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There is an urgent demand for long term solutions to improve osteoarthritis treatments in the ageing population. There are
drugs that control the pain but none that stop the progression of the disease in a safe and efficient way. Increased intervention
efforts, augmented by early diagnosis and integrated biophysical therapies are therefore needed. Unfortunately, progress has been
hampered due to the wide variety of experimental models which examine the effect of mechanical stimuli and inflammatory
mediators on signal transduction pathways. Our understanding of the early mechanopathophysiology is poor, particularly the
way in which mechanical stimuli influences cell function and regulates matrix synthesis. This makes it difficult to identify
reliable targets and design new therapies. In addition, the effect of mechanical loading on matrix turnover is dependent on the
nature of the mechanical stimulus. Accumulating evidence suggests that moderate mechanical loading helps to maintain cartilage
integrity with a low turnover of matrix constituents. In contrast, nonphysiological mechanical signals are associated with increased
cartilage damage and degenerative changes. This review will discuss the pathways regulated by compressive loading regimes and
inflammatory signals in animal and in vitro 3D models. Identification of the chondroprotective pathways will reveal novel targets
for osteoarthritis treatments.

1. Introduction

It is well established that mechanical loading regulates
the structure and function of musculoskeletal tissues and
helps maintain the functional integrity of articular car-
tilage and joint homeostasis. The onset and progression
of osteoarthritis (OA) involves all the tissues of the joint
initiated by multiple risk factors. These include joint
instability and/or misalignment, obesity, previous knee
injury, muscle weakness, age, and genetics. It is clear that
joint tissues are sensitive to the magnitude, duration, and
nature of the mechanical stimulus. A range of approaches
have, therefore, been developed to examine the effect of
mechanical loading on cartilage homeostasis and OA disease
progression. However, each approach has limitations which
make it difficult to evaluate the physiological relevance of the
experimental findings. This review article will examine the
role of abnormal joint loading in cartilage destruction and
compare the findings to the protective effects of physiological
loading in animal and in vitro models. In addition, we

will discuss the intracellular mechanisms which mediate
the effects of mechanical loading and explore the potential
of using controlled exercise therapy in combination with
novel agents as an integrated biophysical approach for OA
treatments.

2. Influence of Nonphysiological Mechanical
Loading and Cartilage Destruction

2.1. Joint Overuse and Excessive Mechanical Loading Is Dam-
aging to the Tissue. Cartilage defects in the knees of young or
active individuals remain a problem in orthopaedic practice.
The clinical symptoms of OA are joint pain, limitation
of range of motion, and joint stiffness. Sports activities
involving high intensity and repetitive loads increase the risk
of OA and are most often associated with other injuries
such as knee ligament tears, meniscal injuries, patellae
fractures, and osteochondral lesions [1–3]. Cartilage degen-
eration can develop from direct traumas, joint instability
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and misalignment, as a result of altered patterns of load
distribution across the joint [4].

Overloading (e.g., traumatic or high intensity) induces
morphological, molecular, and mechanical changes in cells
and matrix which leads to softening, fibrillation, ulceration,
and loss of cartilage [5–7]. These molecular and biomechan-
ical changes have been shown to shift the balance of tissue
remodelling in favour of catabolic over anabolic activity in
animal models. However, studies which measure the effects
of mechanical loading on cartilage due to overuse in human
joints are few in number. By contrast, there are a plethora
of experimental studies which have examined the effect
of overloading in animal and 3D models (Table 1). For
example, strenuous exercise in a canine model caused by
running either 20 or 40 km/day for up to 15 weeks reduced
proteoglycan content in the superficial zone of cartilage,
increased water content, and decreased the concentration
of collagen in the load-bearing region [8, 9]. In rodents,
enforced running of mice for 1 km/day, or a sudden increase
in exercise at an older age resulted in more severe cartilage
lesions than observed in sedentary controls [10, 11].

