

Edinburgh Research Explorer

Computing Room Acoustics Using 3D FDTD: A Cuda Approach.

Citation for published version:
Bilbao, S & Webb, C 2011, 'Computing Room Acoustics Using 3D FDTD: A Cuda Approach.'. in 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 317-320, 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic,
22-27 May., 10.1109/ICASSP.2011.5946404

Digital Object Identifier (DOI):
10.1109/ICASSP.2011.5946404

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher final version (usually the publisher pdf)

Published In:
2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Publisher Rights Statement:
© Bilbao, S., & Webb, C. (2011). Computing Room Acoustics Using 3D FDTD: A Cuda Approach.In 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). (pp. 317-320).
10.1109/ICASSP.2011.5946404

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28963955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ICASSP.2011.5946404
http://www.research.ed.ac.uk/portal/en/publications/computing-room-acoustics-using-3d-fdtd-a-cuda-approach(fcb6a205-71fa-4ba8-a057-a47fb8d2ad01).html

COMPUTING ROOM ACOUSTICS WITH CUDA - 3D FDTD SCHEMES WITH BOUNDARY
LOSSES AND VISCOSITY

Craig J. Webb and Stefan Bilbao

Acoustics and Fluid Dynamics Group/Music, University of Edinburgh

ABSTRACT

In seeking to model realistic room acoustics, direct numerical

simulation can be employed. This paper presents 3D Finite

Difference Time Domain schemes that incorporate losses at

boundaries and due to the viscosity of air. These models op-

erate within a virtual room designed on a detailed floor plan.

The schemes are computed at 44.1kHz, using large-scale data

sets containing up to 100 million points each. A performance

comparison is made between serial computation in C, and par-

allel computation using CUDA on GPUs, showing up to 80

times speed-ups. Testing on two different Nvidia Tesla cards

shows the benefits of the latest FERMI architecture for double

precision floating-point computation.

Index Terms— 3D FDTD, Room Acoustics, CUDA

1. INTRODUCTION

The objective of virtual room acoustics is the realistic emu-

lation of sound wave propagation in three-dimensional space.

There are currently two approaches. In ray-based modeling,

propagation is approximated to that of light and calculated to

give specular and diffuse reflections. Image-source and beam-

tracing [1] methods are widely used, and can be accelerated

with graphics processing techniques as used in the rendering

of animation [2]. However, this approach suffers from the

lack of inherent diffraction properties which are essential in

modeling low to mid-frequency behaviour.

The second approach is to use direct numerical calcula-

tion of the 3D wave equation. This has been demonstrated

with the digital waveguide mesh [3], and methods such as

adaptive rectangular decomposition [4]. FDTD schemes are a

simple alternative [5], and are more efficient than the waveg-

uide mesh. Such schemes are capable of capturing high levels

of detail, but at a large (but unavoidable, due to physical con-

siderations) computational expense. On the other hand, they

are well-suited to parallel architectures such as graphics pro-

cessing units (GPUs), see [6] for an overview of such tech-

niques. Acceleration of computation using GPUs has been

shown to achieve real-time simulation for small scale rooms

up to audio rates of 7kHz [7]. In this paper, two varieties

of FDTD scheme were tested for performance in both C and

CUDA, at an audio rate of 44.1kHz. Firstly, a basic scheme

using boundary losses, and then a more advanced scheme in-

corporating losses due to the viscosity of air.

2. FINITE DIFFERENCE SCHEMES

The starting point for acoustical FDTD simulations is the sec-

ond order 3D wave equation:

∂2u

∂t2
= c2∇2u+ cα∇2 ∂u

∂t
(1)

Here, u(x, y, z, t) is the target acoustical field quantity (a

pressure, or possibly a velocity potential), c is the wave speed

in air, ∇2 is the 3D Laplacian, and the term with coefficient

cα results directly from viscous damping effects, through

linearization of the Navier Stokes equations [8]. α is defined

as

α �

(
1.6(γ − 1) + 4/3 +

η

μ

)
l/
√
γ (2)

where l is the mean free path of molecules in air, γ is the ratio

of specific heats, and η and μ are coefficients of viscosity.

This term, when α is small, leads to frequency-dependent

damping; travelling wave solutions, of frequency ω and

wavenumber k, with |k| � ω/c are of the form

e−αω2t/cejωt−k·x (3)

In this paper, boundary conditions are chosen to be of sim-

ple resistive type, i.e.,

∂u

∂t
= cβn · ∇u (4)

where n is a unit normal to a wall or obstacle, and where β is

an absorption coefficient.

