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Abstract

Factor H (FH) is a soluble regulator of the human complement system affording protection to host tissues. It selectively
inhibits amplification of C3b, the activation-specific fragment of the abundant complement component C3, in fluid phase
and on self-surfaces and accelerates the decay of the alternative pathway C3 convertase, C3bBb. We have determined the
crystal structure of the three carboxyl-terminal complement control protein (CCP) modules of FH (FH18–20) that bind to
C3b, and which additionally recognize polyanionic markers specific to self-surfaces. These CCPs harbour nearly 30 disease-
linked missense mutations. We have also deployed small-angle X-ray scattering (SAXS) to investigate FH18–20 flexibility in
solution using FH18–20 and FH19–20 constructs. In the crystal lattice FH18–20 adopts a ‘‘J’’-shape: A ,122-degree tilt
between the structurally highly similar modules 18 and 19 precedes an extended, linear arrangement of modules 19 and 20
as observed in previously determined structures of these two modules alone. However, under solution conditions FH18–20
adopts multiple conformations mediated by flexibility between CCPs 18 and 19. We also pinpoint the locations of disease-
associated missense mutations on the module 18 surface and discuss our data in the context of the C3b:FH interaction.
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Introduction

Complement factor H (FH), a 155-kDa soluble glycoprotein

abundant in human plasma, is an important regulator of the

complement system, the chief molecular component of innate

immunity. FH is a member of the regulators of complement

activation (RCA) family (reviewed in [1]) that are characterized by

possession of repeating compact domains, known as complement

control protein modules (CCPs), sushi domains or short consensus

repeats [2,3]. In FH twenty CCPs are arranged in a tandem

manner [4].

Human FH binds to, and regulates levels of, the first activation-

specific cleavage product of complement component C3, C3b.

Without regulation, C3b self-promulgates via formation of the

complex, C3bBb, which proteolyses C3, producing more C3b. C3b

can attach indiscriminately to surfaces via a thioester-containing

domain (TED), and is an opsonin. It also triggers a proteolytic

cascade terminating in self-assembly of cytolytic pores. FH is a

cofactor for proteolysis of C3b to iC3b that no longer participates in

the complement cascade but remains opsonic and is a ligand for

receptors on B-cells and phagocytes. FH also competes with factor

B for binding to C3b, and it accelerates the irreversible decay of

C3bBb [5–7]. Furthermore, FH recognizes polyanionic markers,

such as glycosaminoglycans (GAGs) that are common on self-

surfaces but rare on pathogen surfaces [8–10]. This dual C3b and

polyanion recognition allows FH to regulate complement activation

effectively on self-surfaces but not on foreign ones [10].

The four FH amino-terminal CCPs (1–4) perform co-factor and

C3bBb decay-accelerating activities, while the two carboxyl-terminal

CCPs (19–20) also bind C3b but additionally bind to GAGs [11–14].

The crystal structures of a FH1–4:C3b complex [15], confirmed

separately by fluorescence resonance energy transfer-derived data

[16], and of FH19–20 complexed with C3d (a 35-kDa C3 opsonic

proteolytic fragment equivalent to the TED in C3b) have previously

been determined [17,18]. Principal GAG (and sialic acid)-binding

regions occupy CCPs 6–8 and CCP 20 [13,17,19–24]. CCPs 19–20

recognise a composite binding site consisting of surface-tethered C3d

(TED) and nearby GAGs, and are thus crucial for ensuring FH acts

most effectively at self-surfaces [18]. In current models, the 20 FH

CCPs, connected by linkers of three to eight residues, adopt a bent-
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back conformation with varying degrees of flexibility between

modules [18,25–29]. The two FH termini simultaneously engage

proximal binding sites on a common surface-tethered C3b molecule;

the intervening 14 modules loop out such that CCPs 6–8 approach

the surface, reinforcing the GAG-recognition properties of CCP 20

[17,18].

Given its key role in host cell protection it is unsurprising that

FH sequence variations associate with diseases including membra-

noproliferative glomerulonephritis type II, age-related macular

degeneration (AMD) and atypical haemolytic uraemic syndrome

(aHUS) (reviewed in [30], and [31]). Interestingly, the majority of

disease-associated missense mutations are clustered in CCPs 18–20

[31–36].

