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Abstract 

The electromechanical properties of arrays of vertically aligned multiwalled carbon nanotubes were studied in 

a parallel plate capacitor geometry. The electrostatic actuation was visualized using both optical microscopy 

and scanning electron microscopy and highly reproducible behaviour was achieved for actuation voltages 

below the pull-in voltage. The walls of vertically aligned carbon nanotubes behave as solid cohesive units. 

The effective Young’s modulus for the carbon nanotube arrays was determined by comparing the actuation 

results with the results of electrostatic simulations and was found to be exceptionally low, on the order of 1-10 

MPa. The capacitance change and Q-factor were determined by measuring the frequency dependence of the 

radio-frequency transmission. Capacitance changes of over 20% and Q-factors in the range 100 - 10 were 

achieved for a frequency range of 0.2 – 1.5 GHz. 

 

1. Introduction 

Carbon nanotubes have exceptional mechanical, electrical and thermal properties that make them interesting 

materials for a wide range of applications [1]. The low mass combined with high strength, high conductivity 

and resistance to radiation and temperature is advantageous for the fabrication of composite materials or for 

micro- and nanoscale electronics and actuation applications. In addition to the interesting properties of 

individual nanotubes or nanotubes embedded in composites, there is a third class of nanotube material with 

very intriguing properties. It is possible to grow vertically aligned carbon nanotube arrays that are being 

investigated e.g. as a means of fabricating vertical interconnects on microchips,[2] as field emission electron 

sources [3] or as MEMS thermal switches [4]. Nanotubes from such arrays have also been “drawn out” to 

produce large area films that are considered to be aerogels and are being studied as promising actuator 

materials [5]. It is possible to grow such vertically aligned carbon nanotube arrays in a variety of geometries, 

determined by the catalyst pattern prepared by photo- or e-beam lithography, and the height of the arrays 

(from a few microns to mm) can be determined by the growth time and conditions [6]. However, little is 

known concerning the mechanical and actuation properties of directly grown vertically- aligned carbon 

nanotube structures. A number of studies have shown that nanotube arrays can be easily compressed with the 

nanotubes collectively forming zig-zag buckles that can unfold to their original length when the load is 

removed [7]. On the basis of these studies it was suggested that the nanotube films or arrays could be suitable 

as energy-absorbing coatings. In this paper we study the mechanical properties of such arrays by fabricating a 

simple parallel- plate capacitor. We show that walls of vertically aligned carbon nanotubes can be easily and 

reproducibly actuated by applying a relatively low voltage and that the walls behave as a single entity, 

retaining the original pattern. The wall separation can thus be changed by applying a voltage, forming a 

simple varactor. The effective Young’s modulus of the structures is shown to be exceptionally low, on the 

order of 5 MPa, which is even lower than that of rubber. This can be related to the very low density and 

“spaghetti-like” quasi- alignment of the nanotubes in the walls. Although the demonstrated device is not 
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competitive with current varactors in terms of tuning range, the relatively low actuation voltage and the 

inherent properties of the nanotube material makes this a promising route for the development of micro- and 

nano-electromechanical elements. The present studies, showing that the behaviour can be very well modelled 

using standard MEMS software, should provide the impetus for the design of electromechanical elements 

taking advantage of the exceptional mechanical and electrical properties of the nanotube arrays. 

 

2. Fabrication and Measurement Setup 

The vertically aligned multiwalled carbon nanotube arrays were grown on 200 nm thick Mo electrodes with a 

10nm thick Ti adhesion layer prepared by electron-beam lithography. The catalyst layer deposited on top of 

the Mo electrodes consisted of 5 nm Al2O3 followed by 1 nm Fe. The nanotubes were grown by thermal 

chemical vapor deposition in a quartz furnace at 700 
o
C and atmospheric pressure using a gas mixture of 5.0 

sccm acetylene, 500 sccm hydrogen and 500 sccm argon for 150 seconds [8]. The catalyst areas had a U-

shape with a length of 200 µm, array width of 4 µm (unless otherwise stated) and a lateral separation of 10 

µm. The resulting nanotubes were multiwalled with diameters in the range 5-10 nm and typically 5 walls with 

a length of 135 ± 5 µm. The density of the nanotube arrays was determined by measuring the geometry of the 

grown structures in SEM and determining the weight of the nanotubes by weighing the substrate with the 

nanotubes and after removing the nanotubes by pyrolysis. The arrays were found to have a very low density of 

ca. 10 kg m
-3

, corresponding to 10
10

 nanotubes cm
-2

. 