In vitro studies have identified a critical stress threshold
of 15–20 MPa above which cell death and collagen damage
was evident due to a single impact load in bovine cartilage
explants [12, 13]. In a separate study, apoptosis occurred
at peak stresses as low as 4.5 MPa followed by collagen
degradation at 7 to 12 MPa and nitrite accumulation at
20 MPa [14]. However, the source of the tissue tested and
nature of the impact load will certainly influence the type
and extent of damage [15]. For example, human cartilage
was found to be more resistant to damage than bovine
tissue following a single impact load of similar magnitude
[16]. This may be due to the structural differences between
the two tissue types and cartilage thickness or effects of
age-accumulated changes observed in samples from older
patients. Furthermore, impact damage is inevitably strain
rate dependent. Indeed, in a comparative study, low strain
rates had no discernable effect on matrix synthesis in bovine
cartilage explants, whereas strain rates up to twofold higher
decreased the levels of proteoglycans, and hence reduced
both compressive and shear stiffness [17]. The damage
caused by repeated impact loading was cumulative in nature,
initially inducing necrosis, followed by apoptosis and colla-
gen degradation in cartilage explants [18, 19]. In addition,
the application of static load, equivalent to a compressive
strain of 50%, decreased the synthesis of both collagen type
II and proteoglycans in bovine cartilage explants [20–22].
Taken together, these experimental findings demonstrate
that if joints are insufficiently loaded, cartilage metabolism
shifts in favour of catabolism, essentially leading to tissue
atrophy. Long-term injurious mechanical loading, which
represent high levels of peak stress and/or strain rates,
induces abnormal compositional changes in cartilage and
accelerates breakdown of the extracellular matrix. How-
ever, the magnitude of loads reported in vitro may not
replicate the in vivo loading environment. This limitation
makes it difficult to identify the range of nonphysiological
loading modalities that are likely to be encountered in
a clinical setting. Accordingly, clinical studies of critical

patient populations may provide more appropriate means of
evaluating the physiological relevance of mechanical factors
on integrated disease pathways and treatments.

2.2. Reduced Joint Loading and Disuse Leads to Cartilage
Degeneration. Reduced joint loading (e.g., static and immo-
bilisation) leads to atrophy and degeneration of cartilage
(Table 1). Indeed, animal studies demonstrate that pro-
longed joint immobilisation causes cartilage thinning, tissue
softening, and reduced proteoglycan content resulting in
matrix fibrillation, ulceration, and erosion [23–25]. An
inactive lifestyle leads to OA like changes in a hamster
model, as characterised by reduced proteoglycan content,
fibrillation, pitting, and fissuring [26]. In clinical studies,
patients with fractures and partial or complete immobili-
sation presented significant temporal changes in cartilage
morphology, including reduced thickness in the femorotibial
joint compared to the patella [27]. In the absence of joint
loading, patients with spinal cord injuries showed progres-
sive thinning of knee cartilage in the absence of normal joint
loading at a rate which was higher than that observed in OA
[28, 29]. However, the loss of proteoglycans following short-
term immobilisation in a canine model was largely reversible
and remobilisation of the joint led to restoration of matrix
[30–32]. This effect may be possible, since the loading condi-
tion primarily affects the proteoglycan content and does not
irreversibly influence the collagen network. However, if the
animal is actively exercised at the time of remobilisation, the
integrity of the tissue will be compromised, suggesting that
prolonged immobilisation may cause irreversible damage to
the tissue [33–35].