In this study we describe the crystal structure of the three

carboxyl-terminal CCP modules of human FH (CCPs 18–20) at a

resolution of 1.8 Å together with analysis of this region in solution

by small angle X-ray scattering (SAXS). This new structural

information extends current knowledge based on the CCPs 19–20

structures and provides a more robust structural context for

discussion of disease-linked mutations.

Methods

Expression and Production of Recombinant FH18–20 &
FH19–20

Recombinant versions of FH18–20 and FH19–20 comprising

residues 1046–1231 and residues 1107–1231 (UniProt accession

number: P08603), respectively, were expressed and purified as

previously described [18,37]. Recombinant FH18–20 contained

an amino-terminal two-residue cloning artefact (Ala-Gly), while

FH19–20 contained an amino-terminal four-residue cloning

artefact (Glu-Ala-Glu-Phe). The FH18–20 construct which

contains a single N-glycosylation consensus sequence (Asn1095-

Trp1096-Thr1097) was deglycosylated using endoglycosidase Hf

(New England Biolabs), according to the manufacturer’s instruc-

tions, prior to use. For crystallization or small angle X-ray

scattering (SAXS) studies, FH18–20 and FH19–20 were concen-

trated by centrifugation using a Vivaspin 20 (Millipore) concen-

tration device (10 KDa molecular weight cut-off) at 40006 g,

20uC in phosphate-buffered saline (PBS), pH 7.4 (containing

137 mM NaCl, 8.1 mM Na2HPO4, 2.7 mM KCl, 1.5 mM

KH2PO4).

FH18–20 Crystallization and Data Collection
Crystals of FH18–20 were grown at 17uC by vapor diffusion

from hanging drops. Drops contained 1 ml of protein solution

(16.8 mg/ml) in PBS with an equal volume of well solution (0.1 M

sodium malonate, pH 4.0, 12% w/v polyethylene glycol 3350).

Crystals grew within forty-eight hours. Crystals were flash frozen

in liquid nitrogen after successive soakings in cryoprotectant

solutions containing 10% and 25% v/v glycerol. Intensity data

were collected (Q scans were 1u over 180u) to a resolution of 1.8 Å

(the edge of the detector) on beamline I03 at the Diamond Light

Source (Oxfordshire, UK). Data were indexed with Mosflm [38],

and subsequently merged and scaled with SCALA [39].

FH18–20 Structure Determination
A previously elucidated structure of FH19–20 (PDB ID:

3OXU/chain F [18]) was used as a search model for molecular

replacement using the program PHASER [40]. The resulting

model underwent ten cycles of restrained refinement using the

program REFMAC [41]. The remaining CCP module (FH18) was

built using the PHENIX Autobuild Wizard [42] and the program

COOT [43]. This model was subjected to further cycles of

restrained refinement and, when appropriate, ligands and water

molecules were added to the model using COOT. Disordered

regions were carefully modeled into Fo2Fc electron density and

changes in R/Rfree (%) values were used to assess final model

quality.

The final structure was composed of one FH18–20 molecule

comprising 185 residues (Gly1045-Lys1230), 17 of which exhibit

alternate conformations, 170 water molecules, four glycerol mole-

cules and a phosphate ion. No clear electron density was observed for

the first or last residues in the recombinant FH18–20 sequence

(Ala1044 or Arg1231), while the Thr1184–K1188 region within CCP

20 was disordered; this region was modeled using the NMR-derived

FH19–20 structure (PDB ID: 2BZM [37]). The R/Rfree values

converged for twenty cycles of REFMAC at 18.2% and 22.6%,

respectively. Data-reduction and refinement statistics are summarized

in Table 1. Figures were generated using the PyMOL Molecular

Graphics System (Version 1.3, Schrödinger, LLC).

Validation and Deposition of FH18–20 Structure
The geometry of the model was assessed using MolProbity [44].

Atomic coordinates and the experimental structure factors for our

1.8 Å structure of FH18–20 have been deposited in the Protein

Data Bank with the accession code 3SW0 (PDB ID: 3SW0).

Table 1. Crystallographic data collection and refinement
statistics.

