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Abstract

We determine an approximate expression for the O(α3
s) contribution χ2 to the kernel of

the BFKL equation, which includes all collinear and anticollinear singular contributions.
This is derived using recent results on the relation between the GLAP and BFKL kernels
(including running-coupling effects to all orders) and on small-x factorization schemes. We
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and to small-x evolution of parton distributions.
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1. The BFKL equation beyond next-to-leading order

Higher order calculations in perturbative QCD, both at fixed order and at the resummed
level, are playing an increasingly important role in precision collider physics [1]. Fixed-
order and resummed results pose important constraints on each other. On the one hand,
fixed-order computations determine an infinite number of coefficients of resummed ex-
pressions: in the soft (e.g. large-x) limit [2,3], the resummed hard cross-section can be
determined to any desired logarithmic order by a finite fixed-order computation of suit-
ably high accuracy, while at high energy (e.g. small x) there is a duality [4] such that
a finite-order computation of the GLAP kernel determines an all-order resummation of
the BFKL kernel and conversely. On the other hand, available resummed results de-
termine partly higher fixed-order expressions and allow an approximate reconstruction of
their form: in fact, approximate determinations of the next-to-next-to-leading order GLAP
splitting functions [5], which played a useful role phenomenological until the exact expres-
sions became available[6], are significantly constrained by knowledge of the large-x and
small-x behaviour from resummed results.

The interplay of finite-order and resummed results is especially interesting for the high-
energy (small-x) limit of hard cross-sections, which behave as genuine two-scale processes.
The dependence on the hard scale (henceforth Q2, for definiteness) and the energy scale
(actually, the dimensionless ratio, x for definiteness, that controls the energy dependence)
are governed by a pair of evolution equations, the GLAP and BFKL equations, respectively,
whose kernels are related by a duality relation which was recently shown to hold to all
orders at the running–coupling level [7]. This duality relation determines the resummed
expansion of either kernel in terms of the fixed-order expansion of the other. Hence, even
when the symmetry between the two scales is broken by the running of the coupling (and/or
by kinematics) knowledge of either of the two kernels at fixed orders enables an all-order
resummation of the other kernel.

These results have been mainly used to perform small-x resummation of GLAP evolu-
tion (see refs. [8,9] and refs. therein, and refs. [10,11] for phenomenological applications),
i.e. to learn about higher-order contributions to the GLAP kernel. However, they can also
be used to determine higher-order contributions to the BFKL kernel: indeed, they provided
a nontrivial check on the next-to-leading order determination of the BFKL kernel [12,13].
Their use to determine corrections to the BFKL kernel beyond next-to-leading order, which
are hitherto unknown, has been hampered by two difficulties. First, whereas some next-
to-next-to leading order duality relations have been worked out some time ago [14], they
didn’t include the full next-to-leading order running of the coupling, nor the informa-
tion contained in the then unknown NNLO GLAP kernel. In fact, the inclusion of these
contributions is quite hard if the running–coupling duality relations are solved by brute
force, even using computer algebra as in Ref. [14]. Second, beyond leading order both
fixed-order and resummed results, or, equivalently, both the BFKL kernel and the GLAP
kernel depend on a choice of factorization scheme. Factorization schemes at small-x were
determined explicitly in refs. [15,16] and their implications for the GLAP-BFKL duality
were worked out in refs. [17,10], but only up to next-to-leading order.

Recent results solve both difficulties. In ref. [7] a general method has been developed
which allows an efficient determination of duality relations by purely algebraic techniques,
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with full inclusion of the running of the coupling to any desired order. Thanks to the
full computation of the GLAP splitting functions to next-to-next-to leading order, [6] a
computation of all the singular contributions to the next-to-next-to leading order BFKL
kernel χ2 is now possible. Furthemore in ref. [18] small-x scheme changes have been
discussed to all orders. Even though in ref. [18] the scheme change required for the BFKL-
GLAP is determined explicitly only up to NLO, it turns out that its determination up to
NNLO is possible from available results, as we shall discuss below, at least for the terms
which affect the singular contributions to the NNLO BFKL kernel. The purpose of the
present paper is to perform these computations, and use them to construct an approximate
form of the χ2 kernel.

A determination of the BFKL kernel to NNLO is of theoretical and phenomenological
interest for various reasons. It is well-known that NLO corrections to the BFKL kernel
are large and in fact change completely its qualitative shape. The determination of the
NNLO contribution is thus motivated not only by the slow convergence of the perturbative
expansion of the BFKL kernel, but also by the expectation that (because of the alternating
sign of the dominant contributions) the NNLO approximation has a minimum like the LO,
and thus better stability properties than the NLO. Also, it is unclear whether a direct
extraction of the NNLO BFKL kernel from the high-energy behaviour of parton-parton
scattering amplitudes analogous to the NLO computation of Ref. [12] is feasible, because
it is unclear whether beyond NLO some form of “reggeization” holds, i.e. whether the
exchange of an effective colorless multigluon state is universal [19,20]. If this is not the
case, a derivation of the NNLO BFKL kernel from high-energy factorization may be the
only viable option.

This paper will be organized as follows. In the next section we will summarize the
formalism of Ref. [7] for the algebraic resolution of duality relations between the GLAP
and BFKL kernel, and describe specifically its application to the extraction of all available
information on the NNLO BFKL kernel from the known NNLO GLAP result. Then in
Section 3 we will turn to the issue of scheme dependence at small x at NNLO: after
summarizing the general results of ref. [18], we will describe its application to NNLO
duality. In Section 4 we will finally determine explicitly the approximate NNLO χ2 kernel
in various relevant factorization schemes, discuss its features and estimate the accuracy
of our approximation. Technical results on higher-order dualities and on the so-called Q0

scheme at NNLO are collected in the appendices.

2. The GLAP–BFKL duality

Duality is the statement that the solutions to the GLAP and BFKL equations coincide up
to higher-twist corrections provided their kernels are suitably matched. Its consequence is
that the leading-twist part of each kernel is determined by the other kernel. This result is
straightforward to establish at fixed coupling [21,4,22], but rather more subtle when the
coupling runs [23,7]. Here we summarize the main results, while referring to Ref. [7] for a
more comprehensive treatment.

We discuss evolution equations for a parton distribution G(x,Q2), which can be
thought of simply as the gluon density, or as an eigenvector of a two-by-two evolution
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matrix in the singlet sector. The kinematic variables x and Q2 can be thought of as the
standard DIS variables, or more generally the perturbative scale and a dimensionless scale
ratio such that 0 ≤ x ≤ 1. We will not consider the dependence on other kinematic vari-
ables, such as transverse momentum and rapidity, i.e. we will consider standard parton
distributions, for which ordinary collinear factorization applies. We will therefore limit
ourselves to angular-averaged quantities at the leading-twist level. We express the parton
density as a function of the logs of the relevant kinematic variables:

G = G(ξ, t); ξ ≡ log
1

x
, t ≡ log

Q2

µ2
, (2.1)

and define the Mellin transform with respect to either (or both) of the kinematic variables:

G(N, t) ≡

∫
∞

0

dξ e−NξG(ξ, t), (2.2)

G(ξ,M) ≡

∫ ∞

−∞

dt e−MtG(ξ, t). (2.3)

Note that, by slight abuse of notation, we denote with the same symbol the parton distri-
butions G(N, t), G(ξ,M), and G(N,M), although they are of course different functions of
the respective arguments.

