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Predicting rates of inbreeding for livestock improvement schemes1

P. Bijma*,2, J. A. M. Van Arendonk* and J. A. Woolliams†

*Animal Breeding and Genetics Group, Wageningen Institute of Animal Sciences, Wageningen University,
Wageningen, The Netherlands and †Roslin Institute (Edinburgh),

Roslin Midlothian, EH25 9PS, United Kingdom

ABSTRACT: This article presents a deterministic
method to predict rates of inbreeding (∆F) for typical
livestock improvement schemes. The method is based
on a recently developed general theory to predict rates
of inbreeding, which uses the concept of long-term ge-
netic contributions. A typical livestock breeding popula-
tion was modeled, with overlapping generations, BLUP
selection, and progeny testing of male selection candi-
dates. Two types of selection were practiced: animals
were either selected by truncation on estimated breed-
ing values (EBV) across age classes, or the number of
parents selected from each age class was set to a fixed
value and truncation selection was practiced within age

Key Words: Inbreeding, Genetic Effects, Effective Population Size, Selection,
Best Linear Unbiased Prediction, Animal Breeding
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Introduction

When optimizing breeding schemes, breeding compa-
nies have to consider both short- and long-term effects
of selection decisions. In the short term, breeding com-
panies require a sufficiently high rate of genetic gain
(∆G) to either maintain or strengthen their competitive
position. In the long term, maintenance of genetic vari-
ance and avoidance of inbreeding depression are im-
portant and require a restriction of the rate of inbreed-
ing. Particularly when applying truncation selection on
BLUP-EBV, rates of inbreeding may become very high,
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classes. Bulmer’s equilibrium genetic parameters were
obtained by iterating on a pseudo-BLUP selection index
and ∆F was predicted for the equilibrium situation.
Predictions were substantially more accurate than pre-
dictions from other available methods, which ignore the
effect of selection on ∆F. Predictions were accurate for
schemes with up to 20 sires. Predicted ∆F was some-
what too low for schemes with more than 20 sires, which
was due to the use of simple linear models to predict
genetic contributions. The present method provides a
computationally feasible (i.e., deterministic) tool to con-
sider both the rate of inbreeding and the rate of genetic
gain when optimizing livestock improvement schemes.

which reduces long-term response (e.g., Verrier et al.,
1993) and clearly merits attention.

Optimization of breeding schemes over a wide range
of alternatives requires methods to assess rates of gain
and inbreeding that take little computing time. Deter-
ministic prediction methods, therefore, are preferred,
rather than stochastic simulation. Methods to deter-
ministically predict rates of genetic gain are based on
selection index theory and are well-established (e.g.,
Wray and Hill, 1989). Recently, Woolliams et al. (1999)
and Woolliams and Bijma (2000) developed a general
theory to predict rates of inbreeding in populations un-
dergoing selection. However, explicit prediction equa-
tions that can be applied directly to typical livestock
improvement schemes have not yet been developed.

The objective of this research, therefore, was to derive
equations to predict rates of inbreeding for typical live-
stock improvement schemes. For this purpose, we mod-
eled a population with overlapping generations, trunca-
tion selection on BLUP-EBV, and progeny testing of
male candidates for selection. Subsequently, equations
to predict the rate of inbreeding for these populations
were derived on the basis of the general theory pre-
sented by Woolliams et al. (1999) and Woolliams and
Bijma (2000).
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Table 1. Notation used

Equationa Symbol Definition

P Nm, Nf, d, nprg Number of sires, number of dams, mating ratio d = Nf/Nm, number of progeny per sire

P no, T Number of selection candidates born per dam, total number of candidates per sex

P cmax, nk Maximum age of parents, number of parents selected from category k

6 N 2cmax × 2cmax diagonal matrix of the number of parents selected from each category k

P, G k, s Indicator for sex-age class categories, indicator for lifetime categories

B, S2 pk, τk Selected proportion and standardized truncation point for category k

A lk, κk Selection intensity, variance reduction coefficient for category k

P, PB P, A, Â Phenotype, breeding value, estimated breeding value (EBV)

PB b1(b2), x1,i(x2,i) 6 × 1 (7 × 1) vector of index weights, 6 × 1 (7 × 1) vector of index information sources

A σ
2
A, σ

2
Â Additive genetic variance, variance of the estimated breeding value

A, R ρ, h2 Accuracy of selection, heritability

A ρFS,kl (ρHS,kl) Sample correlation between EBV of full-sibs (half-sibs) in category k and l

I, G ∆F, ri,k Rate of inbreeding, long-term genetic contribution of individual i in category k

2, 12 si,k, σ2
sk

Selective advantage of individual i in category k, variance of si,k

4 ui,k, αk, βk Expectation of ri,k conditional on si,k, linear model for ui,k = αx + βksi,k

6 G, gkl 2cmax × 2cmax gene flow matrix, element of G

6 D, dkl 2cmax × 2cmax matrix of deviations of breeding values from mean, element of D

6 Π, πkl Matrix of regression coefficients of soffspring on sparent, element of Π

6 Λ Matrix of regression coefficients of the number of selected offspring on sparent

6, 18 λkl, ni,k(l) Element of Λ, number of selected offspring in category l of parent i in category k

17 Vn,k, �Vn,k Matrix of variance of family size, deviation of Vn,k from Poisson variance

1 δk Correction term required when �Vn(x) ≠ 0

aEquation number or section where symbol is first defined, P = “Population Structure,” G = “General,” B = “Appendix B,” S2 = “Step 2,” A
= “Appendix A,” PB = “Pseudo-BLUP Selection Index,” R = “Results,” and I = “Introduction.”

Materials and Methods

In this section we will first describe the population
structure for which rates of inbreeding will be predicted.
Because deterministic prediction of rates of inbreeding
(∆F) requires a deterministic analogy to BLUP, a
pseudo-BLUP selection index will be used to provide
the necessary parameters (e.g., equilibrium genetic pa-
rameters; Bulmer, 1971). Next, the procedure for pre-
dicting rates of inbreeding will be outlined in three
steps, which will be implemented using equilibrium
genetic parameters. Finally, we will describe a stochas-
tic simulation procedure that will be used to evaluate
the accuracy of the deterministic prediction of ∆F. Ta-
ble 1 shows the notation used.

The general theory to predict ∆F is derived fully in
previous papers (e.g., Bijma and Woolliams, 2000;
Woolliams and Bijma, 2000). This paper, therefore, fo-
cuses on the implementation of the theory for typical
livestock improvement schemes.

Population Structure

Selection was for a trait determined by the additive
infinitesimal model (Fisher, 1918; Bulmer, 1971). Phe-
notypic values (P) were the sum of additive genetic
values (A, breeding values) and environmental values
(E), P = A + E. A closed nucleus population with overlap-

ping generations was modeled and selection was on
BLUP-EBV for a single trait. With two sexes and a
maximum age of cmax, there are 2cmax categories of ani-
mals, one for each sex and age of parent. Categories
will be indexed by k or l, so k,l = 1 .. cmax are males and
k,l = cmax+1 .. 2cmax are females.

Phenotypes of selection candidates were recorded
prior to reproductive age and BLUP-EBV were calcu-
lated. Progeny testing was included for males in the
oldest age class (k = cmax), by including information on
nprg progeny in their EBV. Those progeny were assumed
to be born outside the nucleus, so their dams did not
enter the breeding value estimation. Females did not
have progeny information. Within categories, individu-
als were ranked on their EBV, and each year the high-
est-ranking nk individuals were selected from the kth

category to produce the next cohort. The number se-
lected from each age class, nk, was either set to a fixed
value in advance or determined by truncation selection
on EBV across age classes. Note that the maximum
age, cmax, was assumed to be equal for both sexes, but
different maximum ages can be included by using nk =
0 for the sex-age classes that do not contribute parents.
The total number of male and female parents of each

newborn cohort was Nm = ∑
cmax

k=1

nk and Nf = ∑
2cmax

k=cmax+1

nk,

respectively. Each sire was mated at random to d dams
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(d = Nf/ Nm), and each dam produced a fixed number, no,
of offspring (¹⁄₂no of each sex), so that the total number of
selection candidates born in a cohort was T = ¹⁄₂noNf for
each sex. The unit of age (i.e., the interval between
consecutive age classes) was 1 yr. Genetic contributions
and rates of inbreeding per year were therefore equal
to genetic contributions and rates of inbreeding per
cohort.