Data collection

Space group P22121

Cell dimensions

a, b, c (Å) 45.97, 68.60, 77.48

Resolution (Å) 51.36-1.80

Rmerge (%) 5.9 (30.9)

I/sI 13.7 (3.5)

Completeness (%) 99.7 (99.9)

Multiplicity 4.1 (4.1)

Refinement

No. reflections 22011

Rwork/Rfree (%) 18.2/22.6

No. atoms

Protein 1570

Ligand 28

Water 170

Average protein B-factor (Å2) 29.5

R.m.s. deviations

Bond lengths (Å) 0.03

Bond angles (u) 2.05

Ramachandran

allowed (%) 98.0 (198/202)

generous (%) 100.0 (202/202)

disallowed (%) 0.0 (0/202)

Values in parentheses are for the highest resolution shell. 5% of reflections were
used as a test set for the calculation of Rfree.
doi:10.1371/journal.pone.0032187.t001

Crystal Structure of FH18-20
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Small-Angle X-ray Scattering
Synchrotron radiation X-ray scattering data were collected on

the X33 beam line of the EMBL (DESY, Hamburg, Germany)

using a Pilatus one-megapixel array detector (Dectris, Switzerland)

and eight frames of 15-second exposure times. Solutions of FH18–

20 and FH19–20 were measured at 20uC in PBS, pH 7.4, 1 mM

DL-Dithiothreitol (DTT) at protein concentrations of 1.9, 3.8 and

7.6 mg/ml (for FH18–20) and 2.4, 4.6 and 7.9 mg/ml (for FH19–

20). The sample-to-detector distance was 2.7 m, covering a range

of momentum transfer 0.07 nm21,s,6.0 nm21 (s = 4psinh/l,

where 2h is the scattering angle, and l= 0.15 nm is the X-ray

wavelength). Addition of reducing agents, such as DTT, serve as

free radical scavengers and can significantly reduce radiation

damage to biological samples [45]. Comparison of successive 15-

second frames revealed no detectable radiation damage in the

presence of DTT. However, in the absence of DTT, significant

radiation damage occurred following the second frame. Usage of

1 mM DTT in our hands has been shown to be insufficient to

reduce disulphide bonds within CCP-containing constructs (data

not shown). Data from the detector were normalized to the

transmitted beam intensity, averaged and the scattering of buffer

solutions subtracted. Difference curves were scaled for solute

concentration. All data manipulations were performed using the

PRIMUS software package 16 [46].

Fitting of the FH18–20 and FH19–20 (PDB ID: 3OXU [18])

crystal structures to the SAXS data was conducted using the

program CRYSOL [47]. CRYSOL calculates the partial scatter-

ing amplitudes of proteins from their atomic coordinates, taking

into account the hydration layer and excluded solvent volume.

Low resolution shape envelopes were determined from the

solution scattering data using the program DAMMIF [48] and

the most typical model from multiple reconstructions (10)

identified using DAMAVER [49]. Resulting bead models were

converted to meshed envelopes and visualized using PYMOL

(Version 1.3, Schrödinger, LLC). Superposition of available bead

models on three-dimensional structures of FH18–20 or FH19–20,

as appropriate, were carried out using the program SUPCOMB13

[50]. Rigid body modeling using the program CORAL (Com-

plexes with Random Loops) was also conducted using the FH18–

20 crystal structure, constraining either FH modules 18 and 19, or

19 and 20 as fixed, and refining the relative position and

orientation of modules 20 or 18, respectively, against the SAXS

data [51].

Analysis of inter-domain flexibility in FH18–20 employed the

ensemble optimization method (EOM) [52]. This uses a genetic

algorithm to select, from a pool of randomly generated models, an

ensemble of possible conformations whose combined theoretical

scattering profiles best fit the experimental data. The CCP

modules of FH18–20 were treated as rigid bodies and the linkers

between them represented as flexible chains of dummy residues.

For the pool, 10,000 models were generated from the input

structures. A final ensemble of 20 conformations was selected by

genetic algorithm after 50 cycles.

The discrepancies (x) between models/ensembles and the

experimental data from CRYSOL, DAMMIF, CORAL and

EOM are summarised in Table S1. This discrepancy is defined as:

x2~
X

k

1

N{1

X
j

Iexp sj

� �
{cIcalc sj

� �
s sj

� �
" #

ð1Þ

where N is the number of experimental points, Iexp(sj) and Icalc(sj)

are the experimental and calculated scattering intensities, c is a

scaling factor and s(sj) is the experimental error at the momentum

transfer sj.