The GLAP equation and BFKL equations express respectively the t or ξ dependence
of G. They take the form

d

dt
G(N, t) = γ(αs(t), N)G(N, t), (2.4)

d

dξ
G(ξ,M) = χ(α̂s,M)G(ξ,M), (2.5)

where αs(t) is the running coupling, which upon Mellin transformation becomes the oper-
ator α̂s, obtained by replacing t → − ∂

∂M
in the expression for αs(t). For example, at the

leading-log level, where αs(t) = αs/(1 + β0αst),

α̂s =
αs

1 − β0αs
∂

∂M

, (2.6)

with αs ≡ αs(0).
At fixed coupling it is easy to show that if the kernels χ and γ are related by

N = χ(αs, γ(αs, N)), (2.7)

M = γ(αs, χ(αs,M)), (2.8)

then the BFKL and GLAP equation admit the same solution. This relation is straightfor-
ward to derive [24,22] from the observation that the leading-twist behaviour of G(N,M)
is determined by its pole in the (M,N) plane, and that eqs. (2.7) and (2.8) express the
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position of this pole. This duality maps the expansion of χ(αs,M) in powers of αs at fixed
M onto the expansion of γ(αs, N) in powers of αs at fixed αs/N , and the expansion of
γ(αs, N) in powers of αs at fixed N onto the expansion of χ(αs,M) in powers of αs at
fixed αs/M .

At the running–coupling level, duality relations can be derived order by order by
solving eqs. (2.4) and (2.5) perturbatively and matching the respective solutions [14]. That
this is possible beyond next-to-leading order is highly nontrivial, and it can be proven to
all orders using operator methods [7]. Namely, one shows that at the running–coupling
level, the BFKL and GLAP solutions coincide if the respective kernels, viewed as operators
in (M,N) space, are the inverse of each other when acting on physical states, i.e. such
that if

MG(N,M) = γ(α̂s, N)G(N,M), (2.9)

then
NG(N,M) = χ(α̂s,M)G(N,M), (2.10)

and conversely. Note that the conditions eq. (2.9) and (2.10) should be viewed as conditions
on the action of the operators γ(α̂s, N) and χ(α̂s,M) on physical states: specifically,
they are not just the Mellin transforms of eqs. (2.4),(2.5), which depend on a boundary
condition, but rather, they express a property of the leading–twist Green function of
perturbative GLAP or BFKL evolution [7].

The inversion is nontrivial because the operators involved do not commute. Indeed,
we can start with eq. (2.9) and construct χ̃(α̂s,M) as a series in M such that

χ̃(α̂s, γ(α̂s, N))G(N,M) = NG(N,M). (2.11)

Because α̂s and N commute, χ̃(α̂s,M) coincides with the inverse function of γ i.e. the
fixed-coupling (or naive) dual eq. (2.7): it is the same power series in M . However, because
γ(α̂s, N) and M do not commute, we cannot use eq. (2.9) to identify γ(α̂s, N) with M in
eq. (2.11), and thus obtain the desired equation (2.10).

The problem can be formalized as follows: given an operator equation of the form

q̂G = p̂G, (2.12)

and given a function f(q̂), determine the function g such that using eq. (2.12) one gets

f(q̂)G = g(p̂)G. (2.13)

It is easy to see that when p̂ and q̂ do not commute, the functions f and g do not coincide:
in fact they can be determined in terms of each other using the expansion of the Baker-
Campbell-Hausdorff formula [25] to lowest nontrivial order:

f(q̂)G =
{
f(p̂) − 1

2f
′′(p̂) [p̂, q̂] + . . .

}
G, (2.14)

so that
g(p̂) = f(p̂) − 1

2f
′′(p̂) [p̂, q̂] + . . . . (2.15)
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Expressions up to third order are derived in ref. [7], and higher-order expressions (up to
fifth order) are given in Appendix A.

Hence, if we identify
p̂ = M, q̂ = γ(α̂s, N), (2.16)

and then choose f = χ̃, we may use eq. (2.15) (and its higher-order generalizations) to
determine χ̃(α̂s, γ(α̂s, N)) on the l.h.s. of eq. (2.11) as a function of M , which we then
identify with the sought-for BFKL kernel χ(α̂s,M). The computation of χ(α̂s,M) is thus
reduced by eq. (2.14) to the determination of commutators, which in our case can all be
obtained from the basic commutator

[α̂−1
s ,M ] = −β0 + αsβ0β1 + . . . , (2.17)

where the QCD beta function is given by

β(αs) = −β0α
2
s(1 + β1αs) + . . . . (2.18)

Using this commutator in eq. (2.14), to lowest nontrivial order we get

NG(N,M) =

[
χ̃(α̂s,M) +

1

2
β0α̂

2
s

∂

∂α̂s

γ(α̂s, N) χ̃′′(α̂s,M)

]
G(N,M) +O(α̂2

s), (2.19)

where primes denote derivatives with respect to the second argument (M or N).
In order for the r.h.s. of eq. (2.19) to provide us with an expression for χ(α̂s,M) we

must eliminate the residual N dependence in it. This can be done in two steps. First,
we can back-substitute the lower-order expressions for N given by eq. (2.19) in its higher-
order terms: for example, eq. (2.19) tells us that we can just replace the leading order
expression χ̃(α̂s,M) for the N dependence of the next-to-leading order O(β0) term, up to
O(α̂2

s) corrections:

NG(N,M) =

[
χ̃(α̂s,M) +

1

2
β0α̂

2
s

∂

∂α̂s

γ(α̂s, χ̃(α̂s,M)) χ̃′′(α̂s,M)

]
G(N,M) +O(α̂2

s).

(2.20)
Of course, beyond next-to-leading order this back-substitution becomes nontrivial, and it
must be performed by keeping into account the commutation properties of the operators
involved.

The dependence of the result eq. (2.20) on γ(α̂s, χ̃(α̂s,M)) and its derivatives can be
finally expressed using the duality relation eq. (2.8) in terms of M and of derivatives of the
fixed-coupling dual χ̃ of γ: e.g. differentiating eq. (2.8) with respect to αs or with respect
to M gives respectively

∂

∂αs

γ(αs, χ̃(αs,M)) + γ′(αs, χ̃(αs,M))
∂

∂αs

χ̃(αs,M) = 0, (2.21)

γ′(αs, χ̃(αs,M))χ̃′(αs,M) = 1, (2.22)

and so on. Using this, the right-hand side of eq. (2.20) gives us finally an expression for
χ(α̂s,M) in terms of χ̃(α̂s,M), i.e. for the running–coupling dual BFKL kernel in terms of
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the naive dual one, which in turn can be determined from the anomalous dimension γ using
fixed-coupling duality eq. (2.7). To lowest nontrivial order this gives the well-known [26,24]
result

χ(α̂s,M) = χ̃(α̂s,M)−
1

2
β0α̂sχ̃(α̂s,M)

χ̃′′(α̂s,M)

χ̃′(α̂s,M)
+O(α̂2

s), (2.23)

where we made use of the fact that the kernels start at order α̂s, so ∂χ(α̂s,M)/∂α̂s =
α̂−1

s χ(α̂s,M) +O(α̂s). Equation (2.23) expresses the BFKL kernel χ which is dual to the
given GLAP anomalous dimension γ, in terms of the fixed-coupling dual χ̃ determined
from γ using eq. (2.7).