Pseudo-BLUP Selection Index

A selection index analogy of the BLUP procedure was
developed by extending the pseudo-BLUP selection in-
dex of Wray and Hill (1989) to populations with overlap-
ping generations. Because part of the selection candi-
dates may have progeny information, two pseudo-
BLUP indices were distinguished. First, index1, with-
out progeny information, was used for male selection
candidates in categories 1 to cmax − 1 and for all female
selection candidates. Second, index2, with progeny in-
formation, was used only for males in category cmax.

For the ith candidate, index2 was Â2,i = bT
2x2,i, where

superscript T denotes the transpose, Â2,i is the EBV,
b2 is a 7 × 1 vector of index weights, and x2,i is a 7 ×
1 vector of information sources for the ith candidate.
Information sources in x2,i were 1) Âm, the EBV of the
sire of i; 2) Âf, the EBV of the dam of i; 3) Âf, the average
EBV of the d dams mated to the sire; 4) PHS, the pheno-
typic average of the nod half-sibs of i (including i and
its full-sibs); 5) PFS, the phenotypic average of the no
full-sibs of i (including i); 6) Pi, the phenotype of candi-
date i; and 7) Pprg, which is the phenotypic average of
the nprg offspring of a male in category cmax. Index1 (Â1,i)
was identical to index2, except for information source
7, which was omitted.

Using the above pseudo-BLUP indices, selection and
mating were iterated until equilibrium genetic parame-
ters were reached (Bulmer, 1971). Iterative equations
for calculating index weights, the accuracy of selection
(ρ), and equilibrium parameters are given in Appendix
A. Rates of inbreeding were predicted using equilibrium
genetic parameters.

Prediction of Rates of Inbreeding

General. The prediction method is based on the con-
cept of long-term genetic contributions (James and
McBride, 1958; Wray and Thompson, 1990). The long-
term genetic contribution (ri) of ancestor i in generation
t1 is defined as the proportion of genes from i that are
present in individuals in generation t2 deriving by de-
scent from i, where (t2 − t1) → ∞ (Woolliams et al., 1993).
In other words, the long-term genetic contribution of an
individual is its proportional contribution to the genetic
make-up of the population in the long term. In the
remainder of this article, long-term genetic contribu-
tions are referred to as “genetic contributions,” or sim-
ply as “contributions.”

Wray and Thompson (1990) showed that rates of in-
breeding per generation are proportional to the sum of

squared contributions, E(∆F) = ¹⁄₄∑r2
i , where ri is the

realized genetic contribution of individual i and the
sum is taken over all parents in a generation. Recently,
Woolliams and Bijma (2000) showed that rates of in-
breeding can be expressed in terms of expected contri-
butions:

E(∆F) = 1
2∑

s

nsE(u2
i,s) + 1

8∑
s

nsδs [1]

where ns is the number of parents selected from life-
time category s, ui,s is the expected lifetime contribution
of individual i in lifetime category s conditional on its
selective advantage, and δ is a correction factor for devi-
ations of the variance of family size (Vn) from a Poisson
variance. When Vn deviates from Poisson, ¹⁄₄∑r2

i differs

from
1
2∑

s

nsE(u2
i,s) and the difference is accounted for by

the second term of Eq. [1]. In this paper, we will predict
∆F using Eq. [1]. Throughout the paper, family size
refers to the number of selected offspring of a parent,
not to the number of candidates. The second term of
Eq. [1] will be referred to as the “Poisson correction.”

In Eq. [1], it is essential to note that ui,s refers to
the lifetime contribution of individual i and subscript
s denotes the lifetime category to which i belongs. The
lifetime contribution of individual i is the sum of all
contributions originating from its selection at a specific
age, ui,s = Σuik, where the sum is taken over all age
classes k in which individual i is selected. Throughout
this paper, lifetime categories are indexed by s, which
refers to a specific combination of age classes in which
the individual is selected, whereas index k refers to one
specific sex-age class. This issue will be addressed below
(see “Step 2”).

Components of Eq. [1] will be calculated in three
steps. In the first step we will predict expected genetic
contributions of sex-age classes, ui,k, using the approach
of Woolliams et al. (1999). In the second step, lifetime
contributions, ui,s, will be expressed as a function of
sex-age class contributions, ui,k, and, subsequently,
E(u2

i,s) will be derived. In the third step we will derive δs.
In a selected population, a superior individual is ex-

pected to have a higher genetic contribution than an
average individual, because its offspring and further
descendents have a higher probability of being selected.
When predicting genetic contributions, we need to ex-
plicitly model this superiority (i.e., we need to define
the factors that confer selective advantage to an individ-
ual). Before proceeding to the prediction of expected
contributions, therefore, we will first define the selec-
tive advantage.

Selective Advantage. In principle, the selective advan-
tage should contain all terms that affect the long-term
contribution of an individual (i.e., by affecting the selec-
tive success of its descendents). In this paper, we will
use the breeding value of the individual plus the breed-
ing value of its mate(s). The mate is included because
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its breeding value affects the selective success of the
offspring, so the breeding value of the mate can be
regarded as a component of the selective advantage of
an individual. Because random mating is used, the
mate affects the expected contribution of an individual
in a random manner, which contributes to the variance
of the expected contributions (see Eq. [12] and [13])
and, therefore, to the rate of inbreeding. Other models
for the selective advantage are possible (e.g., instead
of using the true breeding value one may use the EBV
together with the prediction error; Woolliams et al.,
1999; see Bijma and Woolliams, 2000 for a discussion).
For sire i in category k, the selective advantage was
as follows:

si,k = (Ai,k + Af) − (Ai,k + Āf)k k = 1, cmax [2]

where Ai,k is the breeding value of sire i in category k,
Af is the average breeding value of the d dams mated
to sire i, and the second term represents subtraction of
the average selective advantage for category k. For
dams the selective advantage was as follows:

si,k = (Ai,k + Am) − (Ai,k + Am)k k = cmax+1, 2cmax [3]

where Ai,k is the breeding value of dam i in category k
and Am is the breeding value of the sire mated to dam i.

Step 1: Prediction of Expected Contributions. Follow-
ing Woolliams et al. (1999), expected contributions were
predicted by linear regression on the selective advan-
tage. For males, the expected contribution of sire i in
category k was as follows:

ui,k = E(ri,k|si,k) = αk + β
k
si,k + ∑

d

j=1

(αcat (j) − α f) [4]

k = 1, cmax

where αk represents the average contribution of an an-
cestor in category k, βksi,k represents the deviation of
the contribution from this average due to the selective
advantage of ancestor i, j denotes the mates of i, cat(j)

is the category of mate j, and αf = ∑
2cmax

k=cmax+1

(nkαk)/Nf. The

last term of Eq. [4] represents the effect of the categories
of the mates on the contribution of individual i, which
was not accounted for when defining the selective ad-
vantage of individual i (i.e., Af in Eq. [2] accounts only
for the within-category effect of the mate).

For females, the expected contribution of dam i in
category k was as follows:

ui,k = E(ri,k|si,k) = αk + βksi,k + (αj − α m)/d [5]

k = cmax + 1, 2cmax

Note that, contrary to Bijma and Woolliams (2000), the
effect of the mate is included directly in the model for
predicting ui,k. This difference does not affect the re-

sults, but the present approach is more straightfor-
ward. Solutions for ui,k are obtained by predicting αk

and βk. There are two mechanisms determining αk and
βk. First, superior parents are expected to have more
selected offspring, which is modeled by a regression
coefficient λ. Second, offspring partly inherit the selec-
tive advantage of their parents, which is modeled by a
regression coefficient π. By modeling these two mecha-
nisms, Woolliams et al. (1999) show that αk and βk can
be obtained from

Nα = [GT + (GT * DT)(I − GT * ΠT)−1(GT * ΛT)]Nα [6]

Nβ = (I − GT * ΠT)−1(GT * ΛT)Nα [7]

where * denotes element × element multiplication; I is
the 2cmax × 2cmax identity matrix; N is a 2cmax × 2cmax

diagonal matrix containing the numbers of parents se-
lected from each category (nk), Π is a 2cmax × 2cmax

matrix of elements πkl, being the regression coefficient
of the selective advantage (sj,k) of selected offspring j in
category k on the selective advantage (si,l) of parent i
in category l; Λ is a 2cmax × 2cmax matrix of elements
λkl, being the regression coefficient of the number of
selected offspring in category k on the selective advan-
tage of parent i in category l; G is a 2cmax × 2cmax gene
flow matrix of elements gkl, specifying the proportional
contribution of parent category l to selected offspring in
category k (similar to a transition matrix in population
genetics); D is a 2cmax × 2cmax matrix of elements dkl,
being the average selective advantage of selected off-
spring in category k descending from parents in cate-
gory l, expressed as a deviation from the mean selective
advantage in category k; α is a 2cmax vector of elements
αl; and β is a 2cmax vector of elements βl. (See Bijma and
Woolliams [1999] for a detailed study and an example of
the prediction of expected genetic contributions with
overlapping generations.) The above matrices follow the
gene flow notation (Hill, 1974), so rows represent off-
spring categories and columns represent parent catego-
ries, and this is the reason that the matrices in Eq. [6]
and [7] require the transpose.