Results

Crystal Structure of FH18–20
FH18–20 crystals diffracted to a maximum resolution of 1.8 Å

(see Table 1). FH18–20 data were indexed in the space-group

P22121, with one monomer in the asymmetric unit. The three

CCP modules of FH18–20 form a ‘J’-shaped structure (Figure 1A).

CCPs 19 and 20 adopt an extended rod-like conformation in

which CCP 20 is approximately aligned with CCP 19, consistent

with previous structural studies carried out using wild-type or

mutant forms of FH19–20 [17,18,22,37,53,54]; CCPs 19–20 of

our FH18–20 structure (PDB ID: 3SW0) may be superimposed

(residues 1109–1228, back-bone atoms) with a root-mean-square

(rms) of 1.21 Å on a crystal structure of wild-type FH19–20 (PDB

ID: 3OXU/chain F [18]). Both FH18 and FH19 are typical CCP

modules with very similar structures (rms, alpha-carbon atoms,

,1 Å) in line with their high sequence similarity, while CCP 20

exhibits great structural divergence (rms, alpha-carbon atoms

.2 Å to all but one other CCP module) (Table S2) [55]. While the

long axes of CCPs 19 and 20 are approximately aligned, with only

a ,32u tilt relative to one another, the long axis of CCP 18 is

strongly tilted, by ,122u with respect to the long axis of CCP 19,

and by ,151u with respect to CCP 20 (Table S3). This distinctive

kink in the FH18–20 structure is facilitated by an extensive

network of hydrogen bonds (Figure 1). Atomic distances consistent

with hydrogen bond formation are observed between Gln1101

(CCP 18)-Gln1156 (CCP 19); Lys1103 (linker)-Asn1154 (CCP 19);

and Lys1103 (linker)-Gln1156 (CCP 19). In addition, a single

water molecule (B-factor = 25 Å2) forms three hydrogen bonds,

one with the amide of Asp1104 (linker) and two with the backbone

carbonyl oxygen atoms of Lys1108 (linker) and Gly1155 (CCP 19).

Further hydrogen bonding involving residues: Asp1104 (linker)-

Ser1105 (linker); Asp1104 (linker)-Gly1107 (linker); Thr1106

(linker)-Lys1108 (linker); and Arg1153 (CCP 19)-Gln1156 (CCP

19) (Figure 1B,C) also contribute to the kink between CCPs 18

and 19. This network of hydrogen bonds may also stabilize the

observed CCP 18–CCP 19 inter-modular orientation under

solution conditions; however, we cannot rule out the possibility

that the distinctive kinked structure is induced by crystal contacts,

or alternatively, by the low-pH conditions employed to crystallize

the molecule. Furthermore, the surface area buried between CCPs

18 and 19 is only ,400 Å, compared to almost ,700 Å for CCPs

19 and 20 (Table S4).

SAXS Analysis of FH18–20 and FH19–20
To investigate the conformation adopted by these three C-