Analogously, one can construct the GLAP anomalous dimension γ which is dual to a
given χ in terms of the fixed-coupling dual γ̃ determined from χ using eq. (2.8):

γ(α̂s, N) = γ̃(α̂s, N) −
1

2
β0α̂sχ(α̂s, γ̃(α̂s, N))

χ′′(α̂s, γ̃(α̂s, N))

[χ′(α̂s, γ̃(α̂s, N))]
2 +O(α̂2

s), (2.24)

where χ(α̂s, γ̃(α̂s, N)) can be further expressed in terms of γ̃(α̂s, N) and its derivatives
differentiating the duality relation between χ and γ̃, analogously to eqs. (2.21),(2.22). It is
important to note that γ̃ and χ̃ are not the fixed-coupling dual of each other: rather each
of them is the fixed-coupling dual of (respectively) χ and γ, which are related by running–
coupling duality. It is sometimes convenient [8] (and it will be useful for our discussion
of scheme changes) to view χ̃ as an effective χ kernel: namely, once γ is determined from
a given χ using eq. (2.23), we also define χ̃ which is the fixed-coupling dual of this γ
eq. (2.23).

In ref. [7] we have used this approach to derive the running–coupling corrections to the
small-x resummation of the GLAP kernel which one obtains from BFKL, i.e. essentially
eq. (2.24), up to next-to-next-to-leading order. In the sequel of this paper, we will use it to
derive the running coupling contributions to the next-to-next-to leading order BFKL kernel
obtained starting from the GLAP kernel, i.e. essentially eq. (2.23). Various higher-order
running–coupling duality relations are derived and collected in Appendix A.

Because running–coupling corrections to duality are given as a series in αs of terms
each of which is a function of the fixed-coupling dual expression, also at the running–
coupling level duality maps the expansion of χ(αs,M) in powers of αs at fixed M onto
the expansion of γ(αs, N) in powers of αs at fixed αs/N , and conversely. This means that
knowledge of γ up to next-to-next-to leading order allows us to determine all collinear
(M ∼ 0) singular contributions to χ up to next-to-next-to leading level. Specifically, if we
expand

χ(α̂s,M) = α̂sχ0(M) + α̂2
sχ1(M) + . . . , (2.25)

and then
χi(M) =

ci,−i−1

M i+1
+
ci,−i

M i
+ . . . , (2.26)

for some coefficients ci,j , we can determine the first three orders of the expansion eq. (2.26)
of χi(M) for all i, i.e. ci,j for all i and j = −i− 1,−i,−i+ 1. Furthermore, the symmetry
properties of χ allow us to determine its expansion about M = 1 from knowledge of the
coefficients of the expansion about M = 0. This procedure requires some care in the
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Figure 1: Comparison of the exact and approximate expressions of the leading–order
and next-to-leading–order contributions to the BFKL kernels χ0(M) and χ1(M). The
approximate expressions (given explicitly in appendix D) are obtained by symmetrizing
the third-order collinear expansion about M = 0 of the kernel, as discussed in section 4.
The upper two plots are the leading-order χ0, while the lower are the next-to-leading-
order χ1: in each case on the left we compare the exact (dot-dash) and approximate
(solid red) expressions as a function of M , while on the right we show the relative differ-
ence (exact− approximate)/exact. See section 4 for a full discussion of the construction
of the approximation and its scheme dependence.

treatment of the running of the coupling, which affects the way the symmetry is realized,
and it will be discussed in sect. 4. In the specific case of χ2, knowledge of γ up to NNLO
allows us thus to determine all the singular contributions to χ2 at M = 0 and M = 1, i.e.
all the collinear and “anticollinear” singularities respectively.

Because χ0 and χ1 are known exactly, we can test the accuracy of the approximation to
them which is obtained by retaining only the first three terms of their expansion aboutM =
0 and M = 1 (and subtracting the double-counting between the two expansions). This
comparison is displayed in figure 1 for the leading and next-to-leading order contributions
χ0 and χ1 to the BFKL kernel, where it is seen that the approximation is exceedingly
good. The percentage accuracy of the approximate expression is better than 0.8% at
leading order and better than 1.5% at next-to-leading order.

This motivates us to consider the construction of a similar approximation to χ2. Before
doing this, however, we must turn to issues of factorization scheme dependence.
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3. Factorization schemes at small x

Running–coupling duality, reviewed in the previous section, implies that, up to higher-
twist corrections, the solution to a GLAP-like equation (2.4) can also be obtained as the
solution to a BFKL-like equation (2.5), and it tells us how the evolution kernels of the two
equations are related. However, as is well known, beyond leading order, both the GLAP
and BFKL kernels are only defined up to a choice of factorization scheme. Namely, if the
normalization of G(ξ, t) is redefined by a subleading function Z(αs, N) = 1 + O(αs), the
evolution kernel beyond leading order changes: hence, the kernel is uniquely defined only
once the normalization is fixed.

In general, of course, factorization schemes can mix the singlet quark and gluon with
each other. Here, however, we will only consider factorization-scheme changes of the single
parton distribution G(ξ, t) which enters both the GLAP and BFKL equations: because
only one eigenvector of the anomalous dimension matrix has leading small-x singularities,
the BFKL equation is one-dimensional, and mixing is irrelevant for duality. The general
matching of scheme changes which have effect at small x with those which do involve
operator mixing (relevant for phenomenology) is discussed in detail in refs. [17,10]. The
most general factorization-scheme change is then obtained by redefining

G′(t, N) = Zsx

(
αs,

αs

N

)
Zlx (αs, N)G(t, N), (3.1)

where the large-x and small-x scheme change functions have respectively the form

Zlx (αs, N) = 1 + αsZ
1
lx(N) +O(α2

s) (3.2)

Zsx

(
αs,

αs

N

)
= Z0

sx

(αs

N

)
+ αsZ

1
sx

(αs

N

)
+O(α2

s), (3.3)

with the constraint that Z0
sx(0) = 1. Upon scheme change, the leading-order contributions

in the expansion of the BFKL and GLAP kernel in powers of αs remain unchanged, while
higher-order terms are modified. It is interesting to observe that the lowest-order nontrivial
small-x scheme change Z0

sx

(
αs

N

)
(which affects the NLO BFKL kernel χ1(N) in eq. (2.25))

amounts to a leading-order redefinition of the normalization of gluon, i.e. it starts at order
α0

s in the expansion of Z in powers of αs at fixed αs

N
[17].