Simple finite difference schemes for the wave equation

are described in various references; here, when the viscous

damping term is added, the simplest explicit scheme will be

of the form

un+1
l,m,p = (2 + (c2T 2 + cαT)∇2

d)u
n
l,m,p (5)

−(1 + cαT∇2
d)u

n−1
l,m,p

where T is the time step, and un
l,m,p is an approximation to

the continuous function u(x, y, z, t), at times t = nT , and

317978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011

locations x = lX, y = mX and z = pX , for integer l, m,

p and n, and for a grid spacing X . The seven-point discrete

Laplacian ∇2
d is defined as

X2∇2
dul,m,p = ul+1,m,p + ul−1,m,p + (6)

ul,m+1,p + ul,m−1,p +

ul,m,p+1 + ul,m,p−1 − 6ul,m,p

A stability condition for the scheme, over the problem inte-

rior, follows from von Neumann analysis [9], and, for a given

choice of time step T (normally, the inverse of the desired

audio sample rate), the grid spacing must satisfy

X ≥
√

3c2T 2 + 6αcT (7)

which differs very slightly from the bound for a lossless

scheme [10]. For good numerical behaviour (i.e., the least

numerical dispersion), X should be chosen as close to this

bound as possible.

A basic scheme, neglecting effects of viscosity, is ob-

tained when α = 0.

3. IMPLEMENTATION OF BASIC SCHEME

The basic implementation calculates propagation with losses

at the boundaries using a single reflection coefficient, given

by:

un+1
l,m,p =

1

1 + λβ
((2−Kλ2)un

l,m,p + λ2Sn
l,m,p (8)

−(1− λβ)un−1
l,m,p)

where K is 6 in free space, 5 at a face, 4 at an edge and 3 at

a corner, λ = cT
X , β the coefficient for losses due to bound-

ary reflections, and S is un
l+1,m,p + un

l−1,m,p + un
l,m+1,p +

un
l,m−1,p + un

l,m,p+1 + un
l,m,p−1.

Initial prototyping was performed in Matlab to obtain a

standard for correctness testing. This was then ported to C and

finally CUDA to make a comparison of computation times.

To go beyond a simple empty room space, a floor plan map

is used to define boundaries in 2D down to the level of the

grid spacing X (13.5 mm at 44.1 kHz). These boundaries are

then applied at each level of the height dimension. The map

defines a boundary point as a zero, and also stores the value

of K in all other points (Figure 1.). By pre-defining this grid,

Fig. 1. Example of floor plan map for 20x8 grid.

2D interiors can be computed with only a small additional

memory overhead.

3.1. C port

The basic scheme can be implemented using two arrays to

store all data, as the calculated value un+1
l,m,p may directly over-

write un−1
l,m,p. The 3D data arrays are arranged in a linear de-

composition. The row-major format is used for each height

layer, and these are then set end-to-end in a single contiguous

array.

The kernel contains an outer loop over the time domain,

and then three nested loops over the rows (R), columns (C)

and height (Z) layers of the data. The entire data set at time

step n is referred to as un.

The kernel algorithm is as follows:

1. Calculate linear position from R,C,Z

2. Obtain K value from floor plan map

3. IF NOT(K==0 OR Z==0 OR Z==Nz-1), then

4. IF at floor and ceiling, set K = K-1

5. IF K==5, set boundary loss coefficients

6. Update the grid values in un+1, using six

neighbour values from un, and centre points

from un and un−1

This update includes boundary condition and loss in a single

line of computation at step 6.

3.2. CUDA port

The kernel can be parallelized in CUDA as the update equa-

tion is applied independently at each point (not the case for

all FDTD schemes, such as implicit schemes [11]). A sin-

gle loop over the time domain is still required, but at each

time step every point is updated by parallel CUDA threads.

The threading model requires that the data be tiled into sub-

sections because threads are grouped into blocks, and blocks

grouped into a grid. A 2D block size of 16×16 was used,

covering each height layer of the data. These layers are then

placed side-by-side to form the block grid.

Fig. 2. Tiling of 3D data for CUDA thread block grid.