To enable high-frequency electrical measurements of the device capacitance, a wafer of p-type high resistive 

Si (resistivity > 9000 Ωcm) with 600 nm polysilicon followed by a 400 nm SiO2 layer [9] was used. The 

layout for the varactor device is shown in Fig. 1(a). The U-shape was chosen to provide some mechanical 

stability for the thin nanotube walls to improve the vertical alignment of the structures. It is expected that 

alignment can be improved by increasing the density of the nanotubes in the arrays, at the expense of a 

somewhat higher actuation voltage for the device. An SEM image of a directly-grown varactor is shown in 

Fig. 1(b). Each varactor device consisted of two opposing T-shaped electrodes (on which the nanotubes were 

grown), both connected to metal pads to enable electrical connection. 

In order to optimize the variable capacitance measurements, the electrode area was minimized and surrounded 

by shield electrodes [10]. The Mo electrodes were deposited by sputtering. This was found to give an order of 

magnitude lower resistivity than electron-beam evaporated Mo thin films of the same thickness. The value of 

the capacitance for a given actuation voltage was found by measuring the S-parameters in the range from 200 

MHz to 1.5 GHz by using a probe station connected to an Agilent E5071B network analyzer [11]. The shield 

electrodes were connected to ground during the measurements to form a coplanar ground- signal-ground 

(GSG) to fit GSG probes. The signal line width was narrowed (Fig. 1) to give less parasitic capacitance 

contribution to S21 to improve the sensitivity. Reference measurements were carried out with a THRU sample 
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(with a short circuit between the electrodes) and with an OPEN sample (without carbon nanotubes) in order to 

extract the values for the resistances and capacitances of the electrodes, inherent to their material and 

geometry. The network analyzer was calibrated using a “SOLT” calibration. 

 

    

Figure 1. (a) Layout of the vractor substrate. Electrodes are shown in orange (light shading), insulating areas 

in blue (dark shading). The position of the U-shaped CNT arrays are shown in black, they are separated by 10 

μm. (b) SEM picture of a directly grown varactor device. The CNT arrays have a width of 4 μm and a height 

of 135 μm. 

 

The varactor device was simulated with the 3D full-wave simulator HFSS and the S- parameter responses 

were extracted to evaluate the device parasitics and were compared to the actual experimental devices. The 

nanotube walls were simulated as a conductive material with a density of 10 kg m
-3

. Electrostatic simulations 

of the devices were conducted in the COMSOL multiphysics tool and electrodynamical simulations were 

conducted using COVENTOR software. The Young’s modulus of the nanotube arrays was treated as a fitting 

parameter. 
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3. Determination of Young’s modulus of aligned multiwalled carbon nanotube arrays 

Figure 2 shows snapshots obtained when actuating varactor devices in an optical microscope (Fig. 2(a) – (d)) 

and in a scanning electron microscope (SEM) (Fig. 2 (e) – (h)). For the optical microscope measurement, the 

microscope was focused on the top of the array. In both cases, one can clearly see a decrease in the separation 

between the tops of the walls as the voltage between the nanotube walls is increased. The SEM pictures 

provide a better overall picture of the actuation. Note that the brightness of the walls changes as the applied 

voltage changes. The lower wall, which has a positive potential applied to it, appears darker since it is more 

difficult for the secondary electrons to escape [12]. 

 

    

Figure 2. (a)-(d) Optical microscope images focused on top of the varactor walls, imaged for different applied 

voltages (a) 0V, (b) 30 V, (c) 40 V and 9d) 42.9 V. (e)-(h) SEM images looking down on a different varactor 
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device taken at different applied voltages (e) 0 V, (f) 30 V, (g) 45 V, (h) 48.5 V. The lower image becomes 

darker as the (positive) voltage is increased on the lower electrode due to the increasing difficulty for the 

secondary electrons to escape. 

 

The voltages required for actuation are different from device to device due predominantly to differences in the 

grown device geometries. Although the catalyst areas are identical in each case, small fluctuations in the 

growth conditions can lead to different final structure geometries. For all devices studied here, the walls were 

bent outwards after growth, giving a larger separation at the top than the nominal 10 µm at the bottom of the 

walls. This is clearly seen in Fig. 1(b) and Figs 2 (e)-(h). It should be possible to adjust the growth conditions 

to avoid this problem in future. 