terminal CCP modules in solution, SAXS data were acquired on

samples of both FH18–20 and FH19–20 (Table 2). For the double

module, FH19–20, the overall parameters suggest that the sample is

predominantly monomeric in solution (Table 2). The MW as

estimated from the forward scattering intensity of the merged data

extrapolated to infinite dilution, I(0) is ,15 kDa, and along with

estimates derived from the hydrated particle volumes and ab initio

bead modelling, is consistent with monomeric FH19–20 in solution

(Figure 2A). Fits of the crystal structure of this FH19–20 construct

(PDB ID: 3OXU [18]) to the SAXS data using the program

CRYSOL are shown in Figure 2. The structure of FH19–20

provides an excellent fit (x= 1.4) to the merged scattering data

extrapolated to infinite dilution (Figure 2B), supporting the

extended structures previously solved by both X-ray crystallography

and NMR for this fragment [17,18,22,37,53,54]. The presence of

Crystal Structure of FH18-20
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Figure 1. Crystal structure of FH18–20 (PDB ID: 3SW0). A, A Cartoon representation of the three CCP modules is indicated: CCP 18 (residues
1048–1102), CCP 19 (residues 1109–1163), and CCP 20 (residues 1167–1228). Highlighted on the FH18–20 structure are the C3b-binding (green) and
polyanion-binding (blue) regions [17,18,21]. Residues contributing to the inter-domain packing between CCPs 18 and 19 are shown. B, Close-up of
the kink that occurs between modules 18 and 19. The orientation of the FH18–20 molecule is the same as shown in ‘A’. Electron density (2Fo2Fc map
shown in grey, and contoured at 1.5s) for residues contributing to the inter-modular packing is shown. Dashed lines represent hydrogen-bonds
between amino acid residues or between amino acid residues and water molecules. C, as for ‘B’ except the molecule is rotated about the y-axis by
180u.
doi:10.1371/journal.pone.0032187.g001

Table 2. Overall SAXS parameters.

Concn
mg/ml) Rg

Guinier (nm) Rg
GNOM (nm) Dmax (nm) I(0) MWSAXS (kDa) VolSAXS, nm3 VolDAM, nm3

FH19–20 (14.9 kDa) 2.4 2.360.1 2.360.1 8.060.5 17.4 1465 17 2365

4.6 2.460.1 2.460.1 8.460.5 19.2 1665 20 2665

7.9 2.660.1 2.660.1 9.060.5 21.2 2165 23 3265

mer 2.260.1 2.260.1 7.460.5 18.2 1565 1665 2265

FH18–20 (21.4 kDa) 1.9 3.060.1 3.260.1 10.660.5 21.7 1865 2165 2965

3.8 3.160.1 3.360.1 10.960.5 22.7 1865 2365 3265

7.6 3.460.1 3.560.1 11.560.5 26.6 2265 2965 3965

mer 2.960.1 3.260.1 10.260.5 21.9 2265 3065 3265

Rg
Guinier and Rg

GNOM are the experimentally determined radius of gyration as calculated by Guinier analysis [62] and by indirect Fourier transform using the program
GNOM, respectively [63]; Dmax is the maximum particle dimension; I(0) is the forward scattering intensity; MW(SAXS) is the molecular weight determined by SAXS; VolSAXS

is the hydrated particle volume of solutes determined from the SAXS patterns; and VolDAM is the excluded volume of solutes determined using the ab initio modeling
program DAMMIF [48]. Data merged and extrapolated to infinite dilution are referred to in the table as ‘‘mer’’.
doi:10.1371/journal.pone.0032187.t002

Crystal Structure of FH18-20
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potential flexibility in the three-residue linker between CCPs 19

and 20 was investigated using an ensemble-optimization analysis

conducted using the program EOM. The Rg distribution from this

analysis is characteristic of an extended structure with a small degree

of conformational flexibility relative to the pool of random

conformers (Figure 2C).

For FH18–20, the MW estimate of ,22 kDa from the merged

data extrapolated to infinite dilution agreed with that expected for

a monomeric form of this three-module protein. Volume estimates

were also consistent with a monomeric state, with volumes of

30 and 32 nm3 measured for the VolSAXS and VolDAM values,

respectively (corresponding to estimated MW’s of 1965 kDa and

1665 kDa). Interestingly, though, the experimentally derived

scattering curves did not fit well to data back-calculated from the

‘J’-shaped crystal structure (discrepancy x= 2.4) (Figure 3); nor did

ab initio low-resolution shape envelopes generated using the

program DAMMIF demonstrate the same acute angle between

CCPs 18 and 19 (Figure 3A) [48]. Furthermore, SAXS-based rigid

body models of FH18–20 generated using the program CORAL,

in which the position and orientation of CCP 18 was refined

against the SAXS data, resulted in an average solution con-

formation which was more extended than the crystal structure

(Figure 3A) and which better fit the scattering data (x= 1.4) (Figure

S1). By contrast, refinement of the position and orientation of CCP

20 yielded no improvement in the fit to the SAXS data compared

to that of the crystal structure (x= 2.1) (Figure S1). Overall, these

SAXS results suggest FH18–20 has a more extended conformation

in solution than that observed in the crystal lattice. The most

straightforward explanation is that under the conditions used to

collect the SAXS experiments, FH18–20 is more flexible than

might be inferred from its crystal structure.