Note that the gene flow matrix, G, differs from Hill’s
(1974) gene flow matrix, which specifies the contribu-
tion of parent categories to offspring before selection.
Here, G refers to selected offspring. For example, for
cmax = 2, g41 = 0.35 means that 1-yr-old sires contribute
35% of the genes of 2-yr-old selected females.

Matrices G, Π, Λ, and D were derived following the
approach of Woolliams et al. (1999) and Bijma and
Woolliams (1999). Resulting equations for the case
studied in this paper are listed in Appendix B.

Note that contributions predicted from Eq. [4]
through [7] are the contributions of a single cohort (i.e.,
the group born in a single year, not an entire genera-
tion) originating from their selection at the different
ages. Rates of inbreeding predicted from these contribu-
tions are, therefore, also per year.
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Step 2: Derivation of E(u2
i,s). The lifetime contribution

is the sum of the contributions originating from selec-
tion at a specific age, ui,s = ∑ui,k, where ui,k is obtained

from Eq. [4] or [5]. To calculate E(u2
i,s), therefore, we

have to express contributions of lifetime categories,
which are indexed by s, in terms of contributions of sex-
age class categories, which are indexed by k. Lifetime
categories refer to a specific combination of age classes
in which the individual is selected (e.g., males selected
only at 1 yr of age, which have u2

i,s = u2
i,k=1; males selected

at 1 and 2 yr of age, which have u2
i,s = (ui,k=1 + ui,k=2)2 =

u2
i,k=1 + 2ui,k=1ui,k=2 + u2

i,k=2; and so on). This example
shows that the square of the lifetime contribution,
u2

i,s, can be expressed as a sum of squares, u2
i,k, and

cross-products, ui,kui,l, of sex-age class contributions.
Instead of explicitly specifying all lifetime categories

and deriving the corresponding E(u2
i,s), one can directly

express ∑
s

nsE(u2
i,s) as a sum of squares and cross-prod-

ucts in terms of the categories k, which has the advan-
tage that contributions predicted from Eq. [4] and [5]
can be used directly (Bijma and Woolliams, 2000). In the
following equations for calculating squared expected
contributions, terms contributing to ∑

s

nsE(u2
i,s) will be

collected separately for males without progeny testing,
for progeny-tested males, and for females.

For categories without progeny testing, the ranking
of animals remains practically unchanged when they
move through the age classes, which is the same situa-
tion as with mass selection. For those categories, there-
fore, Eq. [11] and [12] of Bijma and Woolliams (2000)
can be used, so that, for male categories without prog-
eny testing

∑
s

nsE( u2
i,s) = ∑

cmax−1

k=1

nkE(u2
i,k) [8]

+ 2 ∑
cmax−2

k=1
∑

cmax−1

l=k+ 1

min(nl,nk)E(ui,kui,l)

and for all female categories

∑
s

nsE( u2
i,s) = ∑

2cmax

k=cmax +1

nkE(u2
i, k) [9]

+ 2 ∑
2cmax−1

k=cmax+1
∑

2cmax

l=k+1

min(nl,nk)E(ui,kui,l )

where ∑
s

denotes summation over the relevant lifetime

categories and min(nk,nl) denotes the minimum of nk
and nl (see also the example in Bijma and Woolliams,
2000).

For Eq. [8] and [9], E(u2
i,k) is obtained by squaring

Eq. [4] and [5], with E(s2
i,k) = σ2

s,k because E(si,k) = 0. For
Eq. [8] the result is

E(u2
i,k) = α2

k + β2
kσ

2
s,k + d(α2

f − α 2
f ) [10]

k = 1, cmax−1

and for Eq. [9],

E(u2
i,k) = α2

k + β2
kσ

2
s,k + (α2

m − α 2
m)/d2 [11]

k = cmax+1, 2cmax

Next, for males, the variance of the selective advan-
tage is (see Eq. [2])

σ2
s,k = σ2

A(1 − κkρ
2
k)(1 − 1/nk) [12]

+ σ2
A

d ∑
2cmax

l=cmax+1

nl

Nf
(1 − κlρ

2
l )(1 − 1/nl) k = 1, cmax

and for females (see Eq. [3])

σ2
s,k = σ2

A(1 − κkρ
2
k)(1 − 1/nk) [13]

+ σ2
A ∑

cmax

l=1

nl

Nm
(1 − κlρ

2
l )(1 − 1/nl) k = cmax + 1, 2cmax

In Eq. [12] and [13], the first term is due to the individ-
ual itself, the second term is due to its mate(s), the term
(1 − κρ2) accounts for reduced variance because the
parents are a selected group, κ is Pearson’s variance
reduction coefficient, and the 1 − 1/nk accounts for finite
sample size.

For Eq. [8] and [9], expectations of cross-products are
calculated from Bijma and Woolliams (2000):

E(ui,kui,l ) = αkαl + [1 − 1/nmin]βkβl σ
2
A[1 − κminρ

2
min] [14]

+ αminβmaxE[Amin − Amax]

where subscript min (max) denotes the category with
the lower (higher) number of animals and Ak is the
genetic selection differential in category k, Ak = ιkρkσA.
With random mating, there is no covariance between
the selective advantages of two different mates, so that
mates do not contribute to the cross-product in Eq. [14].

For progeny-tested males we need to derive the con-
tribution of category cmax to the sum of squared lifetime
contributions, which is composed of the sum of squared
contributions from category cmax and the sum of cross-
products between category cmax and the non-progeny-
tested male categories,

∑
s

nsE(u2
i,s) = ncmax

E(u2
i,cmax

) [15]

+ 2 ∑
cmax−1

k=1

nk,cmax
E(ui,kui,cmax

)

where E(u2
i,cmax

) follows from Eq. [10] by putting k =
cmax, and nk,cmax

is the number of parents selected jointly
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in category k and category cmax. The number selected
jointly in both categories can be calculated from the
number of candidates and the proportion selected
jointly in category k and category cmax; nk,cmax

= Φ(τk,
τcmax

, ρk,cmax
)T, where Φ(τk, τcmax

, ρk,cmax
) denotes the bi-

variate normal proportion above truncation points τk

and τcmax
, which are the EBV truncation points for cate-

gory k and cmax; and ρk,cmax
is the correlation between

Âi,k and Âi,cmax
, ρk,cmax

= σÂ,k/σÂ,cmax
. The bivariate normal

proportion, Φ(τk, τcmax
, ρk,cmax

), was calculated using
Dutt’s algorithm (Dutt, 1973; Dutt and Soms, 1976;
Ducrocq and Colleau, 1986). For Eq. [15], expectations
of cross-products follow from Eq. [2] and [5], with no
contribution due to the mates:

E(ui,kui,cmax
) = αkαcmax

+ αkβcmax
[E(Ai) − Acmax

] [16]

+ αcmax
βk[E(Ai) − Ak] + βkβcmax

E[(Ai − Ak)(Ai − Acmax
)]

where i refers to individuals that are selected both in
category k and in category cmax and E(Ai) is the expected
breeding value of those individuals. The terms E(Ai)
and E[(Ai − Ak)(Ai − Acmax

)] are calculated using a result
of Tallis (1961) and are given in Appendix C.

Summarizing, the sum of squared expected lifetime
contributions is given by Eq. [8] for males without prog-
eny testing, by Eq. [9] for females, and by Eq. [15] for
progeny-tested males. Finally, the first term of Eq. [1]
is obtained by summing results from Eq. [8], [9], and
[15]. The remaining task is to obtain the second term
of Eq. [1], which requires the calculation of δk.