It is possible to reproducibly vary the separation of the top of the nanotube walls for many cycles as long as 

the applied voltage stays below the pull-in voltage (this is the voltage beyond which the structures make 

physical contact). An example of multiple actuation cycles is shown in Fig. 3 (for this particular device, the 

nanotube walls had a thickness of 6 μm). When the pull-in voltage is exceeded the nanotubes make contact 

and the high current that can then flow between the walls leads to destruction of the nanotubes. As expected 

for MEMS switches and discussed in detail for carbon nanotube devices, the distance at which pull-in occurs 

is at approximately 67% of the initial gap spacing [13]. It is interesting that although the carbon nanotube 

walls are extremely porous, with only 10
10

 nanotubes cm
-2

 corresponding to a porosity of > 95%, they move as 

a single cohesive unit. 

 

 

 

Figure 3. Correlation between the voltage applied between the CNT walls and the separation at the top of the 

walls. The voltage was varied between 0 V and a voltage just below the pull-in voltage for the device. 
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Simulation results obtained for devices with the same density, height (135 μm) and width (4 μm) of the 

nanotube walls and having a higher separation at the top (60 μm) than at the base (10 μm), in good agreement 

with experimental geometries, are shown in Figure 4. Figure 4(a) shows the main deformation regions 

predicted by the model under actuation. Figure 4(b) shows the simulated deflections as a function of applied 

voltage for four different values of Young’s modulus. The simulations also show that pull-in occurs for a 

separation of ca. 67% of the initial gap. In order to achieve actuation for voltages of a few tens of volts, as 

seen in the experiments, the effective Young’s modulus, E, of the nanotube films has to be very low. 

Individual multi-walled nanotubes have values of E that range from ca. 800 GPa for high quality arc-discharge 

grown nanotubes to 10-50 GPa for defect-rich catalytically grown samples [14]. We can expect that our 

individual CVD grown MWNT typically have values between these two extremes. The displacement at the 

top of the nanotube arrays for a given applied voltage scales with 1 / √(EI) [15] so, if the CNT walls had a 

Young’s modulus equivalent to that of individual multiwalled nanotubes, the pull-in voltage for capacitor 

walls of the dimensions used in the present work would lie in the range 3.9 kV - 35 kV. The CNT walls are 

low density structures with “curly” nanotubes, shown in Fig. 5(a),(b), making it rather easy for the nanotubes 

to slip and slide against each other, thus forming a material with a very low effective Young’s modulus. 

In order to compare the simulation results with the experiments, we consider the change in the wall separation 

as a function of applied voltage. Figure 5 (c) shows the results for the device shown in Fig. 2(a). The full line 

is the simulated behaviour for a Young’s modulus of 3.8 MPa. The value of E obtained from the comparison 

between experiments and simulations is much lower than the value estimated for devices fabricated out of 

densified nanotube films (ca. 10 GPa) [16]. These films have been treated to have a much higher density 

(42%) than the directly grown films studied here. The best nanotube yarns (formed by spinning carbon 

nanotubes) have values on the order of 150 – 460 MPa [17]. The most direct comparison is with the properties 

of compressive films of multiwalled nanotubes, grown in a similar fashion to our samples [18] that have been 

shown to have elastic moduli on the order of 6 MPa due to the ease of bending of the individual nanotubes in 

the films. 
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Figure 4. (a) model of electrostatic actuation of nanotube walls for a voltage just at pull-in. Left: side view, 

Right: top view. The colours indicate the amount of deflection (0 μm for dark blue to 8.3 μm for dark red). (b) 

Simulations of the separation at the top of the nanotube walls (assuming an initial gap of 60 μm, with a base 

gap of 10 μm) for four different values of Young’s modulus: 1 MPa, 2 MPa, 10 MPa and 20 MPa 

(corresponding numbers shown onplot). The pull-in voltage scales with the square root of the Young’s 

modulus as expected (28 V, 39 V, 55 V and 175 V). The dashed line indicates a separation of 67% of the 

initial gap, indicating the separation for which pull-in is expected to occur. 
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Figure 5. (a),(b) SEM pictures of a typical nanotube array showing the sparse and “wiggly” nature of the 

quasi-aligned nanotubes. (c) Measured separation at the top of the nanotube walls versus applied voltage for 

the varactor device of Fig. 2(a). The full line gives the results of the COVERTOR simulations using a 

Young’s modulus of 3.8 MPa. 

