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ABSTRACT

Survey design ultimately dictates the quality of subsurface
information provided by practical implementations of geo-
physical methods. It is therefore critical to design experimen-
tal procedures that cost effectively produce those data that
maximize the desired information. This review cites recent
advances in statistical experimental design techniques ap-
plied in the earth sciences. Examples from geoelectrical,
crosswell and surface seismic, and microseismic monitoring
methods are included. Using overdetermined 1D and 2D geo-
electrical examples, a minor subset of judiciously chosen
measurements provides a large percentage of the information
content theoretically offered by the geoelectrical method. In
contrast, an underdetermined 2D seismic traveltime tomog-
raphy design study indicates that the information content in-
creases almost linearly with the amount of traveltime data
�source-receiver pairs� considered until the underdetermi-
nancy is reduced substantially.An experimental design study
of frequency-domain seismic-waveform inversion experi-
ments reveals that a few optimally chosen frequencies offer
as much subsurface information as the full bandwidth.Anon-
linear experimental design for a seismic amplitude-versus-
angle survey identifies those incidence angles most impor-
tant for characterizing a reservoir. A nonlinear design exam-
ple shows that designing microseismic monitoring surveys
based on array aperture is a poor strategy that almost certain-
ly leads to suboptimal designs.

INTRODUCTION AND
HISTORICAL BACKGROUND

Geophysical surveys estimate specific aspects of the earth’s geo-
ogical structure and composition. Such problems usually reduce to
stimating the distribution of petrophysical properties of the subsur-
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ace from measured data. To facilitate geological interpretation, nu-
erous standardized data-acquisition procedures have been estab-

ished, and data processing and inversion algorithms have been de-
eloped to extract estimates of the desired subsurface parameters.
he importance of new processing, analysis, and inversion tools is
idely appreciated and is the subject of considerable research effort.
owever, it seems that much less attention has been paid to honing

he design of data-acquisition procedures �the survey design�. This
aper focuses on ways to maximize the information content of geo-
hysical-survey data sets.

An acceptable survey design should ensure acquisition of those
ata that best resolve specific subsurface features or parameters of
nterest �Maurer and Boerner, 1998b; Curtis and Maurer, 2000�. This
oal is important because no amount of subsequent data processing
r analysis can ever compensate for inadequate or missing data that
ould have contributed significantly to resolving geological targets.
ppropriate survey design is therefore critical to justify the cost of

he experiment in terms of the robustness, accuracy, and precision of
ecovered geological information.

Philosophically, we desire an optimal data set that best resolves
pecific subsurface petrophysical properties of the subsurface model
e.g., composition, locations of discontinuities, porosity, and fluid
aturation over a wide or a more focused subsurface volume� from
he acquired data. Yet in practice in most geophysical experiments,

odel parameters are nonlinearly related to the observable data,
aking it extremely computationally demanding to calculate result-

ng constraints on parameter values. Also, the inverse problem of
onstraining model-parameter estimates from data observations is
ften ill posed �no solution exactly satisfies the data� and may not
ave a unique solution. Hence, the process of deciding which data to
bserve to optimally constrain the interpretation of petrophysical
arameters is not straightforward.

One simple, often-used approach to the problem of insufficient or
nadequate data is to acquire as much data as possible, including po-
entially redundant data. However, cost is often a major consider-
tion in geophysical surveying, implying that we need to find means
o acquire optimal data in terms of information content while main-
aining a favorable cost/benefit ratio. Many geophysical-survey de-

1 May 2010; published online 14 September 2010.

. E-mail: andrew.curtis@ed.ac.uk.
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75A178 Maurer et al.
igns used in the past have been heuristic in the sense that they were
enerated from a combination of highly simplified theoretical inves-
igations, repeated simulations with numerical or analog models of
ery simple geological situations �e.g., a perfectly stratified earth�,
nd experience gained from actual field surveys. Often, standard de-
igns have been applied solely because they were required to use ex-
sting analysis and inversion tools.

Although these approaches have been extremely successful in
any cases, application of heuristic survey designs can be of dubi-

us value in dealing with logistical or instrumentation constraints, or
ith complex subsurface environments. Moreover, most survey de-

igns were constructed to obtain a complete image of the subsurface,
nd they may not be appropriate for surveys conducted to resolve
pecific types or subsets of subsurface petrophysical properties �e.g.,
hose from a specific depth interval of interest�. With the current ca-
ability for simulating the geophysical response of highly complex
eological models and almost arbitrary survey designs, it would
eem appropriate to explore whether better subsurface information
an be obtained from nonstandard approaches to experimental con-
gurations.
Qualitatively, the benefit of a geophysical survey can be defined

s the resulting net increase in resolution of the model parameters of
nterest. For example, an expected outcome of a geophysical survey

ight be to determine only the depth to a particular interface. Alter-
atively, one may wish to resolve all physical-property variations
ithin a restricted 3D volume. The extent to which these expecta-

ions are realized will dictate the success or failure of the experiment.
ithin this seemingly broad spectrum of possibilities lies a common

lement: the reliability of the parameter information obtained by in-
erting the geophysical data. We define the quantitative benefit of a
eophysical experiment to be directly proportional to the resolution
r accuracy of the parameters necessary to answer specific questions
f interest. Resolution and accuracy can be estimated formally via
pplication of linear or nonlinear inverse theory, so conceptually it is
ossible to find desirable survey layouts with optimization algo-
ithms.

Figure 1 illustrates our notion of the relationship between the ben-
fits and costs of performing a geophysical experiment. Although
his graph is qualitative, we expect the behavior of the limits to be
enerally correct. For example, there is no benefit before data are ac-
uired, although fixed costs are certainly incurred in mobilizing
quipment and preparing for data acquisition. Additionally, benefits
re likely to be subject to the concept of diminishing returns such

Total experimental costs

Fixed
costs Variable costs

S
ur

ve
y

be
ne

fit
s

Le
ve

lo
ff

ul
l-c

os
te

xp
er

im
en

t

Maximum benefit achievable

igure 1. Schematic representation of cost/benefit relationships.
hading is area of diminishing returns. Dotted line is optimized ex-
erimental design. Solid line is standard experimental design.
hat ever-increasing data acquisition is likely to result in increasingly
edundant data rather than continually accruing benefits.Aside from
he behavior at the limits of zero and infinite data, the details of cost/
enefit curves are difficult to predict, primarily because of the gener-
lly nonlinear relationship between data and model parameters.
onlinearity effectively means that the values of the model parame-

ers influence the information content, and this makes it difficult to
haracterize, a priori, the information content of specific observed
ata.

To understand Figure 1 more fully, consider a seismic crosshole
urvey. In this case, the solid line might represent those designs con-
isting of increasing numbers of evenly spaced shots and receivers.
he variable cost for such designs will be approximately proportion-
l to the amount of data collected and hence inversely proportional to
he shot and receiver spacing. On the other hand, one might find sur-
ey designs that maximize cost savings for a given level of subsur-
ace feature resolution or that maximize the benefit achievable at
ach given cost. Each of these objectives would result in a unique
ost/benefit curve where the cost/benefit ratio has been optimized
uch that the curve is shifted to a higher benefit level for any particu-
ar survey expenditure �dashed curve in Figure 1�.

In reality, there is no single 2D graph equivalent to Figure 1 be-
ause multiple dimensions of data-acquisition parameters could be
aried for any given geophysical experiment, each defining a differ-
nt cost/benefit function. Constructing optimized cost/benefit func-
ions for multidimensional formulations is thus founded on the theo-
y of statistical experimental design �SED�. �For a geophysics-relat-
d tutorial on SED, see Curtis �2004a, 2004b�.� SED techniques
ere originally developed for optimizing industrial manufacturing
rocesses. Cox �1958� formulated some of the first ideas about ex-
erimental design, and Fedorov �1972� is credited with the first ex-
mple of optimal experimental design by Atkinson and Donev
1992�, who also document much of the history of important devel-
pments in industrial systems.

G. Taguchi developed and implemented design methods �often
alled Taguchi methods �Taguchi, 1987�� across a broad spectrum of
apanese industrial processes such that final products are as robust as
ossible to variations in the manufacturing steps. Over only a few
ears, this led to a revolutionary increase in the quality of Japanese
anufacturing. Although Taguchi’s methods were often simple, he

ystematized an approach to quality control that did not exist previ-
usly. Their simplicity makes these methods so generally applicable.

The first attempts at optimized experimental design in geophysics
ere devoted to earthquake-location problems �Kijko, 1977;
abinowitz and Steinberg, 1990; Hardt and Scherbaum, 1994�,
cean tomography �Barth and Wunsch, 1990�, geoelectrical sound-
ngs �Glenn and Ward, 1976�, and magnetotelluric investigations
Jones and Foster, 1986�. Building on ideas presented in these early
apers, statistical experimental design has been continuously re-
ned.
Originally, statistical experimental design was treated as an opti-
ization problem that could be solved with global optimizers such

s genetic algorithms �e.g., Hardt and Scherbaum, 1994�, simulated
nnealing �e.g., Barth and Wunsch, 1990�, or multilevel coordinate
earch �e.g., Ajo-Franklin, 2009�. Unfortunately, global optimizers
ere not yet efficient for larger-scale problems. Therefore, Curtis et

l. �2004� introduced a sequential approach that begins with several
esign parameters �e.g., each describing a datum to be recorded� that
re reduced in a stepwise fashion by removing the most redundant
atum at each step. This algorithm is effective in designing simple
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Optimized geophysical survey design 75A179
omographic surveys and �micro-�seismic monitoring surveys with
any design parameters. Curtis and Wood �2004� showed that the

ame algorithm can be used to design optimal interrogation strate-
ies to obtain geological information from human experts, and
tummer et al. �2004� introduced sequential algorithms that work in

he opposite direction, beginning from a minimal design and incre-
enting it with the most informative datum at each step; they ap-

lied this to design geoelectric experiments. Similar approaches
ere presented by Wilkinson et al. �2006� and Coles and Morgan

2009�.
To control computational requirements, many experimental de-

ign studies approximate nonlinear relationships between earth-
odel parameters and the observed data with linear functions. The

ationale is that any inherent nonlinearity in the physical system is of
econd-order importance for small perturbations of model parame-
ers. Although in many cases this approximation

ay be valid, a more rigorous and robust frame-
ork for tackling concurrent or sequential experi-
ental design optimization is offered by nonlin-

ar design methods. Algorithms for nonlinear
roblems are generally computationally expen-
ive and thus have been restricted to fairly specif-
c problems that can be parameterized with rela-
ively few ��10� parameters. Examples include
esigning surface seismic receiver density or da-
a-processing strategies for optimal amplitude
ariation with offset/amplitude variation with an-
le �AVO/AVA� analysis �van den Berg et al.,
003, 2005; Guest and Curtis 2009, 2010� or de-
igning optimal receiver locations for earthquake
r microseismic monitoring surveys �Winterfors
nd Curtis, 2008�. Hyperparameterization meth-
ds, recently applied in linearized geophysical
roblems �Ajo-Franklin, 2009�, are being extend-
d successfully to fully nonlinear design methods
pplicable for full 2D or 3D seismic surveys
Guest and Curtis, 2010�.

