(2)
0.54 0.08~1! 20.36(6) 23.08(7) 0.73~1! 22.67(8) 23.1(1)
0.56 0.11~1! 20.47(5) 22.90(3) 0.67~1! 22.41(6) 22.90(9)
0.58 0.16~2! 20.66(7) 22.72(3) 0.59~2! 22.10(8) 22.72(6)

s51
1.10 0.034~3! 20.21(2) 23.49(7) 0.69~1! 25.3(1) 23.49(8)
1.15 0.047~7! 20.33(5) 23.33(8) 0.64~2! 24.9(2) 23.33(8)
1.20 0.07~1! 20.49(8) 23.13(6) 0.60~2! 24.5(2) 23.13(6)
1.25 0.102~8! 20.75(6) 22.95(3) 0.55~1! 24.2(1) 22.95(3)
1.30 0.140~8! 21.04(6) 22.79(1) 0.500~9! 23.72(8) 22.79(2)

s50.1
8.50 0.021~1! 21.3(1) 24.0(1) 0.66~1! 242(1) 24.0(1)
9.00 0.029~2! 21.8(1) 23.69(6) 0.62~1! 240(1) 23.68(6)
9.50 0.041~3! 22.6(2) 23.44(5) 0.58~1! 237(1) 23.44(5)

10.00 0.055~5! 23.5(3) 23.25(4) 0.52~2! 233(1) 23.25(5)
10.50 0.084~9! 25.3(6) 23.07(4) 0.47~2! 230(1) 23.07(4)
10.75 0.12~1! 27.6(7) 22.97(2) 0.45~1! 229(1) 22.97(2)
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Considering the range of temperatures included in the fit,
the finite-size of the simulation box,b8 cannot be identified
with the critical exponentb. Fitting the data to Eq.~12!
yields the amplitudesA50.53 andB50.91, and the expo
nentb850.36. The value of the exponent is not too dissim

FIG. 1. Vapor–liquid coexistence curves in the density-temperature pl
for s53 ~top!, s51 ~middle!, and s50.1 ~bottom!: critical points esti-
mated using the Bruce and Wilding method~solid circles!; GEMC coexist-
ence points~open circles!; GEMC average densities~open squares!; fit of
coexistence curve to Eq.~12! ~solid line!; average density from fit~dotted
line!.
 129.215.221.120. This article is copyrighted as indicated in the abstrac
d

-

lar from the Ising critical exponent,b50.326(4),32 which
shows that the critical scaling extends some way into
coexistence region. This was also observed in finite-s
scaling simulations of the three-dimensional Lennard-Jo
fluid in Ref. 37.

As an independent check of the critical parameters,
also analyzed the moment ratio,Q(K,L), according to the
Ising scaling form in Eq.~9!. For each system size we use
histogram reweighting to calculateQ(K,L) at coexistence
for several temperatures in the region of the critical poi
Coexistence was determined by tuning the chemical po
tial, ands, until pL(x) was bimodal, with equal peak heigh
and peak areas. In Fig. 5 we show plots ofQ(K,L) against
K* for each system size. A fit to Eq.~9! was made with the
value ofyi fixed at the Ising value20.82. The most signifi-
cant fit parameters,Tc* 51/Kc* , Q0 , and yt are shown in

e,

FIG. 2. Critical ordering operator distributions fors53: pL(x) for L/d
513 ~circles! and L/d515 ~squares!; limiting Ising distribution, pIs

! (x),
from Ref. 28~solid line!.
t. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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Table II. The critical temperature,Tc* , is in excellent agree-
ment with that obtained via the Bruce and Wilding metho
and Q0 and yt are in good agreement with the establish
Ising values, also shown in the table.

Taken as a whole, the results of mixed-field finite-s
scaling analysis fors53 are entirely consistent with th
critical behavior belonging to the Ising universality clas
Obviously, this is not a new result, but we stress that
simulations can provide convincing evidence of Ising univ
sality. More importantly, these results provide a benchm
against which the results for long-range potentials can
assessed.

FIG. 3. Standard deviation,dML , of the ordering operator,M, as a func-
tion of L2b/n, whereL is the simulation box dimension, andb andn are the
order parameter and correlation decay exponents, respectively:s53
~circles!; s51 ~squares!; s50.1 ~diamonds!. The lines are linear fits to the
results forL/d>12 in each case.