 

4. Determination of Capacitance 

The capacitance of the devices was determined by measuring the S-parameters in the frequency range from 

200 MHz to 1.5 GHz. The values were extracted from experimental measurements by considering the 

equivalent electrical circuit model shown in Fig. 6(a). Results are shown in Fig. 6(b) for an actuation voltage 

of 0 V and 27.5 V, for the device shown in Fig. 1(b) along with the results of fitting the equivalent circuit 

model. The capacitance values inherent to the geometry of the substrate layout were found from calibration 

measurements on OPEN samples without any nanotubes (CGround1 = CGround2 = 110 fF and Cparasitic = 5.8 fF). 
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The insertion losses of the conductor wires were measured on THRU samples and were found to be 14 dB. 

These losses were modelled by the two resistances R1 = R2 = 190 Ω. The static capacitance between the 

nanotube walls was found experimentally to be 22 fF. This can be compared with the results of the HFSS 

simulations that yielded 5.6 fF for the parasitic capacitance of the electrode pattern and 27 fF for the electrode 

plus nanotube structure. The electrostatic formula for a parallel plate capacitor C = ε0 A / d gives a value of 

23.9 fF where ε0 is the vacuum electrical permittivity, A is the area between the plates and d is the separation 

between them. 

 

 

 

 

Figure 6. (a) Equivalent circuit used to fit the experimental results. (b) S21 parameter measured for the 

frequency range 200 MHz – 1.5 GHz for 0 V and 27.5 V actuation voltage, close to the pull-in voltage for this 

device (full, black line).  The equivalent circuit model fits are also shown (red dashed lines). 
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The capacitance change as a function of the actuation voltage is plotted in Figure 7(a). The capacitance was 

increased to 27 fF when applying a voltage of 27.5 V, shortly before the pull- in voltage was reached. This 

corresponds to a change in capacitance of over 20%. The capacitance could be reproducibly varied up to the 

value of the pull-in voltage. When the actuation voltage was increased beyond the pull-in voltage the nanotube 

walls made contact, leading to a sharp decrease in the value of the capacitance, after which reproducible 

behaviour could again be observed but with a shift downwards in the absolute capacitance of the device. The 

SEM pictures in Figs. 7(b) and (c) show the device after measurement. The nanotubes have obviously made 

contact in the upper central part of the device (the part that experiences the maximum deflection). The high 

current that flowed on contact has removed the nanotubes from one side of the structure leaving a large hole, 

however, the device can still operate as a varactor with an overall decrease of the capacitance for a given 

actuation voltage. The Q-factor can be extracted from the measurements using the simple formula 

,
2

1

fRC
Q


    where f is the frequency, R the resistance and C the capacitance of the device. The results are 

plotted in Fig. 8 for both the non-actuated (0 V) and actuated (27.5 V) devices in the frequency range 0.2 – 1.5 

GHz. The Q-factor ranges from 100 to 10 as the frequency increases. The losses are dominated by the 

relatively poor conductance of the sputtered Mo electrodes. 

 

 

    

 

Figure 7. (a) Capacitance change versus actuation voltage (b), (c) SEM pictures of device after measurement. 
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Figure 8. Q-factor extracted from the measured resistance and capacitance as a function of RF frequency. 

Upper (blue) line: non-actuated device (0 V), Lower (red) line: actuated device with an applied voltage of 27.5 

V between the nanotube walls. 

 

5. Conclusions 

We have fabricated a varactor based on two parallel plates formed from arrays of multiwalled carbon 

nanotubes. A comparison between the experimentally determined actuation and model calculations allowed an 

estimate of the effective Young’s modulus of the nanotube films. The very low value (ca. 4 MPa) compared to 

the Young’s modulus of individual carbon nanotubes allows relatively large structures to be actuated with 

rather low voltages. The capacitance was determined from RF transmission measurements and a capacitance 

change of over 20% was found. This is presently limited due to the geometry of the device and the fact that 

the bases of the nanotube walls are fixed on the substrate. However, the good agreement between model 

calculations and the experimental measurements now makes it possible to design device geometries for 

specific operating characteristics. The low mass and resistance to conditions of high temperature make devices 

based on carbon nanotubes interesting for a range of applications. This work shows that arrays of vertically 

aligned carbon nanotubes behave as extremely low density conductive bulk material and can be used as 

building blocks for MEMS and NEMS devices. We have also demonstrated in situ nanotube growth on a 

substrate and layout that still permits ultra-sensitive direct RF detection after exposure to standard nanotube 

growth conditions. 
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