To investigate potential flexibility of the linker regions within

CCPs 18–19 and CCPs 19–20, an analysis was carried out with

EOM [52]. When all inter-module linkers were defined as flexible

the genetic algorithm selected an ensemble of conformations

providing a superior fit (x= 1.2) to the SAXS data, compared to

that of the crystal structure (Figure 3B). The Rg distribution of the

selected ensemble from this analysis is shifted toward extended

structures while the width of the distribution is smaller than that of

the pool (Figure 3C), suggesting partial flexibility. To investigate

the location of potential flexibility and reduce the number of

degrees of freedom of the EOM analysis, two additional runs were

conducted. In these, the linker between CCPs 18 and 19 or

between 19 and 20 was fixed as in the crystal structure, allowing

either CCP 20 or CCP 18, respectively, (via the remaining non-

fixed linker) to sample conformational space. The SAXS data were

fit well by an ensemble in which the 19–20 linker was fixed

(x= 1.3) (Figure 3D), but were fit poorly by the ensemble in which

the 18–19 linker was fixed (x= 2.4). These data, which are entirely

consistent with the experiments performed on FH19–20, suggest

that the six residue 18–19 linker, but not the three residue 19–20

linker, is significantly flexible. The Rg distribution of the selected

ensemble in which the 19–20 linker was fixed coincides well with

that of the respective pool, being both broad (and thus

considerably flexible) and skewed toward extended structures

(Figure 3E).

In summary, these data are consistent with a solution of, on

average, more extended FH18–20 conformations (compared to

the crystal structure) with a rigid 19–20 linker and a highly flexible

18–19 linker. It is possible therefore, that the kinked crystal-

derived FH18–20 structure in which CCP 18 folds back towards

CCP 19 reflects a snapshot of one of several conformations

available to these three modules (Figure 4).

Discussion

We have extended the structural information available for the

key soluble human complement regulator, FH. We elucidated the

Figure 2. Summary of FH19–20 SAXS data. A, Superposition of the SAXS-derived shape envelope of recombinant FH19–20 (shown in yellow) on
the crystal structure of FH19–20 (PDB ID: 3OXU [18]). Shape envelopes were determined using the ab initio bead-modelling program DAMMIF [48]
and superposition of the FH19–20 envelope on the corresponding crystal structure was carried out utilizing the program, SUPCOMB13 [50]. B, Fit of
the X-ray crystal structure of FH19–20 (solid black line) to the SAXS data extrapolated to infinite dilution (black open circles). The fit of the selected
ensemble of conformations from EOM is also shown (solid red line). C, The Rg distribution from the ensemble analysis using EOM (pool in grey,
selected ensemble in red).
doi:10.1371/journal.pone.0032187.g002

Crystal Structure of FH18-20
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crystal structure of FH18–20, and have complemented this with

the acquisition of solution SAXS data for FH19–20 and FH18–20.

These C-terminal CCPs encompass the key self versus non-self

discriminating region of this protein [10]. While several high-

resolution structures of the C3b/GAG-contacting CCPs 19 and 20

were already available, CCP 18 is also of interest since it too is a

site of disease-associated mutations (Figure 5) [31,35,36]. More-

over, the inter-modular angles between CCPs 18 and 19 are

important because they determine the path of the carboxyl-

terminal region of the FH molecule as it exits the C3b:FH complex

before looping back to re-engage with the same C3b molecule via

its amino-terminal CCPs [18].

FH18–20, in the crystal lattice, adopts a distinctive ‘J’-shaped

conformation. The short (three-residue) linker between CCPs 19

and 20 (i.e. between the last cysteine of CCP 19 and the first of

CCP 20) along with numerous inter-modular contacts imposes

an approximately linear rod-like structure on this (GAG/C3b-

binding) part of the molecule; the longer (six-residue) 18–19 linker

permits a sharp kink to form in the molecule, also stabilized

by inter-modular and module-to-linker interactions, but with a

smaller inter-modular interface than observed between modules

19 and 20. Interestingly, a previously published SAXS-based

model of FH 15–19 also contained a kink between CCPs 18 and

19 [18]. On the other hand our SAXS-derived analysis of FH18–

20 and FH19–20 in solution revealed the presence of conforma-

tional mobility at the 18–19 inter-modular junction, but little

flexibility between CCPs 19 and 20. These data are consistent with

the low buried surface area which is observed between CCPs 18

and 19 (Table S3). Varying levels of inter-modular flexibility have

been noted previously in FH and other RCAs [13,56–58].