3. Physiological Mechanical Stimuli
and Cartilage Homeostasis

3.1. Moderate Mechanical Loading Plays a Role in Normal
Tissue Remodelling. Several investigators have used a range
of approaches to examine the effect of moderate exercise in
maintaining cartilage homeostasis (Table 2). Indeed, there is
sound evidence that individuals engaging in regular activity
are less prone to incidence of OA, since frequent dynamic
loading in the physiological range will increase cartilage
thickness and maintain normal cartilage integrity [36, 37].
There is also evidence that exercise therapy in the form of
aerobic and strengthening activities reduced pain and dis-
ability, enhances GAG content, and protects against cartilage
degeneration in subjects with knee OA [4, 38–41]. However,
the protective effect of recreational exercise has been reported
to be dependent on a number of risk factors including
age, body mass index, history of knee injury, smoking,
and education [42–44]. Clinical observations suggest that
healthy subjects as well as OA patients, in general, can
pursue a high level of physical activity, provided that the
activity is not painful and does not predispose to trauma
[45]. However, there is still insufficient information which
provides useful guidelines on optimal exercise regimen,
dosage, or length of intervention, particularly in overweight
individuals [46]. It is interesting to note that prospective
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cohort studies which examined the effect of exercise on
cartilage properties have reported contradictory results [4,
37]. In some patients, the intervention offered pain relief
and improvements in physical functioning, but in middle-
aged or elderly persons without OA, recreational exercise
neither protects against nor increases risk of the disease
[42, 43, 47–49]. It is inevitable that comparison of findings
between clinical studies, is problematic, as they often involve
differences in both diagnostic criteria and variable exercise
regimens. However, it is certain that understanding the
associations between risk factors and benefits of physical
activity will provide key information that will have important
implications for clinical practice.

In most animal studies, load bearing exercise minimises
the development of OA. For example, daily exercise increased
proteoglycan content and cartilage thickness in hamster and
rodent models [26, 50]. In dogs, moderate exercise augments
GAG content particularly in younger animals [51, 52]. In
hamsters, early joint loading advances the maturation of
matrix proteins, improved the integrity of the collagen
network and the tissue resistance against OA in older animals
[53–56]. In general, exercise and loading of joints within
a physiological range appears to have beneficial effects
over normal day to day activities characterised by modest
movement. The anabolic changes induced by exercise appear
to enhance the load bearing properties of cartilage and may
help explain how lifelong physical activity protects the joint
from OA during later periods in life.

Several in vitro studies have examined the effect of
physiological mechanical loading on chondrocyte function
and matrix synthesis (Table 3). Indeed, stretching of cells
in monolayer cultures and compression of chondrocytes
in hydrogels or explants generally leads to anabolic sig-
nalling cascades and protective effects. For example, aggrecan
and collagen type II gene expression was increased by
cyclic pressure-induced strain, hydrostatic pressure or fluid-
induced shear stress in chondrocyte monolayers [57–59]. In
agarose, dynamic compression at low frequencies increased
cell proliferation and proteoglycan synthesis following 2
or 21 days of stimulation [60–63]. In cartilage explants,
cyclic compression at frequencies of 0.01 to 1 Hz increased
proteoglycan synthesis and gene expression of extracellular
matrix constituents, aggrecan, fibronectin and cartilage
oligomeric matrix protein (COMP) [20, 22, 64–66]. How-
ever, results from in vitro studies are variable and appear to be
dependent on the duration and type of compression regime
employed and whether loading was applied during early or
late cultures [60, 67–70]. In addition, direct comparison
may prove difficult between findings from 3D biomaterial
constructs and explant cultures, since both systems have
inherent disadvantages. For example, 3D agarose models
do not replicate the physiological loading environment of
cartilage and are generally cultured for relatively short time
periods (hours to weeks). For explants, it is difficult to
separate the contribution of the multiple mechanical and
physiochemical changes which influence the intracellular
pathways and regulate cell function in a spatial and temporal
manner. In contrast, in vivo animal models facilitate long-
term studies within a physiologically relevant environment.

However, such models are limited in terms of translating the
findings to humans. Nevertheless, information regarding the
importance of defining the optimal mechanical parameters
required for mechanical conditioning and biosynthesis of
anabolic proteins still needs to be established.