With the increasing success of statistical exper-
mental design for geophysical applications, nu-

erous methodological studies and application
mprovements have been published �see Table 1�.
n this contribution, we first review the theory of
tatistical experimental design. Then we show a
ew examples that demonstrate the benefits and
imits of applying experimental design concepts
o geophysical problems. In the concluding sec-
ion, we critically review the achievements made
ver the past decade and outline potentially fruit-
ul avenues of future research.

THEORY

The most important requirement in selecting
he experimental parameters for a geophysical
urvey design is to be clear in specifying the geo-
ogical and operational objectives. Geological
bjectives may range from being specific �locate
he oil/water contact close to a planned well tra-
ectory� to vague �create an image of some sub-
urface volume to identify and locate anomalous

Table 1. Cat
studies and a
geophysical a

Application

Seismic tomo

Seismic reflec

AVO/AVA/AV
processing str

Earthquake o
location surve

Electric or el

Other method
eatures that may be of interest�. Operational objectives can often be
ore precisely defined and generally are based on the desire to mini-
ize or control survey costs and the risk of operational failure.
Once fully declared, all survey objectives are encoded into a sin-

le mathematical objective function that is intentionally chosen to
ave a minimum when a survey design best meets the desired objec-
ives. Selecting the optimal survey design can then be achieved with
ne of several numerical minimization algorithms that vary parame-
ers controlling the design until the minimum is attained.

Of the two components of the objective function, the operational
bjectives are not easily amenable to generic analysis because they
eflect a variety of highly specific influences, including price fluctu-
tions, the specific survey equipment used, contractor experience,
verhead costs, geographic location, and even weather conditions
nd season. Although accommodating operational objectives is a

s and representative published works of methodological
tion improvements of statistical experimental design for
tions.

Representative published work

Ajo-Franklin, 2009

Brenders and Pratt, 2007

Curtis and Snieder, 1997

Curtis, 1999a, 1999b

Maurer et al., 2009

Sirgue and Pratt, 2004

rveys Liner et al., 1999

rveys or Coles and Curtis, 2010

Guest and Curtis, 2009, 2010

van den Berg et al., 2003

seismic Curtis et al., 2004

Hardt and Scherbaum, 1994

Lomax et al., 2009

Rabinowitz and Steinberg, 1990

Steinberg et al., 1995

Winterfors and Curtis, 2008, 2010

agnetic surveys Coles and Morgan, 2009

Coscia et al., 2008

Furman et al., 2007

Hennig et al., 2008

Loke and Wilkinson, 2009

Maurer and Boerner, 1998a

Maurer et al., 2000

Oldenborger and Routh, 2009

Stummer et al., 2002, 2004

Wilkinson et al., 2006

al advances Curtis and Wood, 2004

Haber et al., 2008

Routh et al., 2005
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75A180 Maurer et al.
ritically important task in geophysical surveying that typically re-
uires great skill and experience, for this paper we assume that an
perational objective exists and that a single �potentially quite com-
lex� cost model can be used within the survey-design context. We
herefore focus on methods to achieve the other set of objectives —
valuating and optimizing the information contained in the survey
ata, subject to constraints from the specified cost model.

In practice, extracting quantitative subsurface information from
eophysical data requires inversion or inference methods. These
ethods effectively transform observed geophysical data into con-

traints on a specific set of parameters that describe a model of sub-
urface petrophysical properties �e.g., reservoir porosity, fluid prop-
rties�. Invariably, some subsurface parameters are well constrained
y data �e.g., often those in the near surface�, but others may be com-
letely unconstrained. Designing geophysical surveys that produce
ata which best achieve the survey objectives requires a comprehen-
ive understanding of �1� the inversion or inference procedure and
2� how we encode the specific goals of the experiment into the de-
ign objective function. We therefore now review aspects of inverse
heory that are indispensable in order to follow the development of
esign theory.

nverse theory

Once any geophysical survey has been completed, a data set d will
e available for geological interpretation. Let m denote the subsur-
ace model consisting of a vector of spatially defined petrophysical
arameters in the parameter space M. Inversion is the process used
o translate information in d to constrain estimates of m.

An essential component of inversion is the ability to calculate the
eophysical data response of any particular subsurface model. This
s the so-called “forward problem,” which we express in terms of the
unction f that relates m to a vector of predicted data: d� f(m).

It is useful to represent uncertainty in m and d with probability
ensity functions �PDFs; Tarantola, 2005�. Let p�d� be the PDF de-
cribing the uncertainty in d from all uncorrected measurement er-
ors �from instrumental bias, noise, and any other artifacts�. Similar-
y, p�m� is the so-called prior PDF, representing all information
bout m existing before �prior to� inversion. The mathematical for-
ulation of the forward problem may also contain known limita-

ions in expressing the physical relationships between d and m, for
xample, using linearized approximations to nonlinear relations; so
e use ��d,m� to denote the PDF describing this potentially uncer-

ain relationship.
Let’s say that if f�m� is a complete and accurate representation of

he forward problem physics, the conditional PDF ��d �m� �the
robability distribution of d when m is fixed at a particular value� is
escribed by ��d �m��� �d� f�m��, where � is the Dirac delta
unction. Also, if the forward problem is assumed to place only the
inimum constraints possible on m, the PDF describing this state of

nformation about m is called the homogeneous �or null� distribu-
ion, represented by ��m�. No PDF exists that describes zero infor-
ation, but some information about m always exists in practice �the
niteness, positivity, or possible range of parameter values, for ex-
mple�.

With these assumptions, the joint PDF describing the forward
hysics is given by

��d,m��k�� �d� f�m����m� �1�

or normalizing constant k �Tarantola and Valette, 1982�.Asolution
�
o the inverse problem is found by combining the information in the
ata p�d�, the PDF expressing existing or prior knowledge about the
odel p�m�, and the accuracy of the forward model ��d,m� relat-

ng m and d �Tarantola and Valette, 1982; Tarantola, 2005�. This is
chieved in a probabilistic framework by constructing a PDF Q de-
cribing the total resultant state of posteriori �postsurvey� informa-
ion:

Q�d,m��k
p�d���d,m�p�m�

��d,m�
, �2�

here k is a normalizing constant and ��d,m� is the homogeneous
r null distribution over data d and parameters m.

The joint PDF in equation 2 contains all information pertinent to
onstraining estimates of m �from existing knowledge of the earth,
he observed data, and the physics underlying the geophysical exper-
ment�. The final, posteriori state of information about the parame-
ers of interest m is given by integrating over d �essentially summing
he PDFs of m for every possible data set d consistent with measure-

ents� to obtain the marginal PDF:

Q�m��kp�m��
D

p�d���d,m�
��d,m�

dd . �3�

quation 3 is the general, probabilistic solution to the inverse prob-
em from the available data because it describes the uncertainty
PDF� characterizing the parameters m, given all available informa-
ion about the physics and recorded data. The integral in equation 3 is
alled the likelihood function L�m�, which measures how well any
odel m explains data d. Hence, dropping constant k, we obtain

Q�m�� p�m�L�m� . �4�

Uncertainty in the data p�d� is often assumed to follow a Gaussian
istribution, described by mean d0 and covariance matrix Cd. Fur-
her, if uncertainties in the forward model ��d,m� are negligible,
hen � takes the form in equation 1. It is also usually assumed that
�d,m� is a uniform �constant� distribution within some reasonable
ounds. In a system of discrete data and model parameters, the likeli-
ood function then becomes approximately

L�m��exp��
1

2
�d0� f�m��TCd

�1�d0� f�m��	, �5�

here L�x� provides the relative probability of any set of parameter
alues m being the true values, given the current data measurements.
ntegrating over all of M�D to find k in equation 3 is often compu-
ationally intractable, so we usually must use the product of the prior

p�m� and the nonnormalized likelihood L�m� given in equation 4 as
ufficient information about the solution to the inverse problem.