FIG. 4. Extrapolation of the critical temperature~top! and critical density
~bottom! for s53 to the limitL21→0. The solid lines are extrapolations o
the results for the three largest system sizes (L/d>12).
ownloaded 09 Aug 2013 to 129.215.221.120. This article is copyrighted as indicated in the abstrac
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In Fig. 6 we show the apparent finite-size critical orde
ing operator distributions,pL(x), for L/d513 and L/d
515, along with the assumed Ising limiting form,pIs

! (x). At
first glance,pL(x) appears to collapse ontopIs

! (x) rather
well. It proved impossible, however, to achieve as good
match as fors53 ~compare with Fig. 2!. We therefore had
to choose some criteria for establishing the ‘‘best’’ estima
for the apparent critical parameters,Tc* (L) and mc* (L). To
this end, the matching was performed such that:~i! the dis-
tribution was symmetrical aboutx50; ~ii ! the peak height
matched that of the assumed Ising limiting form,pIs

! (x). The
simulation curves in Fig. 6 were symmetrized with a mixin
parameters520.03. Figure 6 shows that the minimum
x50 is too deep, and that the maxima occur at a value ofuxu
which is too small. A similar discrepancy was found for a
of the system sizes considered.

In Fig. 3 we show the standard deviation,dML , as a
function ofL2b/n, with b/n50.518(7) being the establishe
Ising value.32 A linear fit to the simulation results for the
three largest system sizes intercepts the ordinate far from

FIG. 5. Cumulant ratio,Q(K,L)5^M 2&K,L
2 /^M 4&K,L , as a function of

reduced temperature,K* , for s53 and, from top right to bottom right,
L/d515, L/d513, L/d512, L/d511, L/d510, andL/d59. The solid
lines represent a fit to the simulation data using Eq.~9!.

FIG. 6. Critical ordering operator distributions fors51: pL(x) for L/d
513 ~circles! and L/d515 ~squares!; limiting Ising distribution, pIs

! (x),
from Ref. 28~solid line!.
t. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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origin, which constitutes a violation of the scaling law in E
~4!. A fit of dML for the three largest system sizes to Eq.~4!
yields the exponent ratiob/n50.80(5), which is very dif-
ferent from the Ising value.

It would appear, then, that the limiting critical orderin
operator distribution fors51 does not correspond to th
established Ising form, at least with the mixed-field ans
expressed in Eq.~2!. Unfortunately, the classical critical or
dering operator distribution,pcl

! (x), has not yet been deter
mined with any precision. Hilfer31 has provided a prediction
of this function, requiring only prior knowledge of th
equation-of-state exponent. The integral of Hilfer’s for
does not converge, however, so to normalize the distribu
requires an arbitrary cutoff inuxu. Nonetheless, when th
distribution is cut off atuxu52.5, Hilfer’s form with d54.8
is in fair agreement with simulation data for theD53 Ising
model.28 In Fig. 7 we have attempted to matchpL(x) for
L/d515 against Hilfer’s estimate ofpcl

! (x), with the same
cutoff andd53. The truncation is very prominent close
uxu52.5, where the measuredpL(x) has already becom
vanishingly small. Clearly, the simulation results cannot
matched onto the available estimate of the classical limit
form. This remains inconclusive, however, because of
approximate nature of the theoretical curve.

We have also attempted to carry out a finite-size anal
of the moment ratio,Q, but we were unable to achieve a
ceptable fits to either the Ising expansion in Eq.~9! or the
classical expansion in Eq.~10!. This is likely due to the large
number of fit parameters, which are difficult to determine
fitting to a data set which only spans a limited range
system sizes. Although we were able to obtain satisfac
fits to the results withs53, it is quite possible that, usin
this method, larger system sizes are required for longer ra
potentials. This is currently beyond our computational ab
ity.

Assuming the Ising limiting form, we can at least extra
a rough estimate of the infinite-volume critical paramete
As for s53, we fitted the apparent finite-size critical param
eters to Eqs.~5!–~8! with the Ising exponents, to yield th
values shown in Table I. The fits toTc* (L) and rc* (L) are
shown in Fig. 8. Coexistence results from GEMC simu

FIG. 7. Critical ordering operator distributions fors51: pL(x) for L/d
515 ~squares!; approximate classical distribution,pcl

! (x), from Ref. 31
~solid line!.
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tions are reported in Table III, and shown in Fig. 1 alo
with our estimate of the critical point. The coexistence dia
eter was fitted to Eq.~12!, with the amplitudesA50.22 and
B50.60, and the exponentb850.46. The value ofb8
50.46 is close to the mean-field value ofb51/2. This may
not be significant, however, because the classical-to-Is
crossover,if present, occurs closer to the critical temperatu
as the range of the potential increases. Roughly speak
classical-to-Ising crossover occurs when the density-den
correlation length exceeds the range of the potential. Th
fore, when the potential is long-ranged, one has to be clo
to the critical point before the diverging density–density c
relation length becomes comparable with the typical range
interaction.