A further related complication is due to the fact that the BFKL equation is, in its
most general form, given for a k⊥-dependent parton distribution, and its form eq. (2.5) is
obtained from angular averaging of this k⊥-dependent parton distribution. This angular
averaging leads to an “unintegrated” parton distribution G(N, t), which is the derivative
of the usual parton distribution G(N, t): G(N, t) = d

dt
G(N, t) i.e., in Mellin space,

G(N,M) = MG(N,M). (3.4)

Because of eq. (2.17), the evolution kernels χ(α̂s,M) and χi(α̂s,M) for the BFKL equations
satisfied by respectively G(M,N) and G(M,N) do not coincide, and are related by

χ(α̂s,M) = Mχi(α̂s,M)M−1. (3.5)
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Hence, if the BFKL kernel is determined for the unintegrated gluon distribution G(N, t),
while the GLAP anomalous dimension refers to the standard integrated quantity G(N, t),
there are extra contributions to the duality relation, due to the non-commutativity of M
and α̂s in eq. (3.5). The relation between integrated and unintegrated parton distributions
eq. (3.4) can be viewed as a scheme change by using the (N, t) space form of the GLAP
equation (2.4) to relate G to G, namely:

G(N, t) = γ(αs(t), N)G(N, t). (3.6)

Note that this is not a proper scheme change eq. (3.3) because it does not reduce to the
identity in the limit αs → 0. Note also that just as the evolution kernels for G and G do
not coincide, similarly the anomalous dimension for their evolution differ: in fact, from
eq. (3.4) and the GLAP equation (2.4) one finds that G satisfies

d

dt
G(N, t) = γu(αs(t), N)G(N, t), (3.7)

where

γu(αs(t), N) = γ(αs(t), N) +
d

dt
ln [γ(αs(t), N)] . (3.8)

Henceforth, we shall denote by γ the anomalous dimension at the integrated level, and
by χ the kernel at the unintegrated level, and by γu and χi the unintegrated anomalous
dimension and integrated kernel.

Let us now come to the scheme choices which are relevant for the explicit determi-
nation of γ(αs, N) and χ(αs,M). The normalization of the parton distribution which
appears in the GLAP equation (2.4) is fixed by the standard factorization of collinear sin-
gularities [27], and a choice of subtraction prescription such as e.g. dimensional regulariza-
tion and the MS prescription. This defines anomalous dimensions in the MS factorization
scheme. Duality then implicitly defines a corresponding factorization scheme for the BFKL
equation. However, the direct computation of the next-to-leading order BFKL kernel is
based on the determination [12,13,28] of the gluon Green function in the high-energy limit.
The extraction of the large energy behavior of the gluon Green function, and the resum-
mation of its large-energy logs through the BFKL equation are based (explicitly [13] or
implicitly [12,28]) on a factorization of cross-sections in terms of a high-energy parton dis-
tribution (the so-called k⊥ factorization [29]) which is compatible with the usual collinear
factorization, but differs from it by a computable scheme change.

This is due to the fact that the usual parton distribution which enters the collinear-
factorized GLAP equation, and the gluon density which enters the k⊥-factorization formula
are normalized differently. This means that, even though the gluon Green-function itself
is computed in the MS scheme, the evolution kernel extracted from it corresponds to a
scheme which is not MS, because it describes evolution of a quantity which differs from
the MS parton distribution by a normalization factor, i.e., it can be obtained from the MS
parton distribution by a suitable scheme-change function Zsx eq. (3.3). This scheme-change
function defines the so-called Q0 factorization scheme [16]. Furthermore, the quantity
which naturally enters k⊥-factorization formulae is the unintegrated parton distribution

9



G(N, t), so Q0 scheme results are usually given for this quantity, though, of course, Q0

scheme results can also be given for the integrated parton distribution by using eq. (3.5)
and the corresponding relation eq. (3.7) between anomalous dimensions.

The normalization mismatch between k⊥ factorization and collinear factorization, and
thus the precise definition of the Q0 scheme, has been determined in ref. [29] at leading
nontrivial order, i.e. at the level of Z0

sx eq. (3.3), which affects the definition of χ1 in
the expansion eq. (2.25) of the BFKL kernel χ, and therefor its dual GLAP anomalous
dimension γ up to next-to-leading order (order γss) in the expansion of γ(αs, N) in powers
of αs at fixed αs

N
:

γ(αs, N) = γs

(αs

N

)
+ αsγss

(αs

N

)
+ . . . . (3.9)

The scheme change at the next order (relevant for χ2 and γsss) has been recently derived
in ref. [18].1

The main result of ref. [18], which we shall use in what follows, is an expression (proven
up to NNLO, but conjectured to hold in general) which relates the t dependence of the
integrated parton distributions G(N, t) (as defined in standard collinear factorization) in
the MS and Q0 scheme. This relation is expressed in terms of the BFKL kernel for the
unintegrated distribution G(N, t). Specifically, the t dependence can be written in terms
of a saddle-point evolution factor E(t, t0), a running–coupling duality correction N (N, t),
and a normalization factor R(t0) which is characteristic of the way minimal subtraction
with dimensional regularization is defined by continuation of the anomalous dimensions in
d dimensions.

The saddle-point evolution factor is obtained by solving the running–coupling BFKL
equation for the unintegrated distribution in the saddle-point approximation: this can
be shown [30,26,23] to lead to evolution driven by the anomalous dimension γ̃u(αs(t), N),
obtained from the unintegrated BFKL kernel using naive (fixed-coupling) duality eq. (2.7),
but with αs = αs(t),

E(t, t0) = exp

[∫ t

t0

γ̃u(αs(t
′), N) dt′

]
. (3.10)

The running–coupling correction to duality discussed in the previous section can be
combined with the factor eq. (3.6) which relates the integrated and unintegrated parton
distributions. This gives

N (N, t)

N (N, t0)
=
γ(αs(t0), N)

γ(αs(t), N)
exp

{∫ t

t0

[γu(αs(t
′), N) − γ̃u(αs(t

′), N)]dt′
}

= exp

{∫ t

t0

[γ(αs(t
′), N) − γ̃u(αs(t

′), N)]dt′
}
.

(3.11)

1 Note that in ref. [18] (and elsewhere) the scheme change effected by Z0

sx is referred to as

a leading-log x scheme change, essentially because it is a leading-order redefinition of the gluon

normalization, whereas we will call it a NLO scheme change, because it affects the NLO kernel

χ1.
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Note that limαs→0 N (N, t) = 1 so this can be viewed as a scheme change in the proper
sense.

Finally, the normalization factor R is due to the fact that in the MS scheme the
anomalous dimension is defined as the residue of the simple ε pole in the partonic cross
section, which in turn is given by

γ(αs, N, ε)

β(αs, ε)
=

1

αsε

(
1 −

β(αs)

αsε
+ . . .

)
(γ(αs, N) + εγ̇(αs, N) + . . .)

=
1

αsε

(
γ(αs, N) −

β(αs)

αs

γ̇(αs, N) + . . .

)
,

(3.12)

where in MS β(αs, ε) = αsε+β(αs) is the d-dimensional β function, γ(αs, ε) is the anoma-
lous dimension obtained using duality from a d-dimensional BFKL kernel, which has been
expanded as

γ(αs, N, ε) = γ(αs, N) + εγ̇(αs, N) +O(ε2). (3.13)

It follows that the anomalous dimension determined from duality differs from the MS
result through the terms beyond the first on the r.h.s. of eq. (3.12), and thus MS evolution
requires an additional factor

R(N, t)

R(N, t0)
= exp

[
−

∫ t

t0

β0α(t′)γ̇(α(t′), N)dt′ +O(α2
s)

]
, (3.14)

where we have used β(αs) = −β0α
2
s + . . ..