4. Nonphysiological Mechanical Stimuli
and Cartilage Destruction

4.1. Abnormal Mechanical Loading Effects on Signal Trans-
duction Pathways. Chondrocytes will respond to excessive
mechanical signals by disrupting the composition and
structure of the extracellular matrix which reduces the
biomechanical integrity of cartilage. Previous in vitro studies
have demonstrated that mechanical loading, representing an
injurious or traumatic response, activates the integrin recep-
tors which stimulate stress-induced intracellular pathways,
leading to the production of proinflammatory cytokines
such as interleukin-1 (IL-1) and tumour necrosis factor-α
(TNFα). These cytokines disturb the normal remodelling
activities of chondrocytes by increasing production of pro-
teolytic enzymes such as matrix metalloproteinases (MMPs)
and aggrecanases (ADAMTS), a process mediated by nitric
oxide (NO), prostaglandin E2 (PGE2) and reactive oxygen
species (ROS) [71–74]. Furthermore, the enhanced levels of
proteinase enzymes cleave both collagens and proteoglycans,
resulting in an increase in matrix fragments which stimulate
abnormal integrin signals. The accumulation of matrix frag-
ments enhance catabolic protease-driven pathways that over-
ride anabolic events and contribute to eventual loss of matrix
components and structural damage [75–79]. Abnormal
mechanical stimuli are likely to contribute to matrix damage
which might shift balance of cell metabolism and lead to the
onset of OA. In a recent study, surgical joint destabilisation
in rodents for four weeks resulted in an increased expression
of TGFβ2, insulin like growth factor-binding protein (IGF-
BP), MMP-2, 12, 13 and 14, ADAMTS5, Toll-like receptor 2
(TLR-2), prostaglandin E synthase (PGES), tumour necrosis
factor-stimulated gene 6 (TSG-6), and Wnt-16 [80]. The
animal model represents early OA tissue and is in agreement
with microarray studies, which revealed changes in MMP-
13, COL2A1, and ADAMTS5 in OA cartilage [81, 82]. In
addition, several surgical, transgenic or knockout mouse
models have provided rapid insights into the mechanisms
that control disease progression [83]. In mice, ADAMTS4/5
double knockout and reduced discoidin domain receptor
2 (DDR-2) activation prevents OA progression [84–86].
However, these studies did not provide any information on
the mechanical load-induced effects making it difficult to
correlate the findings with human disease.

Recent studies utilised a dietary model of obesity to
examine the combined effect of mechanical overload and
inflammatory mediators in cartilage degeneration [87, 88].
C57BL/6J mice fed with a high-fat diet increased serum levels
of leptin, adiponectin and IL-1α leading to degenerative
changes observed in knee OA [89]. The studies in mice
correlate with clinical findings which found elevated levels
of leptin, adiponectin, and resistin in osteoarthritic synovial
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fluid [90, 91]. The adipokine levels were found to correlate
with body mass index and were greater in female subjects,
indicating a high prevalence of OA in women [91, 92].
In vitro studies demonstrate dose-dependent catabolic and
anabolic effects of leptin in chondrocytes, leading to matrix
remodelling and/or breakdown. Leptin synergises with IL-1
and was shown to increase NO production leading to MMP
activation, apoptosis, and matrix degradation [93, 94]. Fur-
thermore, leptin activates the RhoA/ROCK pathway leading
to LIMK1 and cofilin-2 phosphorylation and cytoskeletal
re-organisation in chondrocytes [95]. Taken together, these
findings indicate that both obesity and mechanical overload
influences normal chondrocyte function and contributes to
an increase in the incidence and rate of progression of OA.

A number of in vitro models have been developed, which
examine the effects of various compression regimens on
signal transduction pathways. In cartilage explants, 50%
static compression for 24 hours increased expression of
MMP-3, 9, and 13 and reduced aggrecan and collagen type
II within 1 to 2 hours following loading [96–99]. The down-
regulation of matrix components by static compression was
mediated by the interleukin-1 (IL-1) receptor and involves
activation of members of the mitogen activation protein
kinase (MAPK) family. Static compression differentially
stimulates activation of extracellular signal-regulated kinase
1/2 (ERK 1/2), p38 MAPK and SAPK/ERK kinase-1 (SEK1)
in a time-dependent manner [96, 100–103]. Several studies
demonstrate that IL-1 will additionally stimulate the MAPK
pathway and increase MMP levels which reduce proteoglycan
synthesis in chondrocytes [104–106]. Both IL-1 and static
compression may, therefore, share a global pathway and elicit
a catabolic response mediated by members of the MAPK
family. However, MAPK activation by static compression was
most often transient and was reported to be dependent on
the magnitude of applied stress and duration of load [100].
In contrast, cyclic compression for 30 min activates ERK 1/2
and JNK, increased AP-1 binding and expression of MMP-
3 and 13, leading to an increase in matrix components in
chondrocytes cultured on a calcium polyphosphate substrate
[107]. The sequential activation of the MAPK, AP-1, and
MMP pathway occurred before matrix degradation and sug-
gests that short-term continuous compression may induce
tissue remodelling via these signalling mediators.