Ultimately, the solution to the probabilistic inverse problem is a
osteriori PDF, which allows one to extract information about m and
ncertainty in the estimation. If f is nonlinear or p�d� is non-Gauss-
an, PDF Q�m� may be highly irregular and include multiple local
axima.Algorithms used to estimate Q must therefore then be made

obust to such occurrences, typically by pseudorandom �Monte Car-
o� sampling of M. For each sample mi, the value proportional to
�mi� is calculated using equation 4. A good overview of useful
onte Carlo algorithms is included in Press et al. �2007�.
Sampling all pertinent parts of the model space is often computa-

ionally unfeasible when there are too many parameters, prior infor-
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Optimized geophysical survey design 75A181
ation with which to constrain the range of model-parameter esti-
ates is too limited, or the forward relation in � is highly nonlinear.

n such cases, it is usual to approximate the posteriori distribution
�m� to create a tractable inverse problem solution, usually by ap-
roximating f�m� with a linear function. However, when the for-
ard relationship f is truly nonlinear, iterative application of linear

pproximations complicates the interpretation of inversion results.
naccuracies in the linear approximations cannot be observed in the
omputational results from the linearized model alone and will only
e apparent from comparisons with nonlinear models. Nevertheless,
any geophysical problems are currently intractable without linear

pproximations and hence are often used.

inearized approximations

Linear approximations are covered in many excellent texts and
ummary papers �e.g., Matsu’ura and Hirata, 1982; Menke, 1984�,
o we only describe key concepts that are relevant for experimental
esign. A linear approximation is derived for model-parameter val-
es in the region around some reference model m0. This reference
odel is usually the mean or the maximum-likelihood model from

he prior model PDF. If the derivatives of f evaluated at any model m̂
re denoted by the matrix F, where the ijth element is

Fijm̂�
 � f i

�mj
�m̂��, �6�

nitially where m̂�m0, then the linearized approximation to f is

d�d0�F�m�m0��O�m�m0�2, �7�

here d0� f�m0�. The higher-order terms O�m�m0�2 are ignored
n the linear approximation and thus represent the error associated
ith the linear assumption. Once ignored in the mathematical for-
ulation, any errors associated with these terms will not be apparent
ithout additional calculations using nonlinear models. Neverthe-

ess, this approximation is usually valid in some vicinity of m0; from
his point on in this subsection, we ignore these higher-order terms.

Because the reference model m0 is known, the linearized inverse
roblem reduces to estimating the vector of model parameter pertur-
ations mest�m�m0. A corresponding inverse operator F�1 that
stimates the model parameters by minimizing the discrepancy be-
ween d and d0 can be written as

mest�F�1�d�d0� . �8�

n geophysical problems, F is generally singular or nearly singular.
his is the result of inherent ambiguities and/or insufficient and im-
recise data. Hence, F�1 must be approximated.

There are several options for approximating F�1, the most popu-
ar being to include regularization constraints that reduce the effec-
ive number of degrees of freedom by enforcing desired behavior on
he model parameters �e.g., see Matsu’ura and Hirata, 1982�. In this
aper, we consider the commonly used iterative Gauss-Newton
cheme:

mi�1
est � �FTCD

�1F�CM
�1��1FT��d�d0��Fmi

est�,

�9�

here i is the iteration number �m0
est is set to the initial reference

odel m0�; CD is the data covariance matrix that describes all mea-
urement uncertainties of d; CM is the a priori model covariance ma-
rix, which allows regularization constraints, such as requiring spe-
ific spatial variations �e.g., smoothness, roughness, minimum vari-
tion from the reference model� in model parameter values to be en-
orced. Importantly, regularization should be selected such that it
epresents our prior expectations of the posteriori model-parameter
ariations. A least-squares �l2-norm� misfit objective function is im-
licit in equation 9. To maintain assumptions behind the linearized
pproximation, the optimization procedure to estimate m is applied
teratively so that the sensitivities contained in F in equation 6 are re-
valuated at the best estimate of the model-parameter vector m̂

mi
est�mi�1 at iteration i�1.

The quality of the result of an inversion of a truly linear forward
odel can be appraised by examining the model resolution matrix R

nd the posteriori model parameter covariance matrix C, defined as

R� �FTCD
�1F�CM

�1��1FTCD
�1F, �10�

C� �FTCD
�1F�CM

�1��1 �11�

e.g., Menke, 1984�, where F in equations 10 and 11 is evaluated us-
ng equation 6 with m̂ set to the final estimate of parameters m from
he iterative optimization procedure. The resolution matrix R relates
he final estimated model parameters mest to the true model-parame-
er perturbations mt because, by substituting d�d0 �F�mt�mt

est�
n equation 9,

mest�Rmt. �12�

f particular interest are the diagonal elements of R: values close to
ero indicate poorly resolved model parameters, and values close to
ne indicate well-resolved model parameters.

The posteriori covariance matrix in equation 11 translates data un-
ertainties CD into the space of model parameters and combines
hem with the prior parameter uncertainties to estimate posteriori co-
ariances. Off-diagonal elements indicate the degree to which pa-
ameter estimates remain correlated postinversion �i.e., large values
ndicate pairs of parameters that are not independently resolvable�.
iagonal elements are the variances of individual parameter esti-
ates, and small values indicate well-resolved parameters.
Finally, we again note that equations 10 and 11 are only valid for

ruly linear forward models. When the models contain nonlineari-
ies, interpretation of the resolution offered by a data set requires a

ore sophisticated approach �e.g., Stark, 2008�, and experience
hows that estimates of linearized posteriori uncertainty in CD are
sually severely underestimated. In such cases, the quality of poste-
iori parameter estimates should be quantified by calculating or sam-
ling the posteriori parameter PDF using equations 3–5 if computa-
ionally possible.

esign theory

Geophysical survey design theory consists of methods to select
he data-acquisition parameters such that model parameters of inter-
st are resolved optimally. The same theory has been used to opti-
ize the model parameterization to best represent information con-

ained in the data �e.g., Curtis and Snieder, 1997�. However, here we
ocus on the former mode of application.

The inverse problem solutions in equations 3 and 9 are con-
trained by d, by the PDF of prior information on m, and by forward-
roblem physics � relating d and m. Survey-design methods influ-
nce the form of this inverse problem and hence its solution by
hanging which data should be recorded. The goal of the design pro-
edure is to collect those data such that the pertinent information de-
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cribed by solution Q�m� is maximized. The design problem is
herefore a macro-optimization problem where, prior to the survey
aking place, we optimize �design� the inverse problem that we ex-
ect to solve after the survey has occurred.

The selected design is the one that maximizes some objective
unction. Ignoring cost and logistics for the moment, this objective
unction is usually taken to be some measure of expected informa-
ion:

J�� ��Emt

I�Q�m�;� ,mt�� . �13�

ere, � is a vector describing the design �e.g., source and receiver lo-
ations, shot fold, particular equipment to be used�, I�Q�m�;� ,mt� is
measure of the information contained in the resulting posteriori
DF Q�m� for � when the true model parameters are given by mt,
nd the statistical expectation operator Emt

averages I over the distri-
ution of all possible values for the true model mt, which �by our pri-
r knowledge� is expected to be distributed according to the prior
istribution p�m�. The value J�� � should be maximized. If, instead,
minimization problem is desired �e.g., to combine with cost, which
lso should be minimized�, then the negative of the measure in equa-
ion 13 can be used.

Within the expectation in equation 13, the design criterion takes
ccount of all possible potential values mt, their prior PDF p�m�, and
he corresponding data �including their uncertainties� expected to be
ecorded for each model �uncertainties are accounted for within
�m��. To calculate the expectation usually requires integration
ver a far greater proportion of the model and data spaces M and D
ompared to the solution of the inverse problem after a particular
ata set has been recorded �where p�d� is fixed and limited by actual
easurements and hence Q�m� is generally more tightly con-

trained�. Consequently, experimental design is usually far more
omputationally costly than solving any particular inverse problem
ostexperiment.

For this reason, design methods that capitalize on linearized ap-
roximations to the model-data relationship ��m,d� similar to
hose described above that are used for inversion have by necessity
ften been used for designing surveys �e.g., Rabinowitz and Stein-
erg, 1990; Steinberg et al., 1995; see Curtis, 2004a�. Nonprobabi-
istic methods �which do not explicitly consider the prior probability
istribution� have also been used �e.g., Maurer and Boerner 1998a;
urtis, 1999a, 1999b; Stummer et al., 2004; Coles and Morgan,
009�. Truly nonlinearized design methods that optimize the objec-
ive function in equation 13 have been developed in geophysical
roblems only relatively recently �van den Berg et al., 2003, 2005;
urtis, 2004b; Winterfors and Curtis, 2008; Guest and Curtis, 2009,
010�.

The key to understanding any particular design method is to un-
erstand �1� whether the physics describing the forward model are
pproximated �e.g., linearized� or whether the full physics are con-
idered, �2� which information measure I is used in equation 13, and
3� how the macro-optimization is achieved. In recent years, devel-
pments have occurred in all three areas within geophysical survey-
esign applications.

nformation measures and (non)linear physics

hannon information

A critical concept in information theory is that the information
ontent of an uncertain �noisy� process is determined by the process
ntropy �Shannon, 1948�. If X is a random variable that takes a value
which varies probabilistically with PDF p�x�, then the �Shannon�

nformation IShan is defined by

IShan�p�x���c��ent�X���
x

p�x�log�p�x��dx,

�14�

here c is a constant. The entropy ent�X� is a measure �in the sense
f an expected value� of the information in the PDF p�x�. In his well-
nown paper of 1948, Shannon shows that entropy is the only mea-
ure with a certain set of desirable properties �e.g., linear additivity
f the information associated with independent pieces of informa-
ion�.

By setting I� IShan in equation 13, the design process will maxi-
ize an objective function that measures the expected amount of Sh-

nnon information in the posteriori probability distribution Q�m�,
.e., in the PDF of m after the survey has taken place. The constant c
n equation 14 is irrelevant and can be set to zero for design purposes
ecause maximizing IShan for c�0 will also maximize it for any oth-
r value of c.

The main limitation with this design approach is computational.
nless the PDF is nonzero over a finite range, numerically evaluat-

ng the entropy to approximate the integral in equation 14 is compu-
ationally intensive. In addition, for values of x with small probabili-
ies p�x�, log�p�x�� is very large and negative, and it often varies
apidly with p�x�, meaning many samples are needed to obtain a ro-
ust approximation of the integral to estimate the entropy or Shan-
on information.

Although setting I� IShan in equation 13 requires substantial ef-
ort to sample each Q�m� adequately, in nonlinear problems the situ-
tion is even worse. By examining equation 3, it is apparent that
ampling Q�m� is equivalent to solving an inverse problem. When
he forward physical relationship deviates significantly from being
inear, inversion is performed using full Monte Carlo inverse meth-
ds or it proceeds iteratively by solving a sequence of linearized
odels using equations such as equation 9; either process can be ex-

remely demanding computationally. Furthermore, the expectation
perator in equation 13 requires us to evaluate the Shannon informa-
ion for the full range of posteriori PDF distributions of Q�m� that
e are likely to encounter postsurvey �i.e., we would need to invert

very possible data set that might be recorded in the experiment, or at
east a representative selection of them�. Without additional insight,
his approach could only be implemented for simple experimental
esign problems �e.g., one or two model parameters and data�.