Combining all these factors, the result of ref. [18] takes the form:

GQ0(N, t) = N (N, t)E(t, t0)R(N, t0)G
MS(N, t0) (3.15)

This equation gives the scale dependence of the parton distribution in either scheme in
terms of a boundary condition determined in the other scheme: therefore, it fully spec-
ifies both the relation between the two schemes, and the scale dependence in either of
them. Letting t = t0 in eq. (3.15) immediately gives the relation between GQ0(N, t) and

GMS(N, t), through the function

R(N, t) ≡ N (N, t)R(N, t). (3.16)

The scale dependence of the parton distribution in the Q0 scheme is found by keeping
t0 fixed in eq. (3.15) and varying t: thus

GQ0(N, t) =
N (N, t)

N (N, t0)
E(t, t0)G

Q0(N, t0)

= exp

[∫ t

t0

γ(αs(t
′), N) dt′

]
GQ0(N, t0).

(3.17)
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Figure 2: Schematic relation between BFKL kernels χ and GLAP anomalous dimensions
γ in various schemes. Horizontal lines denote duality relations while vertical lines denote
scheme transformations. The diagonal lines express the identities eq. (3.21) and (3.22).

So the integrated parton distribution in the Q0 scheme evolves with the anomalous dimen-
sion γ(N, t) which is related to the starting unintegrated BFKL kernel by running–coupling
duality combined with the transformation to the integrated level.

The scale dependence in the MS scheme is instead given by

GMS(N, t) =
R(N, t0)

R(N, t)
E(t, t0)G

MS(N, t0)

=
R(N, t0)

R(N, t)
exp

[∫ t

t0

γ̃u(αs(t
′), N) dt′

]
GMS(N, t0),

(3.18)

namely, the integrated parton distribution in the MS scheme evolves with an anomalous
dimension which is closely related to the fixed-coupling dual γ̃u(N, t) of the starting (un-
integrated) BFKL kernel, and only differs from it through the scale dependence of the R
factor eq. (3.14). In this respect the MS scheme is remarkably simple.

In fact it is possible, and useful, to define an auxiliary scheme, MS
∗

, which differs
from MS by a factor R(N, t): namely

GMS
∗

(N, t) = R(N, t)GMS(N, t) (3.19)

In this MS
∗

scheme the parton distribution evolves with the naive dual anomalous dimen-
sion:

GMS
∗

(N, t1) = exp

[∫ t1

t0

γ̃u(αs(t), N) dt

]
GMS

∗

(N, t0). (3.20)
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The relations between different quantities in various schemes, which will be computed
in the next section, are summarized in figure 2. In the figure, horizontal lines denote
duality: either at the running–coupling level, relating χ to γ, or at the fixed-coupling,
relating γ to χ̃. Vertical lines denote relations between schemes, specifically the Q0, MS

∗

and MS schemes. Equation (3.20) means that the anomalous dimension in the MS
∗

scheme
coincides with the naive dual of the Q0 scheme BFKL kernel (at the unintegrated level):

γ̃Q0

u (αs, N) = γMS
∗

(αs, N), (3.21)

and thus, by duality, also that

χ̃MS
∗

i (αs,M) = χQ0(αs,M), (3.22)

where χ̃MS
∗

i (αs,M) is the naive dual of the standard GLAP anomalous dimension in

the MS
∗

scheme, while χQ0(αs,M) is the kernel for the BFKL equation satisfied by the
unintegrated parton distribution in the Q0 scheme. This further implies that if we interpret

χ̃MS
∗

i (αs,M) as an operator by letting αs → α̂s, and order it canonically (i.e. in the same
way as χQ0(α̂s,M)), then it is related by running–coupling duality to γQ0(αs, N). These
relations are denoted by diagonal lines in the figure, and will turn out to be useful in
relating results obtained in various schemes in the next section.

4. The NNLO BFKL kernel

The construction of the NNLO BFKL kernel proceeds in three steps. First, we collect the
results discussed in the previous sections to get expressions of the BFKL kernels which are
related by either running–coupling duality (χ(α̂s,M)) or fixed-coupling duality (χ̃(αs,M))
to a given GLAP kernel γ(αs, N) to NNLO in various schemes. Then, we use the known
expression of the GLAP anomalous dimensions up to next-to-next-to leading order to
determine the first three coefficients of the expansion eq. (2.26) of the leading χ0(α̂s,M),
next-to-leading χ1(α̂s,M), and next-to-next-to-leading χ2(α̂s,M) order BFKL kernels in
powers of M about M = 0. Finally, we use the underlying symmetry of the high-energy
gluon emission diagrams to determine the corresponding coefficients of the expansion of
χ0(α̂s,M), χ1(α̂s,M) and χ2(α̂s,M), about M = 1.

Because all duality relations are expressed in terms of naive (fixed-coupling) dual
kernels, our starting point is the determination of the BFKL kernel χ̃(αs,M) which is
obtained from the NNLO GLAP anomalous dimension using the fixed-coupling duality
equation (2.8). Expanding χ̃(αs,M) in powers of αs at fixed αs/M as

χ̃(αs,M) = χ̃s(αs/M) + αsχ̃ss(αs/M) + ... (4.1)

we have

γ0

(
χ̃s(αs/M)

)
=
M

αs

, (4.2)
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χ̃ss(αs/M) = −
γ1

(
χs(αs/M)

)

γ′0
(
χs(αs/M)

) , (4.3)

χ̃sss(αs/M) = −
1

γ′0
(
χs(αs/M)

)
[
γ2

(
χs(αs/M)

)
+ γ′1

(
χs(αs/M)

)
χss(αs/M)

+
1

2
γ′′0

(
χs(αs/M)

)
(χss(αs/M))2

]
. (4.4)

Expanding out both γi and χ̃si , i = 1, 2, 3 up to third order in their respective ar-
guments, eqs. (4.2)-(4.4) determine the coefficients of these expansions in terms of each
other. Starting with the expansion of γ

γ0(N) =
g0,−1

N
+ g0,0 + g0,1N +O(N2), (4.5)

γ1(N) =
g1,−1

N
+ g1,0 +O(N), (4.6)

γ2(N) =
g2,−2

N2
+
g2,−1

N
+O(N0), (4.7)

we get

χ̃i
0(M) =

g0,−1

M
+O(M2), (4.8)

χ̃i
1(M) =

g0,−1g0,0

M2
+
g1,−1

M
+
g2,−2

g0−1
+O(M), (4.9)

χ̃i
2(M) =

(g0,−1)
2g0,1 + g0,−1(g0,0)

2

M3
+
g1,0g0,−1 + g0,0g1,−1

M2
+
g2,−1

M
+O(M0),(4.10)

where the superscript i reminds us that all these quantities are defined at the integrated
level. The values of the coefficients gi,j up to NNLO in the MS scheme can be extracted
from the known GLAP anomalous dimensions [31], and are listed in appendix B. Using
these expressions of gi,j, eqs. (4.8)-(4.10) give the first three terms in the expansion of the

naive dual kernel χ̃ in the same scheme: this corresponds to relation between γMS and

χ̃MS in figure 2. Note that the vanishing of leading singularities of γ at NLO and NNLO,
g1,−2 = g2,−3 = 0, implies the well-known vanishing of the constant and linear term in the
LO BFKL kernel (4.8).