The pathways of interactions between non-physiological
mechanical signals and inflammatory cytokines will, there-
fore, involve a number of signalling routes (Figure 1). The
actin cytoskeleton plays an important role in mediating
the effects of mechanical stimuli on nuclear deformation
and cell metabolism. Remodelling of the actin cytoskeleton
and disruption of the focal adhesion network leads to focal
adhesion kinase (FAK) and Src activation, which stimulate
the MAPK cascade. Disruption of the golgi apparatus and
cytoskeletal proteins by static compression results in overall
loss of mechanical properties leading to a reduction in
aggrecan and collagen type II gene expression [108–114].
Tensile or compressive loading at high magnitudes (10 to
15%) for longer periods increased expression of MMP-1,

3, 9, IL-1β, and TNFα and production of NO and PGE2

[115–117]. Upregulation of the inducible nitric oxide syn-
thase (iNOS) and cyclo-oxygenase-2 (COX-2) enzymes will
lead to several effects in chondrocytes including increased
cytokine production, MMP activation, ROS production, and
apoptosis [118–121]. The induction of cell death by fluid-
induced shear stress involves protein kinase (PKB) activation
and suppression of phosphatidylinositol 3-kinase (PI3-K),
which inhibits antioxidant capacity leading to apoptosis
[122, 123]. In addition, exposure of T/C-28a2 chondrocytes
to high levels of shear stress increased PGE2 production
and IL-6 expression leading to matrix degradation and
chondrocyte apoptosis [124, 125]. The induction of IL-6 was
time and magnitude dependent and involved cAMP, protein
kinase A (PKA), and PI3-K/Akt-dependent NFκB activation.
Prolonged application of shear stress for up to 72 hours
increased expression of IL-1β, COX-2 and L-prostaglandin
D synthase (L-PGDS) leading to ROS production and
matrix degradation in T/C-28a2 cells [126]. Furthermore,
injurious cyclic or impact loading increased fibronectin
synthesis, MMP-3 gene expression, collagen damage, and
proteoglycan breakdown in cartilage explants [127, 128].
Overall, these studies demonstrate that the expression of
proteins involved in matrix remodelling and catabolism
dominate over anabolic signalling events in chondrocytes
subjected to abnormal mechanical stimuli.