The computational limitations inherent in this formulation can be
educed significantly by Shewry and Wynn’s �1987� breakthrough:
nder certain conditions, the Shannon information can be obtained
y maximizing the entropy in the data space ent�p�d�� rather than in
he model space ent�Q�m��. Shewry and Wynn’s conditions require
hat p�m� and the data uncertainties, on each individual datum in d
e independent of the survey design �see Curtis �2004b� for a tutorial
llustrating this conceptual step�. Computing ent�p�d�� requires an
stimate of the PDF p�d�, which can be calculated by projecting

p�m� into data space through the forward model by taking samples
i of m according to p�m� and calculating di� f�mi�. The resulting

et 
di� will be distributed according to p�d�. Evaluating ent�p�d��
nly requires evaluating f rather than solving the inverse problem.
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Even with the simplifications afforded by the assumptions of Sh-
wry and Wynn �1987�, the computational challenge of experimen-
al design that maximizes Shannon information remains significant
or many geophysical problems. However, if implemented with ap-
ropriate Monte Carlo and optimization algorithms, these methods
an be computationally tractable for several important geophysical
ethods, including designing surface seismic surveys and optimiz-

ng data-processing strategies �e.g., Guest and Curtis, 2009, 2010�.
For linear problems, maximizing Shannon information is not de-

endent on the true model �see Curtis, 2004a�; hence, it is unneces-
ary to calculate the expectation in equation 13. Maximizing Shan-
on information is then also equivalent to maximizing the so-called
-criterion �different design criteria are assigned different alphabet-

cal names; see Atkinson and Donev �1992� for an overview�. In sta-
istical literature the D-criterion is usually defined to be the determi-
ant det�FTF�; but as in equation 11, it can be extended to take the
orm det�FTCD

�1F� to incorporate data uncertainties, or to
et�FTCD

�1F�CM
�1� to include the effects of model regularization.

lternatively, using a nonprobabilistic approach, Matsu’ura and
irata �1982� provide a formalism that allows F to be consistently
eighted such that det�FTF� accounts for variations in confidence in
ifferent data or for focusing the information measure on different
arameters of particular interest.

easures of variance

Variance is defined as the expected squared deviation of a random
ariable, say, X, about its mean:

V�X���
X

E��X�E�X��2�dX, �15�

hich measures the expected degree of variation of X. We often de-
ire solutions to geophysical problems that have minimum possible
ariance on the model parameters because such solutions will be ex-
ected to be constrained around some limited range of the model pa-
ameter space M.

A principal limitation in using Shannon information to design
onlinear problems is that it does not necessarily discriminate be-
ween designs that result in high or low variance in the expected in-
ersion solution. Optimal designs might therefore generate maxi-
um Shannon information in the inverse problem solution yet retain

igh variance in that solution.
To understand this counterintuitive statement, consider a PDF

1�x� that allows x to have only one of two distinct values, one or
hree, each with equal probability, and a second PDF p2�x� that al-
ows x to have only the values zero and four with equal probability.
oth PDFs contain identical Shannon information because they both
llow only two possible values for x; hence, in this sense, x is equally
ightly constrained by either PDF: IShan�p1�x��� IShan�p2�x��. How-
ver, solution p2�x� has a higher variance than p1�x� around the com-
on mean value of two. We would usually prefer a design that would

ive postsurvey solution p1�x� over one that would give p2�x� be-
ause the latter more tightly constrains the range of values of x, even
hough the number of possible values that x can assume is the same
n each case.

For this reason, in nonlinear problems, it is often desirable to cre-
te designs that will minimize some measure of spread, such as ex-
ected variance �I�V in equation 13�, rather than designs that only
aximize Shannon information �I� I �. There is also a distinct
Shan
omputational advantage in avoiding the calculation of an integrand
ontaining a logarithm as in equation 14, as explained above. Hence,
he design problem is generally numerically more tractable for vari-
nce than for Shannon information. Nevertheless, we confront the
sual numerical challenge known as the curse of dimensionality,
hich states that computational effort required for integration in-

reases geometrically as the dimensionality of the integrand increas-
s �Curtis and Lomax, 2001�. Hence, it is necessary to look for
smart” methods to approximate the variance or to define less-bur-
ensome measures of spread that are efficient for nonlinear prob-
ems. In the following, we explain one useful alternative derived by

interfors and Curtis �personal communication, 2010� that is ana-
ytically related to variance and is so sufficiently computationally ef-
cient that it has been used to design multisensor microseismic mon-

toring surveys.
Variance or spread is fundamentally related to the distance be-

ween different parameter values �points in model space M� that are
mbiguous with respect to �i.e., are not discriminated by� recorded
ata. Given two points ṁ�m̈ in M �the dots are indices�, it is possi-
le to create various measures of how likely these are to give rise to
he same observation — and hence be indistinguishable given such
n observation. This is determined by the extent to which their re-
pective data-space probability densities p�d �ṁ,� � and p�d �m̈,� �
verlap, where � is a vector that defines the survey design. These dis-
ributions each describe the probability of recording any data vector
if the true parameter values were represented by model ṁ or m̈, re-

pectively. The most straightforward option for such a measure is

S�ṁ,m̈,� �� �
d��

p�d�ṁ,� �p�d�m̈,� �dD . �16�

his defines a so-called bifocal measure �Winterfors and Curtis,
008�, simultaneously focusing on two points �ṁ,m̈� in parameter
pace instead of only one, which is the most common approach �e.g.,
easure IShan in equation 14�.
The measure in equation 16 does, however, have two disadvan-

ages: �1� S�ṁ,m̈,� � is always high for ṁ�m̈, even though this case
oes not contribute to uncertainty in estimates of the model parame-
ers m, and �2� the unit of S�ṁ,m̈,� � is the same as of a probability
ensity p�d� over data space, implying that S�ṁ,m̈,� � will increase
ith decreased observational uncertainty �the opposite ideally

hould be the case for a useful measure of parameter uncertainty�.
Winterfors and Curtis �personal communication, 2010� show that

ne way to overcome the first problem is to multiply S�ṁ,m̈,� � by
he squared distance between ṁ and m̈ �assuming that D is equipped
ith a distance metric d�. The second problem can be addressed by
ividing S�ṁ,m̈,� � by a measure TD of average observational proba-
ility density:

TD� �
d�D

p�d�� �p�d�� �dD . �17�

his results in the ambiguity measure:

R�ṁ,m̈,� ��
d2�ṁ,m̈�

TD
S�ṁ,m̈,� � . �18�

o create a global measure of the ambiguity of an investigation tech-
ique design, it is necessary to take the expectation of R�ṁ,m̈,� �
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75A184 Maurer et al.
ver all possible point pairs in model parameter space, with respect
o the prior parameter PDF p�m�:

W�� �� �
ṁ�M

�
m̈�M

p�ṁ�p�m̈�R�ṁ,m̈,� �dMdM . �19�

he expected observational ambiguity W�� � is thus a measure of the
verage ambiguity of all possible observations, given a survey de-
ign and a prior distribution over parameter values. Therefore, W�� �
an be used to evaluate or design surveys described by � prior to the
cquisition of any observations.

Furthermore, W�� � relates to the expected posteriori variance in a
imple manner: inserting equation 17 into 18, applying Bayes’ rule,
nd changing the order of integration gives

W�� ��
2

TD
�

d�D

p2�d�� �V�m�d,� �dD, �20�

here, if the distance metric d is the standard Euclidian distance,
hen V�m �d,� � is equal to the variance of the posteriori model space
DF, given the data d from a survey with design � �Winterfors and
urtis, personal communication, 2010�. Thus, W�� �, as defined in
quation 19, is the expected variance of the posteriori PDF, weighted
y p�d �� �.
The advantage offered by optimizing using this measure of ambi-

uity rather than the variance itself is that to calculate W�� � using
quations 16–19 requires only forward-model calculations �calcula-
ions of the PDF of d given m on the right-hand side of equations 16
nd 17�. Calculation of the variance V in equation 20 requires calcu-
ating the expected variance of the posteriori PDF of m given d,
hich requires the inverse problem solution. Similar to Shewry and
ynn �1987�, this approximation obviates the need to solve the in-

erse problem, helping to reduce the effect of the curse of dimen-
ionality. Winterfors and Curtis �personal communication, 2010�
how that using W�� � is particularly computationally advantageous
hen data uncertainties can be represented by closed-form PDFs

uch as Gaussian, Poisson, or Laplacian distribution functions.
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es. Dashed line indicates the threshold level that defines the relative
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Minimizing W�� � does not seem to fit into the general framework
f equation 13 because the integration is over the data space D in-
tead of the model space M. To optimize with respect to the ambigu-
ty measure, we have to replace J�� � by W�� � in equation 13. How-
ver, as shown, W�� � can be thought of as a reweighted alternative to
over the model space, and V does fit into the framework of equa-

ion 13 by setting I�V.
In linear models with normally distributed uncertainties, the pos-

eriori variance V�m �d,� � will be constant with respect to the obser-
ation d. As a consequence, optimizing W�� � will then be exactly
quivalent to optimizing the expected posteriori variance. In linear
tatistical experimental design literature, optimizing designs such
hat their expected posteriori variance is minimized is known as the
-optimality criterion. This corresponds to minimizing the sum of

he variances �diagonal elements of C in equation 11�.

ther information measures

In subsequent examples, we use two other measures related to the
-criterion. Besides the determinant of the matrix �FTCD

�1F�, one
ay also consider its eigenvalue spectrum. For the perspective of

ptimizing the resolution of the complete suite of model parameters,
n optimized design should result in a small condition number �ratio
f the largest to the smallest eigenvalue� of �FTCD

�1F�. This can be
chieved by minimizing

�
i

1

�i��
, �21�

here �i are the eigenvalues and � is a small positive constant �see
urtis �1999b� for an extensive discussion of this and related mea-

ures�.
Another possible choice is to define a measure that is related to the

nresolved part of the model space �null space�. The choice of a sur-
ey layout governs the structure of the matrix F, and close inspection
f equation 9 indicates that the reliability of the parameter estimates

est depends primarily on our ability to invert the matrix �FTCD
�1F

CM
�1�. Without the regularization constraints in CM

�1, this matrix
ould likely be singular, such that its determinant would be zero and

ts condition number would be infinite. The sensitivities in F repre-
ent the information content offered by a particular survey design
nd CM

�1 indicates our preconceived ideas on the subsurface struc-
ure �e.g., closeness to a prior model estimate or that it should have
mooth spatial variations�, so it is certainly advisable to maximize
he contribution of FTCD

�1F and to minimize the influence of CM
�1.