Step 3: Calculation of δk. The calculation of δk is a
straightforward analogy of the discrete generation case
(Bijma and Woolliams, 2000). Here we will outline the
concept; explicit equations are given in Appendix D. In
Eq. [1],

δk = αT�Vn,kα [17]

where �Vn,k is the 2cmax × 2cmax matrix of deviations of
the variance of family size from a Poisson variance,
for a parent in category k, conditional on its selective
advantage si,k (Woolliams and Bijma, 2000). For exam-
ple, for the full variance of family size conditional on
the selective advantage, element Vn,k(l,l′) represents
the covariance between the number of offspring selected
in category l, ni,k(l)|si,k, and the number of offspring
selected in category l′, ni,k(l′)|si,k, of a parent in category
k. For diagonal elements, the deviation from a Poisson
variance is obtained by subtracting the mean number
of selected offspring from the full variance (with Pois-
son, σ2 = µ). For diagonal elements, therefore, �Vn,k(l,l)
= Es{E[n2

i,k(l)|si,k] − E[ni,k(l)|si,k]2 − E[ni,k(l)|si,k)}, where
Es denotes the expectation with respect to si,k, which
gives (see also Bijma and Woolliams, 2000):

�Vn,k(l,l) = Es{E[ni,k(l)(ni,k(l) − 1)|si,k]} [18]

− Es{E[ni ,k(l)|si,k]2}

For off-diagonal elements, �Vn,k(l,l′) = Vn,k(l,l′), because,
with an independent Poisson distribution for each cate-
gory, the covariance between ni,k(l)|si,k and ni,k(l′)|si,k is
zero. For off-diagonal elements, therefore,

�Vn,k(l,l′) = Es{E[ni,k(l)ni,k(l′) |si,k]} [19]

− Es{E[ni,k(l)|si,k]E[ni,k(l′)|si,k]}

where si,k is the selective advantage of parent i in cate-
gory k and ni,k(l) is the number of offspring of parent i
selected in category l. The extension of Eq. [18] and
[19] to a population with overlapping generations and
a hierarchical mating structure is given in Appendix
D. In summary, the second term of Eq. [1] is obtained
using Eq. [17], where �Vn,k is given by Eq. [D1]
through [D14].

Results

Accuracy of Predictions

Table 2 shows rates of inbreeding per year from simu-
lation (∆Fsim) and corresponding prediction errors for
populations with two age classes, where EBV for males
in age class two include information on 100 progeny.
In Table 2, the number of parents selected from each
age class is a result of truncation selection on EBV
across age classes, showing that selection of males
moves toward age class two when h2 and no are low.
Predictions are accurate for no = 2. For no = 4 or 8,
predictions are approximately 8% too low. In spite of
the errors, predictions and simulations show the same
trend. For example, doubling the number of offspring
per parent from no = 4 to no = 8 for a scheme with h2 =
0.1 raises ∆Fsim by a factor 1.7, whereas the prediction
indicates a factor 1.8. Note that the use of∆F = 1/(8Nm)
+ 1/(8Nf) would give the same rate of inbreeding for
schemes with no = 4 vs 8 (i.e., a factor of 1).

Table 3 shows rates of inbreeding from simulation
and corresponding prediction errors for populations
with three age classes, truncation selection across age
classes, and where EBV for males in age class three
include information on 100 progeny. Accuracy of predic-
tions in Table 3 is comparable to that in Table 2.

With truncation selection across age classes, the ma-
jority of the parents are selected from the youngest
age class in most cases. To evaluate the accuracy of
predictions for any distribution of parents across age
classes, the proportion of parents selected from each
age class was set to a fixed value and animals were
selected by truncation on EBV within age classes. For
a population with two age classes, three alternatives
for the proportion of parents selected from the different
age classes were considered, p = (0.75, 0.25; 0.75, 0.25),
p = (0.5, 0.5; 0.75, 0.25), and p = (0.25, 0.75; 0.75, 0.25).
For example, p = (0.25, 0.75; 0.75, 0.25) with Nm = 40
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Table 2. Rates of inbreeding per year from simulation (∆Fsim) and corresponding
prediction errors for schemes with two age classes, 20 sires and 60 dams

selected per year and truncation selection on EBV across age classesa

nc
o h2 d diagNe ∆F f

sim Error %b

2 0.1 10 10 43 17 0.0089 −3
0.2 11 9 42 18 0.0095 0
0.4 12 8 41 19 0.0100 2
0.6 14 6 40 20 0.0101 2

4 0.1 9 11 54 6 0.0131 −10
0.2 11 9 53 7 0.0147 −7
0.4 14 6 52 8 0.0160 −8
0.6 16 4 51 9 0.0151 −9

8 0.1 11 9 58 2 0.0221 −3
0.2 13 7 58 2 0.0243 −4
0.4 16 4 58 2 0.0245 −14
0.6 18 2 57 3 0.0195 −10

aSires in age class two have information on 100 progeny included in their EBV.
bError % = 100% × (∆Fpred − ∆Fsim)/∆Fsim.
cno = number of offspring per dam.
dh2 = heritability.
ediagN = number of parents selected from each age class; first two elements refer to sires, last two elements

refer to dams.
fStandard errors of simulation results were smaller than 1% of their mean value.

and Nf = 80 gives N = diag{10, 30, 60, 20}. For each of
these distributions, all combinations of schemes were
evaluated for Nm = 8, 12, 20, 40, 60, or 80; d = 2, 4, or
8; no = 2, 4, or 8; and h2 = 0.1, 0.2, 0.4, or 0.6, with
information on 100 progeny for males in age class two,
and the restriction that Nf ≤ 160 to limit computing time
for the stochastic simulations. In total 468 different
schemes were evaluated. Within this range, the maxi-
mum rate of inbreeding was ∆Fsim = 0.0597/yr for N =
diag{6, 2, 12, 4}, no = 8 and h2 = 0.1, with a prediction
error of +1%. The minimum rate of inbreeding was,

Table 3. Rates of inbreeding per year from simulation (∆Fsim) and corresponding
prediction errors for schemes with three age classes, 20 sires and 60 dams

selected per year and truncation selection on EBV across age classesa

nc
o h2 d diagNe ∆F f

sim Error %b

2 0.1 12 2 6 40 17 3 0.0093 −6
0.2 13 2 5 39 17 4 0.0105 −5
0.4 14 3 3 38 17 5 0.0117 −3
0.6 15 3 2 37 18 5 0.0112 −2

4 0.1 14 1 5 52 8 0 0.0156 −12
0.2 16 1 3 51 9 0 0.0177 −11
0.4 18 1 1 50 9 1 0.0173 −13
0.6 18 2 0 50 9 1 0.0150 −9

8 0.1 18 0 2 57 3 0 0.0313 −7
0.2 19 0 1 57 3 0 0.0305 −10
0.4 20 0 0 57 3 0 0.0242 −9
0.6 20 0 0 57 3 0 0.0186 −9

aSires in age class three have information on 100 progeny included in their EBV.
bError % = 100% × (∆Fpred − ∆Fsim)/∆Fsim.
cno = number of offspring per dam.
dh2 = heritability.
ediagN = number of parents selected from each age class.
fStandard errors of simulation results were smaller than 1% of their mean value.

∆Fsim = 0.0021/yr for N = diag{20, 60, 120, 40}, no = 2,
and h2 = 0.1, with a prediction error of −5%.

Table 4 shows the average error and the standard
deviation of the error for the whole range of schemes
mentioned above, where schemes are grouped according
to the number of sires. Schemes with up to 20 sires
show accurate predictions (i.e., the absolute value of
the mean error and the standard deviation of the error
are below 5%). Schemes with more than 20 sires show
a systematic underprediction of approximately 8% and
an increasing standard deviation of the error.
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Table 4. Mean and standard deviation of the prediction error
for a range of schemes with two age classesa

p = 0.75 0.25 0.75 0.25b p = 0.5 0.5 0.75 0.25 p = 0.25 0.75 0.75 0.25

Nc
m Mean SD Mean SD Mean SD

8 −2 3 2 3 0 4
12 −4 4 0 3 −1 3
20 −5 5 −1 5 −4 3
40 −5 6 −7 6 −7 5
60 −7 9 −7 8 −9 7
80 −7 10 −9 9 −9 9

aSires in age class two have information on 100 progeny inluded in their EBV.
bp denotes the proportions of parents selected from each age class.
cNm = number of sires. For each Nm alternative, results were averaged over the heritability, mating ratio,

and number of offspring alternatives (see text).

To give some background information on prediction
errors in Table 4, Table 5 shows the typical error trend
for schemes with many parents. When selection inten-
sity is low (no = 2) predictions are accurate. For higher
selection intensities (no = 4 or 8), predictions are too
low. In spite of the errors, predictions give a good indica-
tion of the effect of changing population parameters.
For example, doubling the number of offspring per par-
ent increases the rate of inbreeding from simulation by
a factor 1.96 (h2 = 0.1, no = 4 vs. 8). For the same scheme,
the prediction indicates an increase by a factor 1.82,
which gives a good indication of the tremendous effect
of selection intensity on ∆F with selection on BLUP-
EBV. Bijma and Woolliams (2000) obtained similar er-
ror trends for populations with discrete generations and
showed that the underprediction is due to the use of
simple linear models to predict expected genetic contri-
butions (Eq. [2] through [5]).