5. Chondroprotective Effects of
Mechanical Loading

5.1. Signalling Pathways Activated by Physiological Mechanical
Stimuli. Evidence from in vitro studies demonstrate that
mechanical signals within a physiological range of intensity,
duration and frequency have potent anti-inflammatory
effects which counteract the catabolic signals induced by IL-
1β or TNFα (Figure 2). For example, cyclic tensile strain of
low magnitudes (3 to 8%) at 0.25 Hz inhibits the expression
of iNOS, COX-2, MMP-9 and 13 and increased TIMP-
II synthesis in chondrocyte monolayers cultured with IL-
1β [129]. The downregulation of the catabolic genes by
cyclic tensile strain leads to the reduction of NO and
PGE2 levels and increased synthesis of GAGs, aggrecan and
collagen type II [117, 130, 131]. In chondrocytes cultured
in agarose constructs, 15% dynamic compression at 1 Hz
counteracts IL-1β-induced iNOS and COX-2 expression
and production of NO and PGE2 [132, 133]. Tensile and
compressive loading inhibit the nuclear factor-kappa B
(NFκB) signal transduction pathway leading to a suppression
of iNOS, COX-2, and MMP gene expression [134, 135].
Mechanical stimuli may inhibit cytoplasmic dissociation of
NFκB from inhibitory κB-α (IκB-α), which prevents nuclear
translocation of the p65/p50 dimers and/or proteolytic
degradation of IκB-α by two IκB-specific kinases (IKKα and
IKKβ). This effect switches off transcription for the pro-
inflammatory genes. Both IL-1β and mechanical stimuli
interferes with the NFκB cascade and either aggravates or
counteracts the induction of several catabolic genes induced
by IL-1β. However, a noticeable response in the mechanical
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Figure 1: Effect of nonphysiological mechanical stimuli on signal transduction pathways in chondrocytes. Overloading activates the α5β1
integrin which disrupts the actin cytoskeletal network and stimulates members of the nuclear factor-kappa B (NFκB) and mitogen activated
protein kinase (MAPK) family. These factors increase the production of nitric oxide (NO), proteolytic enzymes (MMP-1, 3, 8, and 13),
ADAMTS (4 and 5), reactive oxygen species (ROS), cytokines (IL-1, TNFα), and prostaglandins (PGE2), which mediate cartilage damage.
Mechanical signals may indirectly interact with the stretch-activated ion channels (SACs) or increase intracellular calcium levels, which
stimulate caspase production (3 and 9) leading to apoptosis. The protease enzymes increase catabolic activities and accelerate tissue damage
via production of fibronectin (FN-fs) or collagen fragments (Col-fs), which bind to the integrins, annexin V, discoidin domain receptor 2
(DDR-2), and induce cytokines. Reduced loading (e.g., static and immobilisation) stimulates the IL-1 receptor which activates ERK1/2, AP-1
and MMPs leading to reduced aggrecan and collagen type II synthesis.

loading studies was the partial effect of NFκB inhibitors on
downregulating the pro-inflammatory response. The gene
expression data, therefore, support NFκB-dependent and
independent mechanisms, suggesting cross-talk with other
pathways. For instance, a number of overlapping genes
are regulated by the NFκB and MAPK signal transduction
pathways. However, the precise sequence of events which lead
to alterations in NFκB or MAPK activity by physiological
mechanical signals have yet to be fully explored.

The critical mechanosensitive components include the
integrins and cytoskeletal proteins (Figure 2). Previous in
vitro studies have shown a role for the integrins in mediating
the compression-induced synthesis of matrix components
[136–140]. Perturbation of the cell membrane induces
integrin conformational changes which promote binding to
adaptor proteins (e.g., talin, vinculin, α-actinin, paxillin, and
zyxin) and interactions with other membrane receptors such
as growth factors and stretch-activated ion channels (SACs).
The adaptor proteins form the focal adhesion complex which
links the integrins to the contractile microfilament bundles,
thereby forming a molecular bridge between the extracellular
matrix and the cytoskeleton. An intact cytoskeleton is
required for normal mechanotransduction and mediates

phosphorylation of FAK, paxillin, and Src leading to MAPK
activation or secretion of interleukin-4 (IL-4) [137, 138, 141–
143]. Substance P is upstream of IL-4 and may act through
the NK1 receptor, thereby inducing IL-4 release. It is plausi-
ble that IL-4 released through an integrin-mediated mechan-
otransduction pathway will accumulate and contribute to
a pool of soluble anti-inflammatory mediators which block
signals induced by IL-1β. For example, compressive loading
and/or stimulation with IL-4 counteracts IL-1β induced NO
and PGE2 production, MMP-13 expression and stimulates
matrix synthesis [144, 145]. Physiological mechanical signals
may, therefore, increase the transport of soluble factors
which enhance the chondroprotective effects in cartilage.