Taking these data together, it appears that modules 19 and 20

are rigidly aligned such that their rod-like conformation is

independent of the addition of CCP 18 or the presence of ligands.

Modules 18 and 19, on the other hand, can adopt a bent-back

conformation, supported by numerous non-covalent interactions,

that would bring residues on the surface of module 18 in close

Figure 3. FH18–20 SAXS analysis. A, Superposition of the SAXS-derived shape envelope of recombinant FH18–20 (yellow) on the crystal structure
of FH18–20 (indicated in cyan), and also on a CORAL-derived rigid body model of FH18–20 (shown in red) where the orientation of CCPs 19–20 are
fixed, and the position of CCP 18 refined against the SAXS data. Flexible linker residues (alpha-carbon atoms) are shown as red spheres. B, Fit of the
FH18–20 crystal structure (black line) to the SAXS data using the program CRYSOL, and fit of the selected ensemble of FH18–20 models from the EOM
analysis (red line) to the SAXS data. C, Rg distribution from the EOM analysis of FH18–20 with both FH18–19 and FH19–20 linker regions defined as
flexible (pool in grey, selected ensemble in red). D, Fits of the selected ensembles from the EOM analysis of FH18–20 to the SAXS data using flexible
FH18–19 (blue line) or FH19–20 (green line) linker regions. E, Rg distribution from the EOM analysis for FH18–20 with the FH18–19 linker region
defined as flexible (pool in grey, selected ensemble in blue).
doi:10.1371/journal.pone.0032187.g003
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proximity to C3b within a FH:C3b complex rather than projecting

module 18 (and the preceding modules of FH) clear of the complex

(Figure 4); but this junction is much less rigid than that between

modules 19 and 20. Occupation of a solitary N-glycan site on

Asn1095 within CCP 18 (Figure 5) would not preclude this con-

formational flexibility due to its remoteness from the CCP 18–

CCP 19 linker.

The carboxyl-terminal region of FH is a hotspot for disease-

associated mutations which have been linked to increased risk for

the development of aHUS, early onset drusen (basal laminal

drusen) and age-related macular degeneration (AMD) [31–36]. To

date, at least twenty-eight such missense mutations have been

documented in FH18–20, four of which occur in CCP 18:

N1050Y [31]; V1060A [36]; Q1076E [32,34]; and R1078S [31].

All of these substitutions are located on the surface of CCP 18

(Figure 5A) and none is likely to result in significant structural

perturbations; two of them (Q1076E and R1078S), however, alter

the electrostatic potential of CCP 18 and are, additionally, in close

proximity to an electronegative patch on this module (Figure 5B).

While direct binding to C3b occurs mainly through CCP 19 and

the CCP 19–20 inter-modular junction, residues exposed on CCP

18 could nonetheless play a role in the encounter between the C

terminus of FH and C3b and therefore modulate the ability of FH

to control C3b amplification on host surfaces. In previous work

reversal-of-charge mutations in CCPs 19 and 20 were found to

influence affinity of FH19–20 for C3d/C3b even when they did

not lie directly in the interface between these two molecules as

visualized in the crystal structure of the FH19–20:C3d complex

[17,18,59,60]. Such observations were attributed to electrostatic

steering. It has also been suggested that some disease-associated

mutations in FH19–20 modulate self-association [54]. The wild-

type FH18–20 protein is monomeric under the conditions used

for SAXS. Mutagenesis combined with binding and biophysical

studies would be needed to explore the hypothesis that residues in

CCP 18 exert electrostatic steering effects, or that mutations in

CCP 18 can influence self-association. Alternatively, interactions

with other less well established FH ligands might be directly

affected by mutations in CCP 18; the inflammatory biomarker,

Figure 4. The crystal structure of FH18–20 modeled onto the C3b:FH1–4 complex. A, Superposition of FH18–20 structure (PDB ID: 3SW0)
on the previously determined wild-type FH19–20:C3d complex (PDB ID: 3OXU [18]) and the FH1–4:C3b complex (PDB ID: 2WII [15]). Surface
representations are shown of FH1–4 (slate) and FH18–20 (cyan). In the cartoon representation of C3b, constituent domains are color-coded with the
TED indicated in green. FH19–20 and C3d were employed for alignment purposes only, and are not shown. Also indicated is Gln1013, the site of
covalent linkage of C3b to target surfaces. B, As for (A) except the model of the FH1–4:C3b:FH18–20 complex has been rotated about the y-axis by
35u demonstrating the path of CCP 18 with respect to the FH1–4:C3b complex. C, Schematic of a FH1–4:C3b:FH18–20 complex demonstrating the
inferred flexibility, in solution, of the linker connecting CCPs 18 and 19.
doi:10.1371/journal.pone.0032187.g004
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C-reactive protein, for example, has been reported to bind to a