Starting from the naive dual kernel χ̃i
k eq. (4.8)-(4.10) we can determine the BFKL

kernel in the same approximation in various factorization schemes. For the sake of com-
parison with direct diagrammatic computations, the Q0 scheme is most relevant, because a
direct computation using minimal subtraction at the level of the BFKL equation gives the
kernel in this scheme: indeed, available expressions [12,13,28] of the next-to-leading kernel
χ1 provide the result in the Q0 scheme. Using duality, this kernel can be obtained from
the MS GLAP anomalous dimension by exploiting eq. (3.21) (see figure 2), which states

that χQ0 is the naive dual of the (integrated) anomalous dimension γMS
∗

. Hence, we can

obtain χQ0 by first transforming the anomalous dimension to the MS
∗

scheme through the
R scheme change eq. (3.14) and then using naive duality eqs. (4.8)-(4.10).
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The scheme change which takes the anomalous dimension to MS
∗

can be determined,
using eq. (3.14), from the expression of the GLAP splitting functions in d = 4 − 2ε di-

mensions γ(N, ε), as explained in Appendix C. The MS
∗

anomalous dimension is given
by

γMS
∗

0 (N) =
g0,−1

N
+ g0,0 + g0,1N +O(N2), (4.11)

γMS
∗

1 (N) =
g1,−1

N
+ ḡ1,0 +O(N), (4.12)

γMS
∗

2 (N) =
g2,−2

N2
+
ḡ2,−1

N
+O(N0), (4.13)

where all coefficients are the same as in the MS eqs. (4.5)-(4.7) except

ḡ1,0 = g1,0 − β0ġ0,0 , ḡ2,−1 = g2,−1 − β0ġ1,−1 − β2
0 g̈0,−1. (4.14)

The coefficients ġ0,0 and g̈0,−1 are determined by the d-dimensional LO splitting func-
tions; their values are given in Appendix C. The coefficient ġ1,−1 is determined by the
d–dimensional NLO GLAP kernel which is as yet unknown. This is the only term con-
tributing to the singular part of the NNLO BFKL kernel that we have not been able to
calculate explicitly: we will estimate below the uncertainty related to our ignorance of this
contribution to the scheme change.

The BFKL kernel in the Q0 scheme is thus given in terms of the naive dual kernel
eq. (4.8)-(4.10) by

χQ0

0 (M) = χ̃i
0(M), (4.15)

χQ0

1 (M) = χ̃i
1(M) +O(M), (4.16)

χQ0

2 (M) =
(g0,−1)

2g0,1 + g0,−1(g0,0)
2

M3
+
ḡ1,0g0,−1 + g0,0g1,−1

M2
+
ḡ2,−1

M
+O(M0).(4.17)

We can also determine the BFKL kernel in the MS scheme, by observing that it is
related by running–coupling duality to the MS anomalous dimension; note that this now
gives the kernel at the integrated level (figure 2 again). Hence, we add to eqs. (4.8)-(4.10)
the running–coupling corrections discussed in Sect. 2, and explicitly given in appendix A,
eqs. (A.13)-(A.15) in terms of the naive dual expressions computed above. Defining

∆MSχ(M) = χi,MS
k (M) − χ̃i

k(M), (4.18)

and expanding about M = 0 we get

∆MSχ0(M) = 0 (4.19)

∆MSχ1(M) = β0
g0,−1

M2
(4.20)

∆MSχ2(M) = β0

(
3g0,0g0,−1

M3
+

2g1,−1

M2
+

2g2,−2

g0,−1M

)
+ 2β2

0

g0,−1

M3
+ β0β1

g0,−1

M2
. (4.21)
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Using eqs.(4.19)-(4.21) in eq. (4.18) we get the BFKL kernel in the MS scheme at
the integrated level. The expression at the unintegrated level, to be compared to the
unintegrated Q0 scheme result of eqs. (4.15)-(4.17) can be obtained using using eq. (3.4),
which implies

d

dξ
G(ξ,M) =

(
α̂sχ0 + α̂2

sχ1 + α̂3
sχ2 − [α̂s,M ]

χ0

M
−

[
α̂2

s,M
] χ1

M
+O(α̂4

s)
)
G(ξ,M),

(4.22)
so the kernels χi

i at the integrated level and χi at the unintegrated level are related by

χ0 = χi
0,

χ1 = χi
1 − β0

χi
0

M
,

χ2 = χi
2 − β0β1

χi
0

M
− 2β0

χi
1

M
.

(4.23)

So far, we have exploited the information from the GLAP anomalous dimension to
determine the first few terms in the expansion of the BFKL kernel about M = 0 (the
collinear region). However, we can further use the underlying symmetry of the BFKL
kernel to determine the corresponding terms in the expansion of the BFKL kernel about
M = 1 (the anticollinear region). At LO and NLO this leads to an approximation to the
BFKL kernel which, when tested on the known LO and NLO kernels, turns out to be
accurate to better than 2% in the whole physical region 0 < M < 1, as shown in figure 1.
Indeed, the underlying Feynman diagrams which determine the unintegrated BFKL kernel
are symmetric upon the exchange of the incoming and outgoing gluon. This means that the
dimensionless BFKL kernel K(αs, k

2, Q2), related to χ(α̂s,M) by Mellin transformation

χ(αs,M) =

∫
∞

0

dQ2

Q2

(
Q2

k2

)−M

K
(
αs, k

2, Q2
)
, (4.24)

is symmetric upon the interchange of the virtualities of the incoming gluons Q2 and k2:

1

Q2
K(αs, k

2, Q2) =
1

k2
K(αs, Q

2, k2). (4.25)

This symmetry, in turn, implies that the BFKL kernel χ(αs,M) is symmetric upon the
interchange M ↔ 1 −M [12].

However, the kernel is symmetric only if one chooses a symmetric argument for the
running coupling, and if the N -Mellin eq. (2.2) does not break the symmetry between
the two scales Q2 and µ2 which enter the definition eq. (2.3) of the M -Mellin transform.
In deep–inelastic scattering both symmetries are broken: the argument of the running
coupling is Q2, and ξ = ln(s/Q2). Hence, the BFKL kernel which is obtained from the
GLAP anomalous dimensions incorporates these symmetry-breaking effects. The symme-
try breaking must be undone before the symmetry can be exploited. After symmetrizing
one can revert to nonsymmetric variables and argument of the coupling in order to get an
expression of the dual χ which is accurate for all M .
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A symmetric choice of variables is for example ξ = ln(s/
√
Q2k2). As is well

known [12], the kernel χs(α̂s,M) which corresponds to this choice is related to the kernel
χDIS(α̂s,M) which corresponds to DIS variables by the implicit equation

χs(α̂s,M) = χDIS
(
α̂s,M + 1

2
χs(α̂s,M)

)
. (4.26)

A symmetric choice of argument for the running coupling is such that eq. (4.25) also
holds when the argument µ2 of the running coupling αs(µ

2) is expressed as a function
of Q2 and k2, µ2 = µ2(Q2, k2), and µ2(Q2, k2) = µ2(k2, Q2). Examples of symmetric
choices for the running of the coupling are µ2 = |Q2 − k2| or µ2 = Max(Q2, k2). Upon
Mellin transformation, different choices of arguments of the running coupling correspond
to different orderings of the running–coupling operator. For instance, it is easy to check
that the Mellin transform of

K0(αs, k
2, Q2) =

CA

π
αs(Q

2)
Q2

|Q2 − k2|
(4.27)

is α̂sχ0(M), where

χ0(M) = −
CA

π
[ψ(M) + ψ(1 −M) − 2ψ(1)] (4.28)

is the standard leading-order BFKL kernel, while the Mellin transform of

K0(αs, k
2, Q2) =

CA

π
αs(k

2)
Q2

|Q2 − k2|
(4.29)

is χ0(M)α̂s.