Moreover, mechanical stimuli may induce ERK due to
the release of basic fibroblast growth factor (FGF-2) or cause
cell membrane hyperpolarisation leading to an influx of
calcium or sodium ions through putative mechanosensitive
ion channels [141, 146, 147]. It is possible that membrane
deformation induces colocalisation of ion channels with
integrin clusters and cytoskeletal complexes resulting in
activation of downstream signalling events. For example,
the entry of calcium through mechanosensitive ion channels
will influence the activity of the constitutive isoform of
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Figure 2: Model depicting the potential protective effects of physiological mechanical stimuli in chondrocytes stimulated with interleukin-
1β (IL-1β). Moderate mechanical loading induces a number of signalling cascades which leads to the production of extracellular matrix
components. Mechanical loading will stimulate integrin-mediated release of interleukin-4 (IL-4) via actin cytoskeleton, mechanical
perturbation of stretch-sensitive calcium or sodium channels, or stimulation of a purinergic pathway involving ATP release and subsequent
purinoreceptor (P2) or cAMP activation. The loading-induced calcium may cause instability of inducible nitric oxide synthase (iNOS)
mRNA or increase transport of interleukin-4 (IL-4), which blocks catabolic effects. In the presence of IL-1β, mechanical stimuli inhibit
cytoplasmic dissociation of NFκB from inhibitory κB-α (IκB-α), which prevents nuclear translocation of the p65/p50 dimers and/or
proteolytic degradation of IκB-α by IκB-specific kinases (IKK) or impair IκB-α degradation, thereby switching off transcription for the
pro-inflammatory genes.

NOS (cNOS) and regulate calcium/calmodulin binding,
PLC/IP3 activation, NO production, and aggrecan gene
expression [141, 148, 149]. In contrast, the stability of
iNOS mRNA has been reported to be reduced by increased
calcium, suggesting a possible anabolic route which blocks
IL-1β-induced signals [150]. Previous studies demonstrate
the involvement of a purinergic pathway in mediating
mechanical load-induced ATP release and stimulation of
anabolic activities [151, 152]. The enhanced ATP levels
increased cyclic AMP by adenylate cyclase leading to changes
in gene expression [96]. In microarray studies, the increased
levels of BMP-2, inhibin βA/activin and prostaglandins
suggest a possible protective mechanism [82]. Furthermore,
the cAMP-responsive element-binding protein (CBP)/p300-
interacting transactivator with ED-rich tail 2 (CITED2)
has chondroprotective effects and mediates suppression of
MMPs in C28/I12 chondrocytes subjected to moderate
shear stress or hydrostatic pressure by competing with the
transcription factor, Ets-1 [153, 154]. In rodents, one hour
of daily passive motion inhibits MMP-1 expression and
upregulates CITED2 [154]. These studies clearly identify a
number of routes involved in chondroprotection and are
illustrated in Figure 2.

6. Future Therapies by Combined Exercise
and Chondroprotective Agents

The need for novel pharmacological agents which provide
effective long-term pain relief and have disease modifying
properties for OA treatments is, as yet, unmet. Direct
delivery of drugs such as glucocorticoid and hyaluronic acid
formulations into the affected joint, do not retard the disease
process and may provide only short-term pain relief [155].
The development of novel drugs such as lipid-based for-
mulations and nanoparticles in combination with controlled
exercise therapy may provide an alternative strategy in this
challenging area of research. Such therapies may be aimed
at blocking the pro-inflammatory and proteolytic pathways,
thereby allowing the beneficial effects of targeted anabolic
exercise regimens. Experimental studies suggest that such
options may be of value. For example, intra-articular injec-
tion of the IL-1 receptor antagonist (IL-1Ra) was reported
to block IL-1β actions and reduce OA disease progression
in a canine OA model [156]. In rodents, intra-articular
injection of IL-4 decreased NO production and prevents
cartilage breakdown, whilst in cartilage explants and agarose,
growth factors such as IGF-1 or TGFβ in combination with
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mechanical stimuli enhance matrix synthesis [144, 145, 157–
159]. Furthermore, intra-articular injection of leptin in the
rat knee joint stimulates proteoglycan synthesis via increased
production of IGF-1 and TGFβ1 [92]. The combined effect of
exercise therapy in conjunction with these chondroprotective
agents is not known and merits further investigation.