Table 6 shows rates of inbreeding and corresponding
prediction errors for schemes with four age classes for
each sex. Because the potential number of alternative
schemes is very large, results are presented for a limited
number of schemes with Nm = 20, d = 3, and h2 = 0.3,
where the distribution of parents across age classes was
varied. For most schemes in Table 6, predictions are
accurate or show some underprediction due to the same
reason as mentioned above. There are, however, three

Table 5. Typical trend of the prediction errors for a scheme with many parentsab

no = 2d no = 4 no = 8

h2 e ∆Fsim Error %c ∆Fsim Error %c ∆Fsim Error %c

0.1 0.0025 0 0.0046 −13 0.0090 −19
0.2 0.0026 0 0.0047 −13 0.0091 −20
0.3 0.0026 4 0.0046 −11 0.0081 −17
0.4 0.0026 4 0.0042 −7 0.0069 −13

aFor N = diag{40, 40, 120, 40}.
bSires in age class two have information on 100 progeny included in their EBV.
cError % = 100% × (∆Fpred − ∆Fsim)/∆Fsim.
dno = number of offspring per dam.
eh2 = heritability.
f∆Fsim = rate of inbreeding per year from simulation.

schemes in Table 6 that show a surprising overpre-
diction of 14, 11, and 16%.

Detailed examination of the schemes with 14 and
11% error revealed that the overprediction of ∆F was
due to overprediction of the contributions of 1-yr-old
sires (α1), which in turn was due to overprediction of
the selection intensity in category one. In category one,
only two sires are selected and the intraclass correlation
between sibs is relatively high (ρFS,11 ≈ 0.73; ρHS,11 ≈
0.33), indicating that reduction of selection intensity
due to finite numbers and correlations between indices
of relatives becomes important. Adjusting selection in-
tensities using the method of Meuwissen (1991) reduced
intensities from 2.73 to approximately 2.57 for both
schemes, and prediction errors reduced from +14% to
−4% for the one scheme and from +11% to −3% for the
other scheme. These same schemes required adjust-
ment to the selection intensity to obtain accurate pre-
diction of genetic gain. This indicates that the need for
adjusted selection intensities is not a specific feature
of the method to predict ∆F but is a general require-
ment for schemes with few parents and high intraclass
correlations between EBV of sibs (Meuwissen, 1991).

Examination of the scheme with 16% error revealed
that the overprediction of∆F was due to overprediction
of the variance of family size. When the number of
selected parents is small compared to the number of

 by guest on March 13, 2014www.journalofanimalscience.orgDownloaded from 

http://www.journalofanimalscience.org/
http://www.journalofanimalscience.org/


Bijma et al.848

Table 6. Rates of inbreeding per year from simulation
(∆Fsim) and corresponding prediction errors for a

scheme with four age classesab

diagNc no
d ∆F f

sim Error %e

10 5 3 2 30 15 10 5 2 0.0132 0
4 0.0227 −4
8 0.0379 −4

10 5 3 2 5 10 15 30 2 0.0117 −1
4 0.0214 −7
8 0.0377 −7

2 3 5 10 30 15 10 5 2 0.0098 1
4 0.0171 3
8 0.0302 14

2 3 5 10 5 10 15 30 2 0.0085 4
4 0.0156 −4
8 0.0262 11

5 5 5 5 15 15 15 15 2 0.0125 9
4 0.0224 16
8 0.0390 3

2 8 8 2 5 25 25 5 2 0.0102 −6
4 0.0171 −13
8 0.0272 −7

8 2 2 8 25 5 5 25 2 0.0111 3
4 0.0208 2
8 0.0390 −1

2 8 2 8 5 25 5 25 2 0.0086 −1
4 0.0156 −9
8 0.0257 1

aSires in age class four have information on 100 progeny included
in their EBV.

bFor h2 = 0.3.
cdiagN = number of parents selected from each age class.
dno = number of offspring per dam.
eError % = 100% × (∆Fpred − ∆Fsim)/∆Fsim.
fStandard errors of simulation results were smaller than 1% of

their mean value.

candidates per family, all parents may be selected from
very few families, which can be accounted for by ad-
justing the selected proportion according to Eq. [D13]
(Wray et al., 1990). In the present paper, adjusted se-
lected proportions were used for all schemes where min-
imum (nk; k = 1,cmax) ≤ 0.75no (see Appendix D). For the
scheme with N = diag{5, 5, 5, 5, 15, 15, 15, 15}, this
means that selected proportions were not adjusted for
no = 2 or 4, whereas for no = 8 selected proportions were
adjusted. The scheme with no = 4 is borderline (i.e., in
each male age class the number of parents is small, but
just above the threshold of 0.75no that was used for
adjusting the selected proportion). Adjusting the se-
lected proportion for the scheme with no = 4 reduced
the prediction error from +16% to +4%.

Discussion

This paper shows how the general procedure of Wool-
liams et al. (1999) and Woolliams and Bijma (2000) for
predicting rates of inbreeding in selected populations
can be implemented for livestock improvement
schemes. Except for methods that ignore selection,
there are no other methods available to predict rates
of inbreeding for livestock improvement schemes at

present. Detailed discussions on theoretical issues of
the methods have been included in previous papers
(Woolliams et al. [1999], Bijma and Woolliams [2000],
Woolliams and Bijma [2000]). This discussion, there-
fore, addresses topics related to the implementation.

In spite of the prediction errors, the present method
is a substantial improvement over other available
methods, which ignore the effect of selection on the
rate of inbreeding. In the absence of selection, ∆F of a
population with overlapping generations is equal to∆F
of a population with discrete generations having the
same number of parents entering the population per
generation and the same lifetime variance of family
size (Hill, 1972, 1979). Following that approach, ∆F
was predicted for the schemes in Table 5 with no = 8,
resulting in ∆Fpred = 0.0022. (Note that, when ignoring
selection, ∆Fpred is independent of heritability.) In the
worst case, the present method showed an underpredic-
tion of 20% (0.0073 vs 0.0091), whereas the prediction
ignoring selection gives an error of −76% (0.0022 vs
0.0091). Thus, for the scheme with which the present
method performs worst, it still accounts for 80% of the
true inbreeding, whereas the method ignoring selection
only accounts for 24% of the true inbreeding.

The magnitude and pattern of the prediction errors
in the present study are in line with prediction errors
encountered by Bijma and Woolliams (2000) for popula-
tions with discrete generations. Simulation results in
discrete generations indicate that the use of a quadratic
model for predicting genetic contributions will remove
the underprediction for schemes with many parents
(Bijma and Woolliams, 2000). We expect that this con-
clusion extends to overlapping generations, but imple-
mentation of such a model is difficult.

With BLUP selection, prediction of the lifetime con-
tribution (required for “step 2”) is more complicated
than with mass selection. With mass selection, in which
the phenotype is recorded only once, the ranking of
selection candidates remains unchanged when animals
become older, because no additional information is
added at older ages. When the ranking of animals re-
mains unchanged over time, the number of animals
selected in any combination of age classes can be de-
rived directly from the number of animals selected in
each age class. With mass selection, therefore, the life-
time contribution depends directly on the number of
animals selected from each age class (Bijma et al.,
2000a). With BLUP selection, however, the EBV of se-
lection candidates may change when animals become
older, because new information (e.g., progeny) becomes
available. This will change the ranking of selection can-
didates. With different rankings in different age
classes, the number of animals selected in a particular
combination of age classes depends on the proportion
selected jointly in those age classes. In the present pa-
per, such bivariate normal proportions were obtained
by numerical integration using Dutt’s algorithm (Dutt
and Soms, 1976; Ducrocq and Colleau, 1986).
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When there are more than two different indices (e.g.,
when progeny information accumulates gradually so
that each age class has a different amount of informa-
tion available) the lifetime contribution can still be pre-
dicted using the bivariate normal distribution because
cross-products between any two age classes, ui,kui,l, in-
volve only two categories at a time. With different indi-
ces for each age class, therefore, the present method can
still be applied but cross-products need to be calculated
from Eq. [16] for all age classes.

In the present study, we have assumed random mat-
ing of selected sires and dams. In practice, matings
between close relatives will be avoided. In populations
of practical sizes, avoidance of mating between close
relatives (e.g., full-sibs) has only a small effect on the
rate of inbreeding, because the probability of acciden-
tally mating two full-sibs is small, so avoidance of those
matings induces only small deviations from Hardy-
Weinberg equilibrium. When a mating strategy is ap-
plied that additionally accounts for more distant rela-
tives (e.g., minimum coancestry mating), the rate of
inbreeding will be smaller than the values predicted
for random mating (Caballero et al., 1996).