FH16–20 construct [61].

Supporting Information

Figure S1 Fit of FH18–20 rigid body models refined
against the SAXS data using the program CORAL. Fits are

shown for rigid body models refining only CCP 18 (CCPs 19–20

fixed) or CCP 20 (CCPs 18–19 fixed), as solid blue and dashed red

lines, respectively.

(PPT)

Table S1 Comparison of the discrepancies (x) for the
DAMMIF, CORAL and EOM SAXS-derived analyses.
(DOC)

Table S2 Pair-wise CCP module structural compari-
sons of FH18, FH19 and FH20. Comparison of CCP module

structures of CCP 18, CCP 19 and CCP 20 versus all other

individual CCPs of known structure within the complement system

based upon alpha-carbon RMSD values using the structural

alignment program Combinatorial Extension [22]. For each CCP,

inclusive module boundaries were one residue before Cys-I and

the third residue after Cys-IV. In cases where structures have been

solved by both NMR and X-ray diffraction, the higher resolution

X-ray structure was used for comparison. Where both liganded

and unliganded structures were available, the highest resolution

unliganded X-ray or NMR structure was used. A few residues

were missing in the crystal structure of C1r CCP 2, and hence in

this case, the structure with the most determined residues was

employed for both modules. Colour key used in table: Blue: 0–

1.99 Å; Green: 2.00–2.99 Å; Red: 3.00–3.99 Å; Brown: Align-

ment lengths ,40 amino acids. Abbreviations used in Table:

C4BPa= C4b-binding protein a-chain; CR = complement recep-

tor; CRRY = rat Complement receptor 1-related protein Y;

DAF = decay-accelerating factor; FB = factor B; FH = factor H;

MASP1/2 = mannan-binding lectin-associated serine proteases 1/

2; MCP = membrane cofactor protein; VCP = Vaccinia virus

complement control protein. Some residues were not present

(solved) in the electron density map for the C1r CCP 2 module

crystal structure, and this explains the short structural alignment

length (shown in brown).

(DOC)

Table S3 Intermodular angles for CCPs 18–20. Tilt, twist

and skew angles in degrees were determined as previously

described [1,2] using (for a reference x-axis) a vector between

the principal axis of the inertia tensor (the z-axis) and the alpha-

carbons of the conserved Trp1096 (CCP 18), Trp1157 (CCP 19)

or Leu1223 (CCP 20), respectively, and with module boundaries

defined as Cys-I i.e., Cys1048 (CCP 18), Cys1109 (CCP 19), or

Cys1167 (CCP 20) and Cys-IV i.e., Cys1102 (CCP 18), Cys1163

(CCP 19), or Cys1228 (CCP 20), respectively.

(DOC)

Table S4 Accessible surface area and interface buried
surface area calculation. The web server VADAR version 1.8

[1] was used and the surface area (SA) that was buried was

calculated as: (SA Module 1+SA Module 2) - SA Bi-module. All

units are in Å2. The linker length was defined as the number of

residues between the C-terminal Cys of the preceding CCP

module and the N-terminal Cys of the following CCP module. For

CCP 18 (in CCP 18–CCP 19), boundaries were considered from

one residue before the first Cys till three residues after the last Cys

and for CCP 19 (in CCP 18–CCP 19 and CCP 19–CCP 20),

boundaries were considered from three residues before the first

Cys till one residue after the last Cys (and one residue before the

first Cys till one residue after last Cys in CCP 19–CCP 20, and two

residues before first Cys till one residue after last Cys in CCP 20).

For bi-modules, boundaries were considered from one residue

before the first Cys of Module 1 to one residue after the last Cys of

Module 2.

(DOC)
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