Figure 2 shows two typical eigenvalue spectra of FTCD
�1F as they

ay arise from a geophysical inversion experiment. The vertical
xis is logarithmically scaled and normalized with respect to the
argest eigenvalue of the corresponding spectra, and the horizontal
xis is normalized by the total number of eigenvalues �number of
odel parameters�. Because of the finite precision of numerical

omputations, eigenvalues are rarely identical to zero, even when
he matrix is singular. Therefore, a threshold must be introduced be-
ow wherein the eigenvalues are considered to be insignificant
dashed line in Figure 2�. The intersections of the eigenvalue spectra
ith the threshold line indicate the portions of the resolved model

pace and the unresolved null space. We define the range of signifi-
ant eigenvalues, the relative eigenvalue range �RER�, to be the hor-
zontal coordinate of the intersection point. This provides a simple
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Optimized geophysical survey design 75A185
nd intuitive means for quantifying the quality of a particular survey
esign. For example, the hypothetical survey design 2 in Figure 2 is
uperior to survey design 1.

acro-optimization methods

Ideally, when designing an experiment, one searches exhaustively
or the design that optimizes the design objective function in equa-
ion 13. A variety of minimization algorithms are available for this
ask. The most popular method historically has been the Detmax al-
orithm �Mitchell, 1974�. However, other authors have used genetic
lgorithms �Hardt and Scherbaum, 1994; Curtis and Snieder, 1997;
aurer and Boerner, 1998a; Curtis, 1999a, 1999b�, simplex algo-

ithms �Winterfors and Curtis, 2008�, simulated annealing �Barth
nd Wunsch, 1990�, or multilevel coordinate search �Ajo-Franklin,
009�. Conceptually, any global optimizer can be used. The most
uitable choice is problem dependent.

When there are multiple design parameters, searching the entire
esign space �the space of all permissible combinations of design pa-
ameters� may be computationally unfeasible. Sequential design
trategies have been developed in many linear design studies �e.g.,
urtis et al., 2004; Stummer et al., 2004; Coles and Morgan, 2009�,
nd Guest and Curtis �2009, 2010� introduce a sequential design
trategy applicable to nonlinear problems. Such algorithms general-
y increment the number of elements within the design vector � for
ach iteration:

� j�arg max�J�� j��, such that � j�1 is fixed, �22�

here � j� 
� 1, . . . ,� j�, with � i an element of the design vector � , and
here J is the objective function in equation 13. The new optimal de-

ign � j combines the design defined at the previous iteration � j�1,
ugmented by the single datum defined by � j that maximizes �mini-
izes� the objective function given that � j�1 remains fixed. In this
ay, the work required to design an experiment with n design pa-

ameters is reduced from searching an n-dimensional design space
o n separate searches of 1D design spaces. Although at each itera-
ion the design is only locally optimal, Guest and Curtis �2009� show
hat for nonlinear AVO/AVA design problems, the locally optimal
esign is almost identical to the globally optimal design �for prob-
ems in which the globally optimal design could be calculated�.

The choice of which specific algorithm to use should in principle
e affected by the so-called no-free-lunch �NFL� theorems �Wolpert
nd Macready, 1997�. These state that no single optimization algo-
ithm is ideally suited for all objective functions �and conversely, no
ingle objective function is ideally suited to be minimized by all op-
imization algorithms�. D. Coles and A. Curtis �personal communi-
ation, 2010� examine the influence of NFL theorems on linearized
tatistical experimental design by comparing several sequential op-
imization algorithms on three quite different design objective func-
ions. They show that within this limited context, a clear ranking is

ade between the optimization algorithms: almost regardless of the
bjective function, the best algorithm allows incremental augmenta-
ion and reduction of the design at each iteration. Hence, somewhat
urprisingly, Coles and Curtis do not observe the effect of NFL theo-
ems within this limited context.
EXAMPLES

xample 1: Designing geoelectrical experiments

Geoelectrical methods have been applied with great success for
any years �e.g., Butler �2005� and references therein�. Until the

arly 1990s, interpretation of geoelectrical data was performed pre-
ominantly in terms of layered-earth models, and the measurements
ere conducted almost exclusively with standardized electrode con-
gurations such as Schlumberger, Wenner, or dipole-dipole �e.g.,
elford et al., 1990�.
Figure 3a shows a Schlumberger electrode configuration. The
easuring dipole is centered in the configuration, and the two elec-

rodes, where current is injected, are each deployed at a distance r
rom the center. Schlumberger experimental design thus consists of
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75A186 Maurer et al.
arying a single parameter, the distance r between the current source
nd sink. Traditionally, r is varied over a suite of regularly log-
paced distances. The resulting data are then inverted for layer con-
uctivities and layer thicknesses.

A typical layered-earth model with a conductive middle layer is
hown in Figure 3b. Our goal is to constrain all five model parame-
ers �three layer conductivities and two layer thicknesses� in an opti-

al fashion. The data space consists of 40 distances r, logarithmical-
y spaced over a range of 1–10,000 m.

Intuitively, one might expect optimal layouts to include more-or-
ess equally log-spaced recording distances, as suggested by the sen-
itivity design studies of Oldenburg �1978�. Figure 3c shows cost/
enefit curves for equally log-spaced experiments �sequentially add-
ng larger r values to the design� and optimally designed experi-

ents using a genetic algorithm �see Maurer et al. �2000� for de-
ails�. The optimized experiment is found by maximizing the design-
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igure 4. A 2D geoelectrical survey design. �a� True subsurface mo
lectrodes �vertical arrows�. �b� Inversion result using the comprehen
ersion results obtained with a combination of Wenner and dipole-d
ersion results with the optimized data sets. �g� Depth range �filled b
he cost/benefit curve in �h� is constructed. The star in �h� denotes the
ata set, and the vertical arrows indicate the results for the optimize
d–f�.
oodness measure in equation 21. Benefit is expressed as a
ormalized goodness �goodness of a particular experiment divided
y goodness of the complete data set of 40 distances�, and costs are
ssumed to be proportional to the number of measurements.

For the equally log-spaced design, the curve in Figure 3c exhibits
ome erratic behavior. This indicates that rigidly incrementing r log-

arithmically can provide data that contain only limited information
for resolving the five model parameters. The goodness can even de-
crease when more data points are added by following a rigid log-
space sampling strategy. This is caused when particularly critical
distances might be missed using a rigid sampling scheme. In the op-
timized design, the goodness increases monotonically and reaches
the level of the full-scale experiment at about 20 data points. The re-
sult suggests that conventional Schlumberger DC resistivity sound-
ings might be made substantially more cost effective by a judicious
choice of r values needed to resolve the earth model. Maurer et al.

�2000� also discuss strategies for optimized lay-
outs suitable for a range of different subsurface
models.

The simple layered-earth experiment shown in
Figure 3 is interesting conceptually but of limited
practical relevance. Today, it is more common
that geoelectrical data are acquired using multi-
electrode systems �e.g., Griffiths and Turnbull,
1985; Stummer et al., 2002�. Such data sets are in-
verted tomographically �e.g., Loke and Barker,
1996� to create 2D and 3D subsurface images,
which provide substantially more realistic infor-
mation about the earth compared with layered-
earth models. The data space of such experiments
can be very large. For an n-electrode array, there
exist n�n�1��n�2��n�3� /8 nonreciprocal
configurations. For experiments using 30, 50, and
100 electrodes, one conceptually could have
82,215; 690,900; and 11,763,675 data measure-
ments. These types of experiments are extremely
difficult to design because there are no heuristic
means by which to determine the type and num-
ber of configurations that would provide favor-
able cost/benefit ratios.

Statistical experimental design, as applied to
the simple Schlumberger sounding example, is
computationally too expensive for 2D or 3D earth
models because the goodness function would
have to be evaluated many times during global
optimization. Therefore, Stummer et al. �2004�
propose a sequential design strategy, whereby an
initial measurement configuration is chosen and
then sequentially augmented until the desired
benefit level is reached. The initial data set can be
one of the standard electrode configurations or
even a single set of injecting and measuring bi-
poles. The choice of the next electrode configura-
tion in the sequence is governed by examining
which has the largest potential of adding informa-
tion content. Stummer et al. �2004� define an in-
cremental information measure based on the lin-
ear independence of a candidate configuration
with respect to the configurations already select-
ed. Furthermore, they consider the relative in-
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rease of the formal resolution �defined via the model resolution ma-
rix; see equation 10� within the individual model cells. There is
ome latitude on how to define the value of incremental information.
or example, Wilkinson et al. �2006�, Coscia et al. �2008�, and Loke
nd Wilkinson �2009� use measures based entirely on the increase of
he formal resolution.