In the present study, selection is for a single trait.
Predictions for multitrait selection can be developed
using the same methodology. First, a multitrait pseudo-
BLUP selection index for populations with overlapping
generations has to be developed. This can be done by
extending the work of Villanueva et al. (1993) to over-
lapping generations. With multitrait selection, the se-
lective advantage would consist of the sum of breeding
values for the different traits, weighted by their eco-
nomic value. Subsequently, steps 1 to 3 remain essen-
tially the same, but equations have to be derived based
on a multitrait index. For example, in Eq. [6] and [7],
the Π-matrix would represent the regression of the ag-
gregate breeding value of a selected offspring on the
aggregate breeding value of the parent. All of these
steps can be performed using standard selection in-
dex theory.

One needs to take care when applying the present
methodology to populations with extremely high corre-
lations between estimated breeding values of sibs. For
example, in a dairy MOET scheme, selection of young
bulls may solely be based on information from relatives,
so that between-full-sib family selection is practiced
(ρFS = 1). For such cases, the equations for calculating
the variance of family size and the linear model for
predicting expected genetic contributions may be less
accurate.

Until now, optimizing rates of gain and inbreeding
in livestock improvement schemes required computa-
tionally demanding stochastic simulation, which re-
stricts the number of alternative schemes considered.
With the present method, rates of inbreeding in live-
stock improvement schemes can be predicted within
very limited computing time, which shows that the gen-
eral theory of Woolliams et al. (1999) and Woolliams
and Bijma (2000) provides a toolbox for the optimization

of breeding schemes considering both rates of genetic
gain and inbreeding. Recently, Bijma et al. (2000b) opti-
mized rates of gain and inbreeding for crossbreeding
schemes, which illustrates how the method to predict
∆F can be connected to an optimization procedure. In
their study, approximately 750 alternative breeding
schemes were evaluated within 9 CPU seconds. This
shows that, even when connected to a numerical search
algorithm, the method can be used interactively. A com-
puter program is available from the corresponding
author.

Implications

The common livestock breeding practice of selection
on estimated breeding values using Best Linear Unbi-
ased Prediction has enabled increased rates of genetic
gain but will also lead to increased rates of inbreeding,
and thus endangers selection response and genetic di-
versity in the long term. In this article, we developed
a deterministic method to predict rates of inbreeding
for livestock improvement schemes. The method en-
ables one to consider both rates of genetic gain and
inbreeding before a breeding scheme commences and is
therefore an important aid to design sustainable animal
breeding plans. This implies that we no longer have to
resort to computationally demanding stochastic simu-
lation to balance short- and long-term response in live-
stock breeding populations.
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Appendix A

Pseudo-BLUP Selection Index

There are two indices, Index1 (Â1,i) without progeny
information and Index2 (Â2,i) with progeny information.
Weights for Index1 (Index2) are b1 = V−1

1 g1(b2 = V−1
2 g2),

where V1 (V2) is the 6 × 6 (7 × 7) covariance matrix of
information sources in x1,i (x2,i) and g1 (g2) is the 6 × 1
(7 × 1) vector of covariances between information
sources in x1,i (x2,i) and the breeding value of the candi-
date. Index1 is identical to the index of Wray and
Hill (1989).

Elements of V1 are, per row, as follows: V1(1,1–6) =
(σ2

m, 0, 0, ¹⁄₂σ2
m, ¹⁄₂σ2

m, ¹⁄₂σ2
m); V1(2,1–6) = (0, σ2

f , σ2
f /d, ¹⁄₂

σ2
f /d, ¹⁄₂σ2

f , ¹⁄₂σ2
f ); V1(3,1–6) = (0, σ2

f /d, σ2
f /d, ¹⁄₂σ2

f /d, ¹⁄₂σ2
f /

d, ¹⁄₂σ2
f /d); V1(4,1–6) = (¹⁄₂σ2

m, ¹⁄₂σ2
f /d, ¹⁄₂σ2

f /d, σ2
HS, σ2

HS,
σ2

HS); V1(5,1–6) = (¹⁄₂σ2
m, ¹⁄₂σ2

f , ¹⁄₂σ2
f /d, σ2

HS, σ2
FS, σ2

FS); and
V1(6,1–6) = (¹⁄₂σ2

m, ¹⁄₂σ2
f , ¹⁄₂σ2

f /d, σ2
HS, σ2

FS, σ2
self), where

σ2
m and σ2

f are the variance of the EBV among selected

sires and dams, respectively; σ2
HS and σ2

FS are the be-
tween-full-sib family and between-half-sib family vari-
ance, which are σ2

HS = ¹⁄₄σ2
A,m + ¹⁄₄σ2

A,f/d + (¹⁄₂σ2
A,0 + σ2

E)/nod
and σ2

FS = ¹⁄₄σ2
A,m + ¹⁄₄σ2

A,f + (¹⁄₂σ2
A,0 + σ2

E)/no, where σ2
A,m

(σ2
A,f) is the genetic variance among the selected sires

(dams), σ2
E is the environmental variance, σ2

A,0 is the
base generation additive genetic variance and σ2

self =
σ2

A + σ2
E, where σ2

A is the total additive genetic variance.
Furthermore, gT

1 = (¹⁄₂σ2
m, ¹⁄₂σ2

f , ¹⁄₂σ2
f /d, ¹⁄₄σ2

A,m + ¹⁄₄σ2
A,f/d +

¹⁄₂σ2
A,0/nod, ¹⁄₄σ2

A,m + ¹⁄₄σ2
A,f + ¹⁄₂σ2

A,0/no, σ2
A).

Matrix V2 is identical to V1 but has additional V2(7,1–
7) = V2(1–7,7) = [¹⁄₄σ2

m, ¹⁄₄σ2
f , ¹⁄₄σ2

f /d, Cov(PHS, Pprg), Cov
(PFS, Pprg), ¹⁄₂σ2

A, Var(Pprg)], where Cov(PHS, Pprg) = ¹⁄₈

σ2
A,m + ¹⁄₈σ2

A,f/d + ¹⁄₄σ2
A,0/nod, Cov(PFS, Pprg) = ¹⁄₈σ2

A,m + ¹⁄₈

σ2
A,f + ¹⁄₄σ2

A,0/no, and Var(Pprg) = ¹⁄₄σ2
A(1+1/dprg ) + (¹⁄₂σ2

A,0

+ σ2
E)/nprg, where dprg is number of dams mated to a

single sire when producing offspring for the progeny
test. Assuming the same litter size as in the nucleus:
dprg = nprg/no. Furthermore, gT

2 is identical to gT
1, but

has additional, gT
2(7) = ¹⁄₂σ2

A.
Genetic variance among selected parents of sex x was

σ2
A,x = ∑

k

σ2
A(1 − κkρ

2
k)

nk

Nx
+ ∑

k

(µk − µ)2nk

Nx
, with k = 1,cmax

for sires and k = cmax+1, 2cmax for dams, where κk is
Pearson’s variance reduction coefficient [κk = ιk(ιk − τk),
where ι is selection intensity and τ is the standardized
truncation point], ρk is the accuracy of selection, µk is
the genetic mean of the parents selected from category
k expressed as a deviation from an arbitrary base: µk
= ιkρkσA − k�Gy, where ∆Gy is the rate of genetic gain
per year, and µ is the overall mean of the selected group

for sex x: µ = ∑
k

µk
nk

Nx
. In the equation for σ2

A,x, the first

term represents the weighted sum of the within-age-
class genetic variance after selection and the second
term represents the additional variance due to differ-
ences between the means of parents selected from dif-
ferent age classes.

The variance of the EBV among selected parents of

sex x, σ2
m and σ2

f , was σ2
x = ∑

k

σ2
Â,k(1 − κk)

nk

N x
+ ∑

k

(µk − µ)2

nk

Nx
, where σ2

Á,k is the variance of the EBV among selec-

tion candidates in category k.
Accuracy of selection for category k was ρk =

√bT
index(k)gindex(k)/σ2

A, where index(k) = 1 for categories

without progeny testing and index(k) = 2 for categories
with progeny testing. The variance of EBV was σ2

Â,k =
ρ2

kσ
2
A. Genetic gain per year was ∆Gy = ¹⁄₂σA

∑
2cmax

k=1

ιkρknk

Nsex(k)L0
, where L0 is the generation interval based

on the average age of parents of newborn offspring: L0

= ¹⁄₂ ∑
2cmax

k=1

age(k)nk/Nsex(k).
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Each generation, additive genetic variance was calcu-
lated from σ2

A = ¹⁄₄σ2
A,m + ¹⁄₄σ2

A,f + ¹⁄₂σ2
A,0. The above equa-

tions were iterated until equilibrium variances were
reached (approximately 10 iterations).