C. sÄ0.1

In Fig. 9 we showpL(x) for s50.1 and box sizesL/d
513, 15, and 17, along withpIs

! (x). The simulation curves in
Fig. 9 were symmetrized with mixing parameters
520.006. It proved impossible to achieve an unambiguo
collapse ofpL(x) onto pIs

! (x), and so the matching was ca
ried out as withs51, i.e., by matching peak heights. Th
procedure results in peaks which occur at a value ofuxu
smaller than that at which the peaks inpIs

! (x) occur. More-
over, the minimum inpL(x) at x50 is significantly deeper
than that ofpIs

! (x), with the discrepancy growing with in
creasing box size. This is a particularly significant obser
tion because it suggests that a better match would not lik
be achieved by simulating a larger system size, i.e., Is
criticality would not be observed, regardless of how large
system is.

FIG. 8. Extrapolation of the critical temperature~top! and critical density
~bottom! for s51 to the limitL21→0. The solid lines are extrapolations o
the results for the three largest system sizes (L/d>12).
t. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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In Fig. 3 we showdML againstL2b/n, with the Ising
value ofb/n. As with s51, a linear fit to the results inter
cepts the ordinate far from the origin, which violates t
scaling law in Eq.~4!. A fit of dML for the four largest
system sizes to Eq.~4! yields the exponent ratiob/n
50.82(4). As for s51, the apparent value ofb/n is far
from the Ising value.

We attempted to matchpL(x) with Hilfer’s estimate of
pcl

! (x), but similar discrepancies were evident as withs
51. We also tried to analyze the moment ratio,Q, using
Eqs. ~9! and ~10!, but it again proved impossible to obta
unambiguous fits.

To obtain at least rough estimates of the infinite-volu
critical parameters fors50.1, we extrapolated the resul
for the four largest system sizes, using Eqs.~5!–~8! assuming
Ising criticality. The resulting critical parameters are given
Table I, and the extrapolations ofTc* (L) and rc* (L) are
shown in Fig. 10. GEMC simulation results for the coexi
ence properties are reported in Table III, and the coexiste
envelope is shown in Fig. 1. The coexistence diameter
fitted to Eq. ~12!, with the amplitudesA50.03 and B
50.20, and the exponentb850.46. Once again,b850.46 is
quite close to the classical value ofb51/2, but the same
comments apply as fors51.

D. Comparison with the Gaussian approximation

Brilliantov and Valleau33 have derived a mean-field re
lation between the critical temperature and the critical d
sity for the liquid–vapor transition in fluids with hard core
and attractive tails. The pair potential is split into the ha
sphere potential,vHS(r ), plus an attractive perturbation
which in the Weeks–Chandler–Andersen~WCA! partition43

remains finite in the hard-core region, i.e.,v(r )2vHS(r )
52e for r<d. The mean-field relation arises from th
Gaussian approximation to the effective Hamiltonian o
tained using the Hubbard–Schofield approach,44 and it re-
quires detailed knowledge of the reference hard-sph
fluid—see Ref. 33 for details. Using the Carnahan–Star

FIG. 9. Critical ordering operator distributions fors50.1: pL(x) for L/d
513 ~circles!, L/d515 ~squares!, andL/d517 ~diamonds!; limiting Ising
distribution,pcl

! (x), from Ref. 28~solid line!.
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expressions for the thermodynamics of the hard-sphere fl
Brilliantov and Valleau showed that, within the Gaussi
approximation,

kBTc

eeff
5

8hc~12hc!
4

114hc14hc
224hc

31hc
4 [Z~hc!, ~13!

wherehc5prc* /6 is the critical packing fraction, andeeff is
an effective well-depth given by

eeff52S 4pd3

3 D 21E drv~r !. ~14!

With the WCA partition the effective well-depth for the a
tractive part of the potential studied in this work~1! is given
by

eeff5eS 11
3

s D . ~15!

Since Eq.~13! is a mean-field expression, it is expected
become more accurate as the range of the potential incre
Indeed, Brilliantov and Valleau have shown this to be t
case using simulation estimates of the critical parameter
square-well fluids.33

We have tested Eq.~13! for the potentials studied in this
work, bearing in mind that the rough estimates of the criti
parameters reported in Table I were obtained assuming I
expressions. In Table IV we present (kBTc /eeff), Z(hc), and
the ratio of the two, as a function ofs. Clearly, Eq.~13!
becomes more reliable ass increases; the error fors50.1 is
only about 2%. This is consistent with the general idea t
classical criticality is approached as potential becom
longer ranged.