The 2D example shown in Figure 4 is adapted from Stummer et al.
2004�. Figure 4a shows the true subsurface model and a deployment
f a 30-electrode array. From all possible configurations of injection
nd measuring dipoles, we exclude those with crossed injecting and
urrent dipoles and configurations with unfavorable geometric fac-
ors, leaving 51,337 out of a possible 82,215 measurement configu-
ations. Stummer et al. �2004� denote this reduced suite of configura-
ions as a comprehensive data set. Inversion of a comprehensive data
et leads to the image shown in Figure 4b. It reflects the total infor-
ation content offered by the complete data space. For comparison,
igure 4c shows the result using a combination of all possible Wen-
er and dipole-dipole configurations �subject to the same geometric
actor restrictions as for the comprehensive data set: 282 configura-
ions�.At shallow depths, the tomograms in Figure 4b and c are com-
arable, but other electrode configurations are apparently needed to
esolve the deep conductive feature between x�20 and 40 m and d

10 and 30 m that is recovered in the inversion of the complete
ata set.

Although Figure 4b and c demonstrates that traditional configura-
ions do not recover the full information content offered by the geo-
lectrical method, collecting a comprehensive data set would not be
ost effective. Determining the appropriate measurement configura-
ions requires optimized experimental design. We follow the se-
uential design strategy of Stummer et al. �2004� and start with a di-
ole-dipole data set �147 data points�; then we add successively
ore configurations. At 282 data points �the same number as the

ombined Wenner/dipole-dipole data set�, the information content
as already improved �compare the inversion results shown in Fig-
re 4c and d�. Successively adding further data leads to dramatic im-
rovements of the recovered images �Figure 4e and f� using only a
inor fraction �2%� of the complete data set.
The image-quality increase can be quantified by analyzing the in-

rease of the formal resolution. For example, imagine we are partic-
larly interested in resolving the depth range of the conductive
nomaly. To quantify this, we sum the normalized resolution �corre-
ponding diagonal elements of the model resolution matrix ex-
ressed as a percentage of the comprehensive data-set experiment�
f the cells highlighted in Figure 4g and plot the average relative res-
lution as a function of the number of data points. The initial dipole-
ipole data set provides only approximately 20% of the total infor-
ation content in this depth range. When further configurations are

dded, the relative resolution increases quickly. At about 1000 data
oints, the cost/benefit curve enters into the realm of diminishing re-
urns. In fact, the image in Figure 4f is already quite comparable to
hose of the comprehensive data set, and it is very similar to images
onstructed with 2000, 5000, and 10,000 data points �not shown�.

The sequential experimental design procedure �Figure 4� is calcu-
ated using sensitivities for a homogeneous half-space to represent
he state of knowledge prior to an experiment. One might expect that
sing this approximation when the current-flow patterns �and thus
lso the sensitivities� are disturbed by the presence of the conductiv-
ty anomalies of the true model �Figure 4a� would lead to suboptimal
esign results. Surprisingly, this is not the case, as demonstrated in
tummer et al. �2004�. This also indicates that linear experimental
esign is adequate for such types of problems; the much more expen-
ive nonlinear methods are not expected to provide superior results.

xample 2: Designing seismic crosshole experiments

raveltime tomography

Figure 5a illustrates a simple seismic experiment to resolve the
eologic structure between two parallel boreholes. Shots �red dots�
an be placed in the borehole on the left or at the surface, whereas re-
eivers �blue circles� are installed in the borehole to the right or at the
urface. All useful shot-receiver combinations can be subdivided
nto three different categories: �i� shots in the left borehole and re-
eivers in the right borehole, �ii� shots in the left borehole and receiv-
rs at the surface, or �iii� shots at the surface and receivers in the right
orehole. With these subsets, we form three data spaces: D1� �i�,
2� �i�� �ii�, and D3� �i�� �ii�� �iii�. The geologic properties
f the medium between the boreholes are assumed to be homoge-
eous, meaning that the rays between shots and receivers can be
odeled with straight lines for computing the traveltime sensitivi-

ies. Each of the three data sets includes 20 shot and receiver posi-
ions, which results in 400 traveltimes �1200 traveltimes for all three
ata sets�. The model cells have a width of 2.5 m, and the total num-
er of cells is thus 40�40�1600.

Figure 5b shows the eigenvalue spectra of FTF �the data covari-
nce matrix CD

�1 is assumed to be a unity matrix in this example� for
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75A188 Maurer et al.
1, D2, and D3 when all shot and receiver positions are considered.
he tomographic imaging plane is subdivided in a relatively fine
esh of model cells �Figure 5a�, so the problem is strongly underde-

ermined �more model parameters than data� and exhibits a signifi-
ant null space. Using a threshold value of 10�4 for the normalized
igenvalues �dashed line, Figure 5b� leads to RER values �see also
igure 2� of about 0.25, 0.47, and 0.62 for D1, D2, and D3, respective-

y. This indicates that placing shots and/or receivers at the surface in-
reases the information content of the data significantly �see also
urtis, 1999a, 1999b�.
Our goal is to use statistical experimental design to determine if it

s possible to obtain an RER value for a subset of shot and receiver
ositions that is similar to that for the complete data set C. We initial-
y select a single shot and receiver position and then add shot or re-
eiver positions sequentially. All possible source-receiver pairs for
he current selection of sources and receivers are considered. The
hoice of each subsequent shot or receiver position is made such that
he resulting RER value is increased maximally by testing every pos-
ible source and receiver as a possible candidate. Although this ap-
roach requires many eigenvalue decompositions to be performed,
he computations do not impose a major problem ��2 hours are re-
uired to run the design study in Figure 5 on a standard workstation�.
or constructing cost/benefit curves, we make the simplifying as-
umption that adding a shot or receiver position is equally expen-
ive. Costs are thus proportional to the total number of shot and re-
eiver positions, and benefit is represented by the RER value.

Figure 5c shows the experimental design results. The black curve
ndicates the RER, when shot and receiver positions contained in
ata space D1 are considered. Initially, the RER increases only slow-
y and then exhibits a more-or-less linear increase until it reaches its

aximum level of about 0.25. The results for D2 �blue curve� and D3

red curve� are similar. Unlike the slightly overdetermined geoelec-
rical examples �Figure 4c and h�, the area of diminishing returns in
his underdetermined crosshole imaging experiment is quite small.
hus, depending on the survey’s objectives, it may be worthwhile to

nclude as many shot and receiver positions as possible in the experi-
ental design. The sequence of shot and receiver position choice de-

ends on the selection of the initial shot and receiver positions, but
he development of the RER values �Figure 5c� is virtually identical
or any choice of the initial configuration.

For strongly underdetermined problems, the cost/benefit relation-
hip can be expected to be fairly linear, with little evidence of dimin-
shing returns. However, adding more shot and receiver positions to
he data space would leave only a small underdetermined compo-
ent, and the curves in Figure 5c would flatten out at some point.
here is a hint of this effect for all three curves in Figure 5c. The law
f diminishing returns therefore also applies to this type of experi-
ental design, but the base data sets D1, D2, and D3 have been chosen

uch the cost/benefit curves cover only the linearly increasing part.
The underdetermined nature of the problem is also the reason for

he apparent contrast of our results with those of Curtis �1999b�. The
atio of source-receiver spacing to model cell width in Figure 5 is 2.0
5-m source-receiver spacing, 2.5-m cell width; see Figure 5a�,
hereas the comprehensive data set in Curtis �1999b� has a corre-

ponding ratio of 0.5. Hence, adding data �i.e., raypaths� in the Curtis
1999b� example rapidly increases the information content by virtue
f obtaining data �sampling� from more model cells.

Finally, Figure 5c demonstrates that improving the cost/benefit ra-
io does not substantially depend on having shots or receivers at the
urface. If the surface locations would be truly significant, the blue
nd red curves �shots and receivers at the surface and in boreholes� in
igure 5c should produce RER values that are significantly above

he value of the black curve �shots and receivers only in boreholes� at
0 shot-receiver positions �all shots and receivers in the boreholes�,
hich is not the case. Clearly, this conclusion is only valid for the
verall conditioning of the inversion problem. If the near-surface
tructures would be of primary interest, the contribution of the sur-
ace receivers would be significant.

requency-domain waveform inversion

In addition to traveltime information, the frequency-dependent
ehavior of seismic wave propagation can be used to infer the elastic
roperties of the subsurface area of interest �e.g., Pratt, 1999�. How-
ver, a critical aspect of designing frequency-domain waveform ex-
eriments is the choice of frequencies. The importance of selecting
he frequencies for measurement to improve inversion results is dis-
ussed, for example, by Sirgue and Pratt �2004�. Here, we present an
lternative approach that is further described in Maurer et al. �2009�.

The experimental design, shown in Figure 6a, includes 31 shots
ositions in the left hole and 31 receiver positions in the right hole.
he model area is 30�30 m and consists of a medium exhibiting a
tochastic velocity distribution with a standard deviation of
00 m /s, a correlation length of 8 m, and a fractal dimension of 0.5.
dditionally, positive and negative square-shaped velocity anoma-

ies with dimensions 2�2 m2 were added to the stochastic back-
round model. Here, we make an acoustic approximation so that
nly P-wave velocities VP are considered in the model space. As a
ource function, we consider a Ricker wavelet with a center frequen-
y of 700 Hz. The data space includes all source and receiver posi-
ions that are fixed, leaving us to focus on the choice of frequencies.

e seek to select an optimized subset from 30 equally spaced fre-
uencies between 100 and 1500 Hz.

The inversion methodology is similar to that described for the
raveltime tomography, except that we start with a single frequency
nd add other frequencies sequentially. Because seismic waveform
nversions are known to be prone to nonlinear effects that can trap
he iterative inversion in local minima, it is common practice to es-
ablish an initial model using only low frequencies �e.g., Brenders
nd Pratt, 2007�. Therefore, we choose the lowest frequency
100 Hz� for initializing the statistical experimental design algo-
ithm.

A simple �nonoptimized� experimental design strategy would be
o always add the next-higher frequency until the entire data space is
elected. The corresponding eigenvalue spectra of such an approach
re shown in Figure 6b, where each line indicates the eigenvalue
pectrum resulting from adding each sequential frequency. The de-
elopment of the RER values �using a threshold value of 10�10� is
isplayed in Figure 6d as a dashed line. The information content in-
reases steadily; after about 18 frequencies, the RER curve reaches
he area of diminishing returns and flattens out.