Intraclass Correlations

Three types of intraclass correlations between EBV
of sibs can be distinguished: first, between Â1,i of two
sibs with neither progeny-tested; second, between Â2,i

of two progeny-tested sibs; and, finally, between one
tested and one not progeny-tested.

Between full sibs in not-progeny-tested categories,
ρFS,kl = bT

1CFS,klb 1/σ
2
Â1

, where k and l denote the catego-
ries of both individuals, CFS,kl is the 6 × 6 covariance
matrix between the information sources of an individ-
ual in category k and the information sources of its full
sib in category l. Matrix CFS,kl is identical to V1 except
for CFS,kl(6,6) = ¹⁄₄σ2

A,m + ¹⁄₄σ2
A,f. Between full sibs in prog-

eny-tested categories, ρFS,kl = bT
2CFS,klb2/σ

2
Â2, where

CFS,kl is a 7 × 7 covariance matrix that is identical to
V2 except for CFS,kl(6,6) = ¹⁄₄σ2

A,m + ¹⁄₄σ2
A,f, CFS,kl(6,7) =

CFS,kl(7,6) = ¹⁄₈σ2
A,m + ¹⁄₈σ2

A,f, and CFS,kl(7,7) = ¹⁄₁₆σ2
A,m + ¹⁄₁₆

σ2
A,f. Between a progeny-tested individual and its not-

progeny-tested full-sib, ρFS,kl = bT
1CFS,klb 2/σÂ1

σ Â2
, where

CFS,kl is a 6 × 7 covariance matrix that is identical to
the sub-matrix CFS,kl(1–6;1–7) for the case of progeny
testing in both categories.

Between half-sibs in not-progeny-tested categories,
ρHS,kl = bT

1CHS,klb1/σ
2
Â1

, where CHS,kl is identical to V1

except for CHS,kl(5–6,5–6) = ¹⁄₄σ2
A,m, CHS,kl(2,5–6) =

CHS,kl(5–6,2) = 0, and CHS,kl(2,2) = 0. Between half-sibs
in progeny-tested categories, ρHS,kl = bT

2CHS,klb2/σ
2
Â2

,
where CHS,kl is identical to V2 except for CHS,kl(5–6,5–
6) = ¹⁄₄σ2

A,m, CHS,kl(2,5–6) = CHS,kl(5–6,2) = 0, and
CHS,kl(2,2) = 0, CHS,kl(2,7) = CHS,kl(7,2) = 0, CHS,kl(5–6,7)
= CHS,kl(7,5–6) = ¹⁄₈σ2

A,m, CHS,kl(7,7) = ¹⁄₁₆σ2
A,m.

Between a progeny-tested individual and its not-
progeny-tested half-sib, ρHS,kl = bT

1CHS,klb2/σÂ1
σ Â2

,
where CHS,kl is the (6 × 7) covariance matrix, which is
identical to the sub-matrix CHS,kl(1–6;1–7) for the case
of progeny testing in both categories.

Intraclass correlations were corrected for the number
of families being finite, using the empirical correction
of Bijma and Woolliams (2000): ρFS,kl = ρFS,kl − ρFS,kl(1
− ρ2

FS,kl)(0.8634/Nm + 0.9540/Nf) and ρHS,kl = ρHS,kl −
ρHS,kl(1 − ρ2

HS,kl)(1.4075/Nm + 1.4581/Nf).

Appendix B

Prediction of Expected Genetic Contributions

The Π and Λ Matrix. Elements of Π and Λ are a
multiple category analogy of the discrete generations
case (see Bijma and Woolliams, 2000):

πkl = ¹⁄₂ − bT
index(k)cindex(k),lκk/σ2

s,l k,l = 1, 2cmax [B1]

λkl = bT
index(k)cindex(k),lιk/(σ2

s,lσÂ,k) k,l = 1, 2cmax [B2]

where index(k) = 1 for categories without progeny test-
ing and 2 for categories with progeny testing, and cin-

dex(k),l is a vector of covariances between information
sources of an offspring in category k and the selective
advantage of its parent in category l. For offspring cate-

gories without progeny testing, c1,l = [σ2
Â,l(1 − κl), σ

2
Â,f/

d, σ2
Â,f/d, ¹⁄₂σ2

A(1 − κlρ
2
l ) + ¹⁄₂σ2

A,f/d, ¹⁄₂σ2
A(1 − κlρ

2
l ) + ¹⁄₂σ2

A,f/

d, ¹⁄₂σ2
A(1 − κlρ

2
l ) + ¹⁄₂σ2

A,f/d] for l = 1, cmax and c1,l =
[σ2

Â,m, σ2
Â,l(1 − κl), σ

2
Â,l(1 − κl/d, ¹⁄₂σ2

A(1 − κlρ
2
l )/d + ¹⁄₂σ2

A,m,

¹⁄₂σ2
A(1 − κlρ

2
l ) + ¹⁄₂σ2

A,m, ¹⁄₂σ2
A(1 − κlρ

2
l ) + ¹⁄₂σ2

A,m] for l =
cmax+1, 2cmax. For offspring categories with progeny test-

ing, c2,l = [c1,l(1–6), ¹⁄₄σ2
A(1 − κlρ

2
l ) + ¹⁄₄ σ2

A,f/d] for l = 1,

cmax and c2,l = [c1,l(1–6), ¹⁄₄σ2
A(1 − κlρ

2
l ) + ¹⁄₄σ2

A,m] for l =

cmax+1, 2cmax. Furthermore, σ2
A,m = σ2

A ∑
cmax

l=1

nl

Nm
(1 − κlρ

2
l ),

σ2
A,f = σ2

A = ∑
2cmax

l = cmax+1

nl

Nf
(1 − κlρ

2
l ), σ

2
Â,m = ∑

cmax

l=1

nl

Nm
σ2

Âl(1 − κl)

and σ2
Â,f = ∑

2cmax

l=cmax +1

nl

Nf
σ2

Â,l(1 − κl).

The G Matrix. Elements of G are (Bijma and Woolli-
ams, 1999):

gkl = ¹⁄₂
pkl

pk

nl

Nsex(l)
k,l = 1, 2cmax [B3]

where pkl is the selected proportion among offspring
in category k descending from parents in category l.
Solutions for pkl were obtained separately for each par-
ent sex, by simultaneously solving the equations pk =
∑

l

pklnl/Nsex(l) and pkl = 1 − Φ[(Ik − ¹⁄₂µl)/σÂ,k|l] using the

algorithm RIDDR_ROOT (Press et al., 1992), where l
= 1, cmax for sires, l = cmax+1, 2cmax for dams, Ik is the EBV
truncation point common to all offspring in category k,
σÂ,k|l is the standard deviation of the EBV for offspring
in category k descending from parents in category l, µl
is given in Appendix A, and Φ denotes the cumulative
normal distribution function (Bijma and Woolliams,
1999). The standard deviation of the EBV, σÂ,k|l, was
calculated analogous to σÂ,k by using the pseudo-BLUP
index (Appendix A), but replacing σ2

A,s(σ2
A,d) by σ2

A(1 − κl

ρ2
l ) and σ2

m(σ2
f ) by σ

2
Â,l(1 − κl) when the parent is a

male (female).
The D Matrix. Elements of D were obtained, sepa-

rately for each parent sex, from (Bijma and Woolli-
ams, 1999):

dkl = ¹⁄₂µl + ιklσÂ,k|l − dk [B4]

where µl is given in Appendix A, ιkl is the selection
intensity corresponding to pkl (see above) and the second
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term represents subtraction of the average: dk = ∑
l

(¹⁄₂µl

+ ιklσÂ,k|l), with l = 1, cmax for sires, l = cmax+1, 2cmax

for dams.