Data is then accessed by calculating the 3D data position

from the thread and block IDs. From this point, the kernel

is implemented as per the C port. In terms of the CUDA

memory model, the data arrays are accessed directly from

318

global memory, and integer constants from constant mem-
ory. Whilst the use of shared memory was considered, the

added complexity required to access neighbouring values in

each block showed no performance benefits. The current data

arrangement allows for coalesced memory access, and the lat-

est FERMI-based GPUs provide on-chip caching [12].

A further performance consideration is the use of the three

IF statements in the kernel. Whilst the first is required to pre-

vent access to data outside of the arrays, logical arithmetic can

replace those remaining. Step 4 of the kernel is written as: IF

(Z==1 OR Z==Nz-2) K = K-1. This can be replaced with:

K = K - (Z==1 OR Z==Nz-2). A similar approach can

replace the conditional at step 5. However, results show that

computation times increase when using this method, by a fac-

tor of 1.05.

3.3. Correctness testing

All codes were computed in double precision floating point,

as previous testing showed large round-off errors at single

precision. A DC-normalised audio sample was summed into

the un+1 data array at a given position at each time-step, and

output taken at a given location. Although the Matlab, C and

CUDA ports perform the same calculations, differences arise

in finite precision. For example, Figure 3 shows the differ-

ences between computed values of the output from C and

CUDA for an identical simulation. This shows relative varia-

Fig. 3. Sample differences between C and CUDA outputs.

tions in the order of 10−13. Similar differences occur between

Matlab and C, even when computed on the same machine.

Whilst one would assume that both Matlab and C would pro-

duce the same (accurate) result, this is not the case here. Fur-

ther investigation is required to establish both the causes, and

effects of these differences.

3.4. Computation times

The hardware used for performance testing was an Intel Xeon

Nehalem 2.6 GHz CPU, which served a Tesla C1060 and a

Tesla FERMI C2050 GPU cards. The C1060 has 240 CUDA

cores, and a peak performance at double precision of 78

Gflops. The C2050 has 448 CUDA cores, and peak double

precision performance of 515 Gflops. The C code ran directly

on the front-end CPU, whilst the CUDA code was tested us-

ing the older Tesla and then the new FERMI card. Tests were

performed at varying 3D data grid sizes, computing 1 second

of output at 44.1kHz. Table 1 shows the C computation times

and the speed-ups obtained for the Tesla and FERMI Tesla

cards.

Grid size C Tesla FERMI

(total points) (minutes) (speed-up) (speed-up)

262,144 4.2 ×20.7 ×29.5

1,048,576 18.7 ×20.6 ×52.0

4,194,304 91.6 ×26.1 ×63.4

16,777,216 459.8 ×30.5 ×76.2

Table 1. Comp. times and speed-ups for basic scheme

At the 16 million point grid size, the C code takes nearly

8 hours, compared to just 6 minutes on the FERMI card.

4. IMPLEMENTATION OF ADVANCED SCHEME

The advanced scheme introduces losses due to the viscosity

of air, using:

un+1
l,m,p =

1

1 + λβ
((2−Kλ2)un

l,m,p + λ2Sn
l,m,p − (9)

(1− λβ)un−1
l,m,p + ckα∇2

d(u
n
l,m,p − un−1

l,m,p))

This also requires the use of three different data arrays instead

of two. Computation times for the advanced scheme were:

Grid size C Tesla FERMI

(total points) (minutes) (speed-up) (speed-up)

262,144 6.3 ×21.0 ×35.6

1,048,576 29.7 ×21.2 ×58.4

4,194,304 146.3 ×26.0 ×65.2

16,777,216 761.4 ×31.5 ×79.8

Table 2. Comp. times and speed-ups for advanced scheme

For both the basic and advanced schemes the C codes

show a ×5 increase for each ×4 increase in grid size. The

CUDA codes show ×2.5 increases initially, rising to ×4. The

additional memory access and computation of the advanced

scheme leads to ×1.6 increase in times for both the C and

CUDA codes, although the CUDA codes show smaller in-

creases at initial grid sizes. The benefits of the FERMI archi-

tecture are clear, showing ×2.5 speed-ups over the older Tesla

card, and ×80 speed-ups over C.

319

5. SIMULATING REALISTIC SPACES

The above testing used data grid sizes up to 16 million points.

However, at 44.1kHz this only represents a space of 40m3.

Simulating larger room sizes requires far larger data grids.

5.1. Maximum room sizes

As the CUDA codes were run on single GPUs, the maximum

room size is limited to the amount of global memory avail-

able on the individual card. For the FERMI Tesla this is 3Gb.