Selecting the frequencies on the basis of the RER criterion �choos-
ng the next frequency such that the RER increases maximally� re-
ults in eigenvalue spectra as shown in Figure 6c and in RER devel-
pment as shown with the solid line in Figure 6d. After only three
requencies, we almost reach the RER value for the full-scale experi-
ent using all frequencies.After the initial frequency of 100 Hz, the

lgorithm selects the highest frequency �1500 Hz�. The third fre-
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uency is also chosen from the higher end of the spectrum, but it is
ot the second-highest frequency �see Maurer et al. �2009� for more
etails�.

Results of the tomographic inversions using all 30 frequencies or
nly the three optimal frequencies selected by the experimental de-
ign are shown in Figure 7. On the basis of the results in Figure 6, one
ould expect the results to be similar, which is indeed the case. In the

entral part and in the low-velocity regions where the formal resolu-
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igure 6. Frequency-domain waveform inversion design. �a� True
elocity model and shot and receiver positions. �b� Normalized ei-
envalue spectra for progressively adding higher frequencies. �c�
ormalized eigenvalue spectra for adding optimized frequencies.

d� Cost/benefit curves for adding progressively higher frequencies
dashed line� and optimized frequencies �solid line�.
ion is quite good, the individual features are well resolved. Only in
he high-velocity region near the upper edge of the model do both to-

ograms suffer from resolution problems.

xample 3: Nonlinear experimental design — Designing
VA surveys

The amplitude of a seismic wave reflected from a subsurface
oundary between two geological layers at depth �Figure 8� is a
unction of the wave’s incident angle at the boundary, the density 	i,
nd the intrinsic properties of the elastic media �i.e., for isotropic me-
ia, the P-wave velocity 
 i, and S-wave velocity � i� of both layers i

1,2. The recorded amplitudes of the reflected waves �after geo-
etric spreading effects have been accounted for� are given by the

olution to the Zoeppritz equations �e.g., Yilmaz, 2000�.
If the upper-layer parameters are known, it is possible to obtain in-

ormation about the elastic media properties 
2 and � 2 and the densi-
y 	2 of the lower layer �e.g., a reservoir� from measurements of the
eflected P-wave amplitude at a range of incidence angles i1. The for-
ard model in this case takes the form
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A1�i1�� fx�
2,� 2,	2;i1�,

here A1 is the amplitude of the reflected P-wave and fx is a function
hat represents a solution of the highly nonlinear Zoeppritz equa-
ions.

The experimental design problem addressed by van den Berg et al.
2003, 2005� attempts to find the offset between the source and a sin-
le receiver that maximizes Shannon information about the lower
ayer, taking account of the full nonlinearity of fx. They direct Monte
arlo sampling of the prior model PDF, evaluating and maximizing

he data-space entropy using the method of Shewry and Wynn
1987�.Although it is true that maximizing Shannon information can
ead to large variances, this does not occur in the van den Berg et al.
2003, 2005�AVO example.

Guest and Curtis �2009� introduce sequential algorithms that add
ne receiver at a time to the one-receiver design, using a schema sim-
lar to that in equation 22. They develop a novel adaptive Monte Car-
o method that, for each design parameter added, successively ex-
ludes parts of design space over which the entropy was estimated
ith low uncertainty to be small. Large computational efficiency
ains result, as compared to van den Berg et al.’s methods. This al-
ows optimal survey designs to be found for a survey with multiple
�10� offsets, which is enough to identify simple patterns of receiv-
r spacing in optimal designs that could be used as rules of thumb
heuristics� for more complex designs.

Guest and Curtis �2010� apply this method to find the optimal set
f incident angles �i1� at the interlayer interface that best constrains
he elastic properties of a simulated reservoir from recorded P-wave
eflection coefficients; source-receiver offsets at the earth’s surface
orresponding to these optimal angles at the reflector can then be
ound with ray-tracing algorithms. Processing algorithms can be op-
imized to focus attention �e.g., noise-reduction methods and time
pent by data processors� on data recorded around those offsets.

By using the shaly-sand model of Goldberg and Gurevich �1998�
hat relates porosity, clay content, fluid saturation, and a range of oth-
r petrophysical properties to VP and VS and to density, Guest and
urtis �2009, 2010� find that the optimal design depends significant-

y on the reservoir’s porosity. This is easily understood by examining
he critical angles from a forward problem for oil reservoirs of low
orosity �uniform prior PDF is 10%–20%�, medium porosity �uni-
orm prior PDF is 20%–30%�, and high porosity �uniform prior PDF
s 30%–40%�. Figure 9 shows the corresponding P-wave reflection

Source Receiverx

X V

di1 i1

j1

j2
i2

α1,β1,ρ1

α2,β2,ρ2

igure 8. Geometry of an AVA experiment with a single interface at
epth d. The distance between the source X and the receiver V is
alled the offset x. At the interface, P-wave energy incident at angle
1 is split into a reflected P-wave �angle i1� and a P-S wave conversion
angle j1� and is also transmitted into the second layer as a P-wave
angle i2� and P-S-wave conversion �angle j2�. Amplitudes of each
ave are given by the Zoeprittz equations. Properties of the subsur-

ace are density 	, P-wave velocity 
, and S-wave velocity � in lay-
rs 1 and 2.
oefficient ranges and demonstrates that the critical angle changes
ignificantly with the range of possible porosities. In particular, the
ritical angle is never reached by any survey design for a high-poros-
ty substrate.

Using the sequential nonlinear design methods with the novel
onte Carlo method, an optimal set of angles is derived to maximize

he Shannon information about the parameters of the lower layer.
igure 10 shows the optimal designs for 10 incident angles selected
rom the range 0°–90° at 0.5° intervals. Three design optimizations
re performed, one for each of the three different porosity ranges in
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igure 9. Reflection-coefficient histograms for oil-filled reservoir
elocity-density models with varying uniform prior porosity ranges.
a� The low-porosity reservoir �10–20%�, �b� the medium-porosity
eservoir �20–30%�, and �c� the high-porosity reservoir �30%–
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igure 9 �all other petrophysical parameters were allowed to vary
ithin broad ranges defined by their respective a priori probability
istributions�. As the porosity increases, so does the range of angles
panned by the selected angles. For the low-porosity model �Figure
0a�, all angles are located within 0°–51°, with each of the two angle
lusters located within 11° envelopes.As the porosity range increas-
s, so does the maximum incident angle and so does the angular
ange of each of the two envelopes within which angles are selected.
ote that the survey design for the midporosity reservoir almost pre-

ludes the measurements from the low-porosity design for the far-
ffset envelopes, illustrating the importance of prior porosity infor-
ation inAVAsurvey design.
Comparing Figures 9 and 10, we see that the optimal designs use

ngles to obtain information from �1� near-zero incident angles and
2� the critical angle or from �3� the highest-curvature region in the
bsence of a critical angle. The algorithm selects incident angles that
isplay the largest sensitivity to perturbations in the elastic parame-
ers of the second layer. These regions display the maximum uncer-
ainty or entropy in the data PDF p�d�. Shewry and Wynn �1987�
rove that this implies maximum expected Shannon information
bout the model parameters.

The results from the 10-angle optimization can be generalized.
igure 11 shows the spatially averaged density of receiver positions
alculated from the angle positions in Figure 10 for each of the dif-
erent-porosity oil-saturated reservoirs �Guest and Curtis, 2010�.
or high-porosity reservoirs �dotted line�, a larger proportion of the
elected angles to be processed should be placed at high incident an-
les �around 55°�. As the porosity decreases, the highest density
ange also shifts to lower angles. For all cases, there is a density min-
mum near 30°, identifying an information minimum around that an-
le.

Guest and Curtis �personal communication, 2010� are developing
he approach further by directly designing the optimal receiver den-
ity curves �similar to those in Figure 11� for a surface seismic AVA
urvey. The receiver density curve can be encapsulated by a very few
esign parameters �in this case, receiver density at the beginning,
iddle, and end of the receiver line with linear interpolation be-

ween these points�, leading to a fairly low ��10� dimensional de-
ign problem. Despite this simplicity, if an appropriate density curve
s designed, any number of receivers can be placed according to that

0 10 20 30 40 50 60 70 80 90

Incident angle

c)
0 10 20 30 40 50 60 70 80 90

b)
0 10 20 30 40 50 60 70 80 90

a)

igure 10. Experimental design for the reservoir model with varying
rior porosity ranges using 10 selected traces implementing the
uest and Curtis �2009� method. �a� The final design for the
0%–20% porosity reservoir, �b� the 20%–30% porosity reservoir,
nd �c� the 30%–40% porosity reservoir. Receivers are allowed to be
laced between 0° and 70° incident angle.
esign. Thus, for the first time, they have designed full 2D seismic
urveys using SED methods — in this case, to find designs that max-
mizeAVAreservoir information.

Interestingly the possible angle distribution is limited to 0°–30°
current practice because commonly used approximations to the
oeppritz equations break down at larger angles�, and Guest and
urtis �personal communication, 2010� find that the dependence of

he design on porosity is greatly reduced. The strong dependence is
erived from large changes in the critical angle with any change in
xpected porosity; the lack of dependence when the reduced angular
ange of 0°–30° occurs is because the critical angle is almost always
xcluded from this angular range in realistic scenarios �see Figure
0�, so the strongest dependence of the AVA relations on porosity is
emoved from consideration. Hence, Guest and Curtis could create a
eneral, approximately optimal, small-angle design, valid for all
easonable porosities and a range of other reservoir properties.Akey
esult is that this design depends strongly on the number of receivers
laced, up to about 100 receivers; thereafter, the design is fairly sta-
le with respect to the number of receivers.

onlinear experimental design — Microseismic event
ocation surveys

Rather than merely maximizing Shannon information, experi-
ental design theory also can be used to evaluate the differences be-

ween designs by understanding the model-resolution capability of
eophysical data. Here, we evaluate one simple survey design for lo-
ating microseismicity using the bifocal ambiguity measure of equa-
ion 19 �Winterfors and Curtis, personal communication, 2010� giv-
n in equation 9, and then use the same measure to find an optimal
esign.