Note finally that the integration which takes us from the unintegrated to the integrated
distribution also breaks the symmetry, as eq. (3.5) explicitly shows: it follows that the
symmetry which holds at the unintegrated level is broken at the integrated level.

Because the diagrammatic computation of the BFKL kernel yields the result in the
Q0 scheme at the unintegrated level, once symmetric variables and symmetric running of
the coupling have been chosen the kernel is symmetric when determined in this scheme.
Whether the symmetry is preserved or not in other schemes depends of course on the par-
ticular scheme change. Specifically, it is easy to see that a scheme change through R(N, t)
preserves the symmetry at leading nontrivial order (i.e. at the order of χ1) but not be-
yond, essentially because it is entirely determined by χ0 and its d-dimensional continuation,
which is symmetric (see appendix C), whereas a scheme change through N (N, t) breaks the
symmetry already at leading nontrivial order, because the first nontrivial running–coupling
duality correction eq. (2.23) is manifestly not symmetric.

As discussed already, use of naive duality on the MS
∗

GLAP anomalous dimension
eqs. (4.11)-(4.13) gives us the expansion eqs. (4.15)-(4.17) of the Q0 scheme BFKL kernel
for the unintegrated parton distribution. This result is clearly in DIS variables and can be
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turned into symmetric variables by expanding out eq. (4.26). Substituting the expansion
eq. (2.25) of the kernel we get

χs(α̂s,M) = α̂sχ0

(
M + 1

2 α̂sχ
s
0(M) + 1

2 α̂
2
sχ

s
1(M)

)

+ α̂2
sχ1

(
M + 1

2
α̂sχ

s
0(M)

)
+ α̂3

sχ2(M) +O(α̂4
s) (4.30)

= α̂sχ0

(
M + 1

2 α̂sχ
s
0(M)

)
+ α̂3

sχ
′

0

(
M + 1

2 α̂sχ
s
0(M)

)
1
2χ

s
1(M)

+ α̂2
sχ1(M) + α̂3

sχ
′

1(M) 1
2χ

s
0(M) + α̂3

sχ2(M) +O(α̂4
s). (4.31)

where on the right-hand side we have dropped the DIS index of eq. (4.26).

The first term on the right-hand side of eq. (4.31) must be computed by carefully
keeping operator ordering into account. This can be done by using a technique akin to
that of ref. [7], summarized in section 2: namely, by computing

χ0(M + 1
2
α̂sχ

s
0(M)) = e

1
2

α̂sχs
0
(M) d

dλ
+

1
2

[
M,

1
2

α̂sχs
0
(M)

]
d2

dλ2
+...

χ0(M + λ)|λ=0

= χ0(M) + 1
2 α̂sχ

s
0(M)χ′

0(M) + 1
4 [M, α̂sχ

s
0(M)]χ′′

0 (M) + 1
8 α̂

2
sχ

s
0
2(M)χ′′

0(M) +O(α̂3
s)

= χ0(M) + 1
2 α̂sχ

s
0(M)χ′

0(M) − 1
4β0α̂

2
sχ

s
0(M)χ′′

0(M) + 1
8 α̂

2
sχ

s
0
2(M)χ′′

0(M) +O(α̂3
s).

(4.32)
Substituting this result in eq. (4.31) and collecting terms of the same order we get

χs
0(M) = χQ0

0 (M), (4.33)

χs
1(M) = χQ0

1 (M) + 1
2χ

′

0
Q0(M)χQ0

0 (M), (4.34)

χs
2(M) = χQ0

2 (M) + 1
2χ

′

1
Q0(M)χQ0

0 (M) + 1
2χ

′

0
Q0(M)χQ0

1 (M)

+ 1
2χ

′

0
Q0(M)

2
χQ0

0 (M) + 1
8χ

′′

0
Q0(M)χQ0

0

2
(M) − 1

4β0χ
′′

0
Q0(M)χQ0

0 (M), (4.35)

where on the right-hand side we have denotes the result in DIS variables by χQ0

k , since in
practice we will use the Q0-scheme result in DIS variables of eqs. (4.15)-(4.17).

In order to determine the constant term of χ1 and the simple pole of χ2 in symmetric
variables we have substituted the expansion of χ0 up to O(M2). In principle the linear
term of χ1 is needed too, but its dependence cancels out in the expression for χ2. Using
the expressions eq. (4.15)-(4.17) for the unintegrated Q0–scheme kernels χQ0

i we finally get

χs
0(M) =

g0,−1

M
+O(M2) , (4.36)

χs
1(M) = −

(g0,−1)
2

2M3
+
g0,0g0,−1

M2
+
g1,−1

M
+
g2,−2

g0,−1
+ g2

0,−1ζ(3) +O(M) , (4.37)

χs
2(M) =

(g0,−1)
3

2M5
−

3g0,0(g0,−1)
2 + β0(g0,−1)

2

2M4
+

(g0,0)
2g0,−1 + g0,1(g0,−1)

2 − g0,−1g1,−1

M3

+
−1

2
g2,−2 + g0,0g1,−1 + g0,−1ḡ1,0

M2
+
ḡ2,−1 − 2β0(g0,−1)

2ζ(3)

M
+O(M0) . (4.38)
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We can now exploit the symmetry of the kernel with symmetric coupling, which implies
that χ(α̂s,M) must admit an expansion of the form

χ(α̂s,M) = α̂sχ
s
0(M) + α̂2

sχ
s
1(M) + α̂3

sχ
s
2(M) +O(α̂3

s) (4.39)

= χsym
0 (α̂s,M) + χsym

1 (α̂s,M) + χsym
2 (α̂s,M) +O(α̂3

s) (4.40)

where χsym
i (α̂s,M) are the symmetrized functions

χsym
0 (α̂s,M) = c0,−1

[
α̂s

1

M
+

1

1 −M
α̂s

]
+ α̂sc0,0 + c0,1 [α̂sM + (1 −M)α̂s]

+ c0,2

[
α̂sM

2 + (1 −M)2α̂s

]
+O(M3), (4.41)

χsym
1 (α̂s,M) = c1,−3

[
α̂2

s

1

M3
+

1

(1 −M)3
α̂2

s

]
+ c1,−2

[
α̂2

s

1

M2
+

1

(1 −M)2
α̂2

s

]