Appendix C

Step 2: Expectation of Squared Expected Contributions

Equation 16. E[(Ai − Ak)(Ai − Acmax
)] = E(A2

i ) − E(AiAk)
− E(AiAcmax

) + E(Ak Acmax
), where i refers to one of the

nk,cmax
individuals that are selected both in category k

and in category cmax. When deriving those expectations
one has to account for the fact that Ak and Acmax

are
finite sample means. For example, E(AiAk) = E[Ai(A1,k

+ … + Ank,k)]/nk = [(nk − 1)E(AiAj≠i,k) + E(A2
i )]/nk ≈ (nk −

1)E(Ai)Ak/nk + E(A2
i )/nk. Following this approach, it can

be shown that:

E[(Ai − Ak)(Ai − Acmax
)] =

[(nkncmax
− nk − ncmax

+ nk,cmax
)/(nkncmax

)] E(A2
i )

− [(nk − 1)/nk] E(Ai) Ak − [(ncmax
− 1)/ncmax

]E(Ai )Acmax
[C1]

+ [1 − nk,cmax
/(nkncmax

)]Ak Acmax

where Ak = ιkρkσA. This equation has the desired prop-
erty that it reduces to zero when nk = ncmax

= nk,cmax
=

1 and that it reduces to E(A2
i ) − E(Ai) Ak − E(Ai)A cmax

+ Ak Acmax
when nk, ncmax

, nk,cmax
→ ∞.

The terms E(Ai) and E(A2
i ) represent the expectation

of the breeding value and the squared breeding value
of individuals that are selected both in category k and
in category cmax, for example, E(Ai) = E(Ai|Âi,k > τk,
Âi,cmax

> τcmax
), which can be obtained from the moment-

generating function of the truncated multivariate nor-
mal distribution (Tallis, 1961). From the first and sec-
ond equations on page 226 of Tallis (1961), with, in the
notation of Tallis, a1 = A.1 = A��1 = −∞, it follows that:

E(Ai) = σA[ρkφ(τk)Φ(Ψk,cmax
) [C2]

+ ρcmax
φ(τcmax

)Φ(Ψcmax,k)]p−1
k,cmax

and

E(A2
i ) = σ2

A{pk,cmax
+ ρ2

kτkφ(τk)Φ(Ψk,cmax
)

+ ρ2
cmax

τcmax
φ(τcmax

)Φ(Ψcmax,k )

+ φ(τk,τcmax
,ρk,cmax

)[ρk(ρcmax
− ρkρk,cmax

) [C3]

+ ρcmax
(ρk − ρcmax

ρk,cmax
)]}p−1

k,cmax

where ρk is the accuracy of selection in category k,
ρk,cmax

is the correlation between the index of an individ-

ual in category k and its index in category cmax: ρk,cmax

= σÂ,k/σÂ,cmax
, φ(τ) is the univariate normal density func-

tion: φ(τ) = (2π)−¹⁄₂e−¹⁄₂τ2, φ(τk,τl,ρk,l) is the bivariate normal

density function: φ(τk,τl,ρk,l) =



2π√1 − ρ2

k,l




−1
e−¹⁄₂q with q

= (τ2
k − 2ρk,lτkτl + τ2

l )/(1 − ρ2
k,l), and Φ(Ψ) is the univariate

normal upper tail proportion: Φ(Ψ) = ∫
∞

ψ

φ(x)dx and ψk,l =

(τl − ρk,lτk)(1 − ρ2
k,l)−¹⁄₂. Note that Ψk,l ≠ Ψl,k.

Appendix D

Calculation of δ

General equations for calculating ∆Vn,k are given in
Appendix E of Woolliams and Bijma (2000) and can
also be obtained by extending the equations for BLUP
selection with discrete generations (Bijma and Woolli-
ams, 2000) to populations with overlapping genera-
tions. To keep notation as short as possible, the number
of selected offspring conditional on the selective advan-
tage, nij,k(l)|si,k, is abbreviated by nij,k(l).

For sires, �Vn,k is calculated from:

�Vn,k(l,l) = Es{ni*,k(l)[n i*,k(l) − 1]} − Es[µ2
k(l)] [D1]

k = 1,cmax; l = 1, 2cmax

�Vn,k(l,l′) = Es[ni*,k(l)ni *,k(l′)] − Es[µk(l)µk(l′)] [D2]

k = 1,cmax; l,l′ = 1, 2cmax; l ≠ l′

and for dams from:

�Vn,k(l,l) = Es{nij,k(l)[nij,k(l) − 1]} − Es[µ2
k(l)] [D3]

k = cmax+1, 2cmax; l = 1, 2cmax

�Vn,k(l,l′) = Es[nij,k(l)nij,k(l′)] − Es[µk(l)µk(l′)] [D4]

k = cmax+1, 2cmax; l,l′ = 1, 2cmax; l ≠ l′

where ni*,k(l) is the number of selected offspring in cate-
gory l from the ith sire in category k and nij,k(l) is the
number of selected offspring in category l from the jth

dam in category k that is mated to sire i, (i.e., ni* repre-
sents the sire family size and nij represents the dam
family size). In Eq. [D1] and [D2], µk(l) = E[ni*,k(l)|si,k],
which is the expected number of selected offspring in
category l of sire i in category k, given its selective
advantage. In Eq. [D3] and [D4], µk(l) = E[nij,k(l)|sj,k].

Elements of Eq. [D1] to [D4] are as follows:

Es[µ2
k(l) ] = 4g2

lkn2
l n−2

k (1 + λ2
lkσ

2
sk

) [D5]

k, l = 1, 2cmax
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Es[µk(l)µk(l′)] = 4glkgl′knlnl′n−2
k (1 + λlkλl′kσ

2
sk

) [D6]

k, l, l′ = 1, 2cmax; l ≠ l′

Es{ni*,k(l)[ni*,k(l) − 1]} = dEs{nij,k(l)[nij,k(l) − 1]}

+ d(d − 1)Es[nij,k(l)nij′,k(l)] [D7]

k = 1, cmax; l = 1, 2cmax

Es[ni*,k(l)ni*,k(l′)] = dEs[nij,k(l) nij,k(l′)]
+ d(d − 1)Es[nij,k(l)nij′,k(l′)] [D8]

k = 1, cmax; l, l′ = 1, 2cmax; l ≠ l′

where j′ is dam other than j,

Es{nij,k(l)[nij,k(l) − 1]} [D9]

= 2nsex(l)(nsex(l) − 1)glknl(2glknl − 1)R(plk,plk ,ρFS,ll)
nkN−1

sex(k)Tsex(l) (nkN−1
sex(k)Tsex(l) − 1)

Es[nij,k(l)nij,k(l′)] [D10]

= 4nsex(l)nsex(l′)glknlgl′knl′R(plk,pl′k,ρFS,ll′)
n2

kN−2
sex(l)Tsex(l)Tsex(l′)

Es[nij,k(l)nij′,k(l)] [D11]

= 2n2
sex(l)glknl(2glknl − 1)R(plk,plk,ρHS,ll)

nkN−1
sex(k)Tsex(l) (nkN−1

sex(k)Tsex(l) − 1)

Es[nij,k(l)nij′,k(l′)] [D12]

= 4nsex(l)nsex(l′)glknlgl′knl′R(plk,pl′k ,ρHS,ll′)
n2

kN−2
sex(k)Tsex(l)Tsex(l′)

where Tsex(l) is the total number of candidates of the sex
of category l and nsex(l) is the number of offspring of
sex(l) born per dam (Tm = Tf = T and nm = nf = ¹⁄₂no for
the current breeding scheme). Note that Eq. [D9] and
[D10] are used both in Eq. [D3] and [D4] and in Eq.
[D7] and [D8]; they are used in [D3] and [D4] for dam
categories (k = cmax+1,2cmax) and in [D7] and [D8] for
sire categories (k = 1, cmax).

Furthermore, from Mendel and Elston (1974), R(plk,
pl′k, ρsibs,ll′) = plk/Φ[(ιl′kρsibs,ll′ − τlk)(1 −κl′k ρ

2
sibs,ll′)− ¹⁄₂], where

Φ is the cumulative normal distribution function and
τlk is the standardized truncation point for offspring in
category l descending from parents in category k. When
l′ ≠ l, the most accurate value is obtained by using l for
the category with the smallest selection intensity (Wray
et al., 1994).

In situations in which the number of selected parents
is small compared to the number of selection candidates
per family, Eq. [D9] to [D12] can give substantial bias.
For those cases, accuracy of Eq. [D9] to [D12] can be
improved by adjusting the selected proportion ac-
cording to Wray et al. (1990). Adjusted selected propor-
tions for sire categories were (see Appendix B for unad-
justed selected proportions) as follows:

pkl,adj = (1 − ρsibs,kl)pkl + ρsibs,klmax(pkl,1/nl) [D13]

l = 1, cmax

and for dam categories

pkl,adj = (1 − ρsibs,kl)pkl + ρsibs,klmax(pkl,1/(nl/d)) [D14]

l = cmax+1, 2cmax

In the present study, this adjustment was applied to
all schemes where, for any of the sire categories, min(nk)
≤ 1.5no.
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