Seismometer arrays are often used to locate and characterize seis-
icity from fault movement or microseismicity from fracturing that

ccurs in the earth’s subsurface, resulting from naturally occurring
tresses caused, for example, by tectonic motion and glacial rebound
r from stress changes caused by fluid injection or extraction in sub-
urface reservoirs. Location is usually achieved by detecting arrival
imes of seismic waves emanating from each seismic event and by
ack-projecting the wave energy and hence arrival times through an
pproximate model representing the earth’s subsurface seismic ve-
ocity or slowness �the reciprocal of velocity� structure. Methods
uch as migrating event energy act in a similar manner �back projec-
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igure 11. Receiver density plots calculated from the oil-reservoir
cenarios considered in Figures 9 and 10. The regression lines have
een fitted to 10° moving-average results. The low-porosity
10%–20%� oil-reservoir density is shown by the solid line, the me-
ium-porosity �20%–30%� oil-reservoir density by the dashed line,
nd the high-porosity �30%–40%� oil-reservoir density by the dot-
ed line.
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ion� but use waveform information �rather than only traveltimes� to
ocate events. This nonlinear inverse problem can result in multimo-
al posteriori PDFs Q�m� �see Lomax et al. �2009� for a review�.

Intuitively, survey designs for locating and monitoring seismicity
hould maximize geometric aperture of the survey to improve trian-
ulation accuracy; but because of attenuation of the energy in propa-
ating seismic waves, increasing aperture reduces data quality for
ncreased event-to-seismometer distances. Seismometer arrays are
ften deployed only on the surface �e.g., Rabinowitz and Steinberg,
990; Steinberg et al., 1995; Winterfors and Curtis, 2008� or only in
borehole �e.g., Curtis et al., 2004�. When available, boreholes are

ometimes preferred because they offer advantages in terms of sig-
al-to-noise ratio by placing sensors below the weathered near-sur-
ace layers of the earth �often highly attenuating to seismic waves�,
hich are assumed to outweigh geometric advantages that might be
ffered by placing sensors on the surface. However, the question re-
ains as to the quantitative interpretational advantages or disadvan-

ages of monitoring from the surface or from a borehole in a horizon-
ally stratified earth, even ignoring near-surface attenuation effects.
ere, we examine this question using a simple example from Win-

erfors �personal communication, 2010� and based on evaluating the
mbiguity measure of Winterfors and Curtis �personal communica-
ion, 2010� in equation 19.

Figure 12 is a graphical representation of the ambiguity W�� � in a
micro�seismic event location problem given a two-receiver survey
esign using sensors on the surface of a 2D, horizontally stratified,
eismic velocity model. The slownesses shown are the differences
etween P- and S-wave slownesses in each layer because these can
e used to locate events without determining the event-source tim-
ng �Tarantola and Valette, 1982�. The cross section measures 1000

1000 m, and it is assumed that seismicity could occur anywhere
ithin this cross section with a uniform prior probability. The stan-
ard deviation of a priori uncertainty in layer velocities is assumed to
e 100 m /s, and the traveltime data uncertainties have standard de-
iations of 5 ms.

Evaluating the ambiguity measure W�� � in equation 19 requires
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igure 12. Bifocal ambiguity calculated for the seismic-monitoring
esign shown by the two receivers �squares� on the surface. Colors
how the difference between S- and P-wave seismic slownesses in
he subsurface. Black lines connect pairs of locations ṁ and m̈ in the
ubsurface that would be indistinguishable given P- and S-wave ar-
ival-time data recorded at the two seismometers. The width �hence
arkness� of each line is proportional to the magnitude of the inte-
rand in equation 19, i.e., to the relative contribution of these points
o the integral, and hence to precisely how ambiguous the two loca-
ions are expected to be postsurvey given recorded data. The value of
he integral in this case is W�� ��2500 m2.
hat a double integral over model-parameter space be estimated nu-
erically — in this case, using a Monte Carlo method. Winterfors

nd Curtis �personal communication, 2010� provide several tech-
iques that improve the efficiency of the Monte Carlo method �e.g.,
ecycling forward function evaluations f�ṁ� by also using them for
�m̈��. In this case, the forward function d� f�ṁ� involves solving
he eikonal equation to obtain arrival-time data d at all receiver loca-
ions for any event location ṁ.

The Monte Carlo scheme considers many pairs of points in pa-
ameter space; in Figure 12, each black line connects a pair of loca-
ions ṁ and m̈ in the subsurface encountered in the Monte Carlo in-
egration that would be almost indistinguishable from P- and S-wave
rrival-time data recorded at the two surface seismometers, i.e.,
�m̈�� f�ṁ�. The width of each line is proportional to the magnitude
f the integrand in W�� � in equation 19; that is, width indicates the
mbiguity of the two locations in the postsurvey interpretation.
ome of the line widths are too small to distinguish clearly, but this is
eliberate; only locations that are highly ambiguous have bold lines
o indicate that they make the largest contributions to the ambiguity

easure W�� �. Thinner lines connect locations that are still ambigu-
us but which are expected to be better discriminated by the data and
ence provide a lower contribution to W�� �. In this plot, the density
f the black lines therefore indicates the extent and location of mod-
l-space ambiguity for a particular survey geometry, and the general
rientation of the lines indicates the direction of this ambiguity.
hus, interpreting Figure 12, we see that indistinguishable seismic

ocations are confined to the top two surface layers for this particular
eceiver geometry and that the overall direction in which locations
annot be distinguished is approximately vertical. The overall ambi-
uity calculated for this design is W�� ��2500 m2.
The receiver locations are then optimized such that W�� � is mini-
ized using a gradient-descent method. Receivers are allowed to be

laced on the surface or in a borehole on one edge of the cross sec-
ion. Figure 13 shows a similar representation of the ambiguity in the
ame velocity structure as in Figure 12 but for two optimally located
eceivers, both of which turn out to be in the borehole. Compared to
igure 12, the ambiguity of event locations �the density of black

ines� is far more evenly distributed throughout the cross section.
lso apparent is the reduced expected ambiguity for this design, as

hown by the reduced line widths; relatively few locations are
trongly ambiguous. However, we also see that the distances be-
ween ambiguous event locations �line lengths� are generally short-
r; hence, we expect that the variance in event locations postsurvey
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f the integral in this case is W�� ��1000 m2.
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hould be smaller, as suggested by equation 20. Correspondingly,
he overall ambiguity calculated for this design is W�� ��1000 m2.

Nominally, the two-receiver arrays in both surveys have almost
he same geometric aperture for locating the events, yet they provide
uite different degrees of ambiguity in resulting event locations. In-
eed, the better of the two designs actually has lower spatial aper-
ure. The dominant uncertainties in event location are vertical for an
rray of surface sensors in a horizontally stratified medium. This is
ecause first-arriving waves from the ambiguous event locations
ake approximately equal time to travel directly to an adjacent high-
elocity layer and then follow similar paths horizontally along and
ithin that layer and then up to each seismometer. Hence, data re-

orded at such seismometers cannot distinguish between the two lo-
ations. Using vertically offset borehole receivers above and below
uch high-velocity layers reduces much of this ambiguity without
ntroducing a similar ambiguity in the horizontal direction because
he layers are geometrically orthogonal to the observation well.
hus, first-arriving energy generally cannot travel within any single
igh-velocity layer to both of the receivers.

Equation 19 provides a useful and intuitive assessment of expect-
d ambiguity in seismic event location and leads to designs that are
ntuitively reasonable. It is clear from these examples that it would
e misleading to design experiments solely on the basis of maximiz-
ng apparent aperture without accounting for the effect of wave
ropagation in horizontally stratified subsurface velocity structures;
uch a strategy would almost definitely lead to suboptimal designs.

CONCLUSIONS

Major improvements have been achieved in the field of experi-
ental design during the past 15 years, both conceptually and in

ractice. For instance, the superiority of nontraditional, optimized
lectrode configurations for geoelectrical surveys is now well recog-
ized. Modern data-acquisition systems allow arbitrary electrode
onfigurations to be implemented quite easily, so it is expected that
ollecting geoelectrical data with optimized electrode configura-
ions will soon become common practice.

Despite these successes, several concerns remain to be addressed.
First, most geophysical-survey design studies have focused on

ptimizing data information content. This is certainly an important
rst step; but to truly optimize a geophysical experiment, other cost/
enefit constraints must be considered. For example, for conducting
eismic crosshole measurements, one may use a single borehole
eophone or a string with several geophones. A single geophone
ould be relatively cheap to buy or lease, and it would allow the
easurement of quite irregular source-receiver patterns. With a geo-

hone string, many measurements could be performed much more
fficiently, but the purchase or rental costs would be higher and there
ould be less flexibility for choosing source-receiver patterns. Fu-

ure experimental design algorithms need to consider available in-
trumentation choices as constraints and factor the associated costs
n the optimization process.

Second, nonlinear experimental design is critical for a wide range
f geophysical problems because few can truly be considered linear
ver the range of models considered possible according to prior in-
ormation. The examples presented in this paper demonstrate the
eneral feasibility of nonlinear experimental design to relatively
imple problems, but more research is required before such tech-
iques can be applied routinely to most practical survey-design
roblems. Nevertheless, for the first time, optimal receiver density
or AVA/AVO studies has been calculated for complete 2D seismic
urveys. Hence, the emergence and proof of concept of practical, in-
ustrial, nonlinear design algorithms may be approaching rapidly.

Third, most survey-design algorithms, particularly nonlinear
ariants, are computationally expensive. This imposes severe con-
traints on applications to realistic design problems. Improving the
omputational efficiency of key modules that are called many times
hile executing a design algorithm is therefore critical. In linear
roblems, the computation of the model resolution matrix can be im-
roved dramatically using update formulas and parallel computing.
imilar efficiencies will be even more important for nonlinear de-
ign algorithms.

Finally, easy-to-use computer interfaces must be designed that al-
ow nonspecialists to develop experimental designs, based on differ-
nt scenarios involving choices in survey costing and possible varia-
ions in petrophysical parameterization of earth models.
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