FIG. 10. Extrapolation of the critical temperature~top! and critical density
~bottom! for s50.1 to the limitL21→0. The solid lines are extrapolation
of the results for the four largest system sizes (L/d>12).
t. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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V. DISCUSSION

In this paper we have used extensive MC simulations
investigate the liquid–vapor coexistence and the associ
critical behavior in simple three-dimensional fluids with a
gebraic attractive interactions of varying range. We ha
studied three potentials, one of which is short-ran
(;1/r 6), and is therefore expected to exhibit Ising critica
ity, and the other two are long-range~;1/r 4, ;1/r 3.1!,
which have been predicted to exhibit classical critical beh
ior. With respect to the critical behavior, we have assum
the mixed-field ansatz, promoted by Bruce and Wilding,
make the link between fluid criticality and that of magne
systems. In the absence of an accurate classical critica
dering operator distribution,pcl

! (x), we have carried out the
mixed-field finite-size scaling analyses using the univer
Ising limiting distribution, pIs

! (x). Deviations from Ising
criticality then appear as inconsistencies in our analysis.

For the short-range potential the results are in acc
with what one expects for a critical point which belongs
the three-dimensional Ising universality class. For the lo
range potentials, however, the results show significant de
tions from Ising criticality. In particular, it proved impossib
to obtain an accurate collapse of the measuredpL(x) onto
pIs

! (x). Moreover, the measured exponent ratiob/n for both
long-range potentials showed marked deviations from the
tablished Ising value. On the other hand, it also proved
possible to fitpL(x) onto a theoretical estimate forpcl(x).
This remains inconclusive untilpcl(x) has been accuratel
measured in large-scale simulations of a suitably long-ra
model, such as the algebraic Ising model studied in Ref.

We have obtained the infinite-volume critical paramet
for each potential assuming Ising limiting forms, althou
those for the long-range potentials should only be conside
as rough estimates. The values so obtained have been
pared with a mean-field relation, due to Brilliantov an
Valleau,33 linking the critical temperature, the range of th
potential, and the critical density, which is exact in the lim
of an infinite-range potential. The simulation results sugg
that the relation becomes increasingly accurate as the r
of the potential increases, and hence that classical fluid c
cality is approached in some fashion.

In summary, the long-range potentials simulated in t
work show marked deviations from Ising criticality, assum
ing that the mixed-field ansatz in Eq.~2! is valid. In the light
of recent work by Fisher and Orkoulas,29,30 the prescription
of the critical ordering operator,M, employed in this work
may not be complete. Fisher and Orkoulas suggest tha
coexistence chemical potential is not analytic at the criti

TABLE IV. The critical parameter ratio,Z(hc)/(kBTc /eeff), as a function of
the range parameter,s. The various quantities are defined in Eqs.~13!, ~14!,
and~15!. The critical properties used are those determined by the Bruce
Wilding finite-size scaling method, assuming Ising criticality—see Table

s kBTc /eeff Z(hc) Z(hc)/(kBTc /eeff)

3 0.2986 0.3426 1.1473
1 0.3431 0.3707 1.0804
0.1 0.3694 0.3773 1.0213
ownloaded 09 Aug 2013 to 129.215.221.120. This article is copyrighted as indicated in the abstrac
o
ed

e
e

-
d

r-

l

d

-
a-

s-
-

e
8.
s

d
m-

st
ge
ti-

s
-

he
l

point, as there is some evidence of a diverging second t
perature derivative, and that pressure terms may have t
included in the definition ofM. If this is indeed the case, th
excellent agreement between the short-rangepL(x) and
pIs

! (x) could be a result of the missing terms being small,
whatever reason.

This work obviously has implications for the study o
fluid criticality in ionic systems, for which the universalit
class is uncertain. We have shown that there are subtle
systematic, differences betweenpL(x) and pIs

! (x) in long-
range systems. In the case of the restricted primitive mo
the reportedpL(x) are of relatively poor quality compared t
those measured in, say, Lennard-Jones fluids.37 This is
mainly due to the very low critical density in ionic fluids
which means that finite-size effects are pronounced eve
large simulation boxes, particular in the vapor phase. Si
pL(x) has not been measured very accurately in the RPM
is quite difficult to assess the quality of the collapse onto
Ising limiting distribution.

It would be of interest to measurepcl
! (x) in large-scale

simulations of the long-range algebraic Ising model inve
gated in Ref. 18, which has already been shown to exh
classical critical exponents. Once this distribution function
determined accurately, a more reliable finite-size scal
analysis could be carried out on fluids with long-range int
actions to assess the consistency with classical critica
assuming that the correct prescription ofM is
established.29,30
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