Allowing for the inputs and outputs, the largest size for the

three data grids was 106 million points each. This represents

a room of 260m3 (e.g., 10.6m x 8.2m x 3.0m). Computation

time was 58 minutes for 1 second of output at 44.1 kHz, on

the FERMI card. Various audio examples are available at :

www2.ph.ed.ac.uk/∼s0956654/Site/VirtualRoomAcoustics.html

5.2. Analysis of outputs

The inclusion of the viscosity component in the advanced

scheme produces a noticeable reduction in high-frequency

‘whistle’. Using a viscosity of α = 2× 10−6, high-frequency

attenuation is in the region of 10 dB. The effect of the bound-

ary definition using the floor plan can be seen in a plot of

a single height layer, Figure 4. Boundary reflection and

Fig. 4. 1 kHz sine wave after 78, 164, and 268 samples.

diffraction effects around objects are evident.

6. CONCLUSIONS AND FUTURE WORK

The use of 3D FDTD schemes to model room acoustics at

44.1 kHz can yield highly detailed results, at the expense

of long computation times. Parallel GPU threading shows

speed-ups of up to 80 times over serial computation. This is

the difference between over 3 days in C, to 1 hour in CUDA,

for a moderately-sized room (260 m3). The inclusion of vis-

cosity effects improved the quality of the reverberation for

this basic model, and the detailed floor plans allow for realis-

tic room spaces with minimal overhead.

Further development of the scheme will consider more

complex boundary conditions and absorption parameters, as

well as investigation of the correctness issues observed dur-

ing testing. The use of multiple GPUs using MPI program-

ming should allow for greater acceleration, or the simulation

of larger spaces.

7. REFERENCES

[1] I. A. Drumm, “The application of adaptive beam trac-

ing and managed DirectX for the visualisation of virtual

environments,” in IV ’05: Proc. of the Ninth Int. Conf.
on Inf. Visualisation, Washington, DC, USA, 2005, pp.

961–965, IEEE CompSoc.

[2] N. Rober, U.Kaminski, and M. Masuch, “Ray acous-

tics using computer graphics technology,” in Proc. of
the 10th Int. Conf. on Digital Audio Effects. DAFx-07,

Bordeaux, France, September 2007.

[3] L. Savioja, M. Karjalainen, and T. Takala, “DSP formu-

lation of a finite difference method for room acoustics,”

in Proc. of Nordic Signal Processing Symp. NORSIG,

1996, pp. 455–458.

[4] N. Raghuvanshi, R. Narain, and M. Lin, “Efficient and

accurate sound propagation using adaptive rectangular

decomposition,” in IEEE Trans. on Visualisation and
computer graphics, 2009, vol. 15, pp. 789–801.

[5] A. Southern, D. Murphy, and J. Wells, “Rendering walk-

through auralisations using wave-based acoustical mod-

els,” in Proc. of the 17th European Signal Processing
Conf. EUSIPCO 09, Glasgow, UK, 2009.

[6] L. Savioja, D. Manocha, and M. Lin, “Use of GPUs in

room acoustic modeling and auralization,” in Proc. Int.
Symp. on Room Acoustics. ISRA, Melbourne, 2010.

[7] L. Savioja, “Real-time 3D finite-difference time-domain

simulations of low and mid-frequency room acoustics,”

in 13th Int. Conf on Digital Audio Effects, Sept, 2010.

[8] P. Morse and U. Ingard, Theoretical Acoustics, Prince-

ton University Press, Princeton, New Jersey, 1968.

[9] J. Strikwerda, Finite Difference Schemes and Partial
Differential Equations, Wadsworth and Brooks/Cole

Advanced Books and Software, Pacific Grove, Califor-

nia, 1989.

[10] S. Bilbao, Wave and Scattering Methods for Numeri-
cal Simulation, John Wiley and Sons, Chichester, UK,

2004.

[11] K. Kowalczyk and M. van Walstijn, “A comparison of

nonstaggered compact FDTD schemes for the 3D wave

equation,” in IEEE Int. Conf. on Acoustics Speech and
Signal Processing. ICASSP, Mar 2010, pp. 197–200.

[12] Nvidia Corp, “Fermi compute architecture whitepaper,”

http://developer.nvidia.com/object/gpucomputing.html,

Oct, 2010.

320