A further option is to develop agents which synergise
with physiological mechanical loading or which block the
signal transduction pathways activated by abnormal me-
chanical stimuli. Stimulation of mechanoreceptors releases
several soluble mediators in chondrocytes including ROS,
prostaglandins, cytokines, growth factors, and neuropep-
tides. These mediators activate downstream signalling events
that regulate gene expression and cell function. For exam-
ple, anti-inflammatory cytokines (IL-4 and IL-10), growth
factors (TGFβ, IGF-1, and FGF-2) and transcriptional
regulators (CITED2) synergise with mechanical stimuli and
enhance the production of matrix components [144, 145,
154, 160]. Furthermore, physiological mechanical signals
antagonise the effects of catabolic mediators involving
pro-inflammatory cytokines (IL-1β), transcription factors
(NFκB), MAPKs, and enzymes (NOS, COX, and MMPs)
[133–135, 161, 162]. Mechanical stimulation will increase
tension at the cell surface and activate the integrins which
are bound to several matrix proteins. Blocking integrin
function with antibodies or small molecules has been shown
to decrease oxidative damage and improve neurological func-
tion following spinal cord injury [163]. Targeting specific
ion channels will allow modification of the cells response
since mechanical stimuli differentially activates ion channels
in normal and OA chondrocytes. Indeed, as the chondrocyte
channelome becomes better defined and the roles for
these molecules in regulating mechanotransduction become
clearer, an increase in the range of potential therapeutic
targets will emerge. In this context, N-methyl-D-aspartic
acid receptor (NMDAR) may be a novel therapeutic target
for OA. NMDAR appears to be necessary for mechanical
signalling events in normal and OA chondrocytes [164,
165]. However, the downstream responses are different.
In normal chondrocytes, NMDAR mediates mechanical
loading-induced activation of small conductance calcium-
dependent sodium (SK) channels. In OA chondrocytes,
mechanical stimuli opens tetrodotoxin sensitive sodium
channels leading to inflammatory gene expression. NMDAR
antagonists which block the pro-inflammatory effect are
being developed for the treatment of diseases in the central
nervous system and drugs such as Memantine are used clin-
ically. Thus, agents which specifically target the functional
distinct subtypes of NMDAR will have preferential effects in
peripheral tissues and could block mechanical signal induced
catabolic pathways.

In addition, matrix deformation will cause bending of
the primary cilia which stimulates connexin 43 (Cx43)
hemichannels leading to ATP release and purinergic receptor
activation [166, 167]. Deficiency in either the P2X or P2Y
receptors will result in reduced responsiveness to mechanical
signals leading to new pathways which are catabolic and,
therefore, compromise tissue structural properties [168].
Overall, these studies provide further insights on the critical

mediators which could be used to promote mechanotherapy
for OA. However, pharmacological intervention strategies
which either antagonise or enhance the mechanotrans-
duction process are likely to prove difficult. Normal and
OA chondrocytes from diseased joints transmit mechanical
signals via the α5β1 integrin, resulting in markedly different
downstream signalling events. For example, mechanical
stimulation of normal chondrocytes release the chondropro-
tective IL-4 in contrast to OA cells which produce IL-1β
[169]. It is possible that chondrocytes from OA cartilage
have been reprogrammed to respond differently to their
altered mechanical environment, and it may be necessary to
target structural components of the cell such as the actin
cytoskeleton [170]. This may allow reversal of biomechanical
changes developed during OA disease progression allowing
the beneficial effects of moderate exercise to be gained at the
tissue level.

7. Conclusions

The importance of mechanical loading in maintaining
healthy joints and normal tissue remodelling has long been
recognised. Previous in vitro studies continue to support the
hypothesis that moderate mechanical loading is necessary to
maintain healthy cartilage. If joints are insufficiently loaded,
chondrocyte metabolism shifts in favour of catabolism.
Similarly, traumatic or excessive joint loading leads to
cartilage degeneration and OA. Emerging evidence suggests
that physiological joint loading could be used to counteract
the inflammatory pathways and restore anabolic activities.
Further investigations into the chondroprotective mecha-
nisms are likely to be highly informative and will reveal novel
therapeutic targets for OA treatments.
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