+ c1,−1

[
α̂2

s

1

M
+

1

1 −M
α̂2

s

]
+ α̂sc1,0 + c1,1

[
α̂2

sM + (1 −M)α̂2
s

]

+O(M2), (4.42)

χsym
2 (α̂s,M) =

∑

j=1,5

c2,−j

[
α̂3

s

1

M j
+

1

(1 −M)j
α̂3

s

]
+O(M0). (4.43)

Given the expression of χsym
i eq. (4.40) it is straightforward to determine the sym-

metrized kernel when α̂s is “canonically” ordered to the left, which corresponds to the
choice of argument of the running coupling αs = αs(Q

2):

α̂sχ̄
sym
0 (M) = χsym

0 (α̂s,M), (4.44)

α̂2
sχ̄

sym
1 (M) = χsym

1 (α̂s,M)− α̂2
sβ0

c0,−1

(1 −M)2
+ β0α̂

2
s(c0,1 + 2c0,2) +O(M), (4.45)

α̂3
sχ̄

sym
2 (M) = χsym

2 (α̂s,M)− α̂3
sβ0β1

c0,−1

(1 −M)2
+ 2α̂3

sβ
2
0

c0,−1

(1 −M)3

− 2α̂3
sβ0

c1,−1

(1 −M)2
− 4α̂3

sβ0
c1−2

(1 −M)3
− 8α̂3

sβ0
c1−3

(1 −M)4
+O(M0).(4.46)

In χ̄sym
i the symmetry is broken by the running of the coupling only.
We can finally determine all coefficients cij in eqs. (4.41)-(4.43) by expanding the

symmetrized kernel eqs. (4.44)-(4.46) in Laurent series about M = 0 and equating to the
expansion of the unsymmetrized kernels χs

i eqs. (4.36)-(4.38), which is accurate to the
stated power of M . Because the anticollinear terms with poles at M = 1 in eqs. (4.41)-
(4.43) are regular in M = 0, the symmetrized χsym

i have the same M = 0 poles as
their unsymmetrized counterparts χs

i , and their coefficients can be read off eq. (4.36)-
(4.38). However, the anticollinear terms do contribute to all regular contributions in the
expansion of χs

i about M = 0. This is why higher–order regular terms must be included
in the right-hand side of eqs. (4.41),(4.42): specifically, symmetric terms up to O(M2)
must be included in χs

0(M) in order for its expansion to coincide with that of χsym
0 (M)

up to and including O(M), and terms up to and including O(M) in χs
1(M) in order for its
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Figure 3: The approximate expression of the NNLO contribution to the BFKL kernel for
the unintegrated distribution eq. (4.46) in the Q0 scheme, symmetric variables, αs(Q

2).
See appendix D for the values of all coefficients. The uncertainty band is obtained
varying the unknown scheme—fixing coefficient −5 ≤ ġ1,−1 ≤ 5 (top to bottom).
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Figure 4: The relative uncertainty in the NNLO contribution to the BFKL kernel for
the unintegrated distribution shown in figure 3, due to the uncertainty in the unknown
scheme—fixing coefficient ġ1,−1, here taking the values −5,−1, 1, 5 (top to bottom).
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Figure 5: The full BFKL kernel at leading, next-to-leading, and next-to-next-to leading
order obtained combining tyhe known expressions for the LO and NLO contributions
(as shown in figure 2) and our approximate expression (with ġ1,−1 = 0) for NNLO (as
shown in figure 3), with α̂s → 0.2. All expressions are in the Q0 factorization scheme,
at the unintegrated level with symmetric variables, and αs = αs(Q

2). The symmetry
about M = 1

2
is only broken by the argument of the running coupling.

expansion to coincide with that of χsym
1 (M) up to O(M0). No addition is necessary for

χ2 because the known coefficients in its expansion about M = 0 are all singular.
Summarizing, all singular coefficients in eqs. (4.41)-(4.43) can be read off eq. (4.36)-

(4.38), while for the nonsingular ones we get

c0,0 = −3
2g0,−1, c0,1 = 0, c0,2 = 1

2g0,−1,

c1,0 =
g2,−2

g0,−1

+ (g0,−1)
2ζ(3), c1,1 = 1

2(g0,−1)
2 − g0,−1g0,0 − g1,−1.

(4.47)

Using these results in eqs. (4.44)-(4.46) we get our approximate expression for the BFKL
kernel up to NNLO, at the unintegrated level in the Q0 scheme in symmetric variables,
with αs = αs(Q

2). The LO kernel of course does not depend on either scheme, the choice
of variables, or the running of the coupling. The NLO kernel corresponds to the widely
used form of the kernel as given in ref. [12], eq. (14) of that reference. Indeed, it can
be straightforwardly checked that the Laurent expansion of eq. (4.45) coincides with the
result of ref. [12] up to and including O(M0). The NNLO kernel eq. (4.46) is a new result.
The expressions for the kernel in DIS variables can be obtained straightforwardly from
eqs. (4.44)-(4.46) by inverting eqs. (4.34)-(4.35), and the kernel at the integrated level is
found using eq. (4.23). The MS scheme expressions are found using eqs. (4.20)-(4.21) in
eq. (4.18).
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Figure 6: The BFKL intercept c(αs) at leading, next-to-leading, and next-to-next-to-
leading order, obtained from the χ as shown in figure 5, with a symmetric argument for
the running coupling, and evaluated at M = 1

2
.

The full expression for the kernel up to NNLO in the Q0 scheme is given in Ap-
pendix D, both in symmetric and DIS variables, at the unintegrated and integrated level.
The approximate expressions of the LO and NLO kernels compared to the exact kernels
in figure 1 correspond to the expressions eq. (4.44)-(4.45) (Q0 scheme, unintegrated, sym-
metric variables, αs(Q

2)). The approximate expression of χ2 is displayed in figure 3, in
the Q0 scheme, in symmetric variables, at the unintegrated level and with the canonical
argument of the coupling αs(Q

2). As discussed above, eq. (4.14) (see also Appendix C)
one of the coefficients which determine the next-to-next-to-leading order scheme change
between the MS and MS

∗

(and thus Q0), namely ġ1,−1, is unknown. This coefficient affects
the simple (sub-subleading) poles, and has therefore a moderate impact. Noting that all
the scheme-change coefficients (see Appendix C, eq. (C.7)) are of order one or smaller,
and indeed all coefficients gi,j (see Appendix B, eq. (B.2)) are at most of order of a few,
we estimate the uncertainty related to this coefficient by varying −5 ≤ ġ1,−1 ≤ 5. The
corresponding uncertainty is displayed in figure 3, and the relative uncertainty in figure 4:
it is seen to be similar to the uncertainty of a few percent that we expect (on the basis of
the LO and NLO results of figure 1) to affect our approximate form of χ2.

In figure 5 we display the full NNLO BFKL kernel χ(α̂s,M) = α̂sχ0(M)+ α̂2
sχ1(M)+

α̂3
sχ2(M), with the same scheme and variable choices using the exact expressions up to

NLO and the approximate expression to NNLO, with α̂s → 0.2. The slow convergence
properties of the expansion of the BFKL kernel, driven by the increasingly dominant
collinear and anti-collinear singularities at M = 0 and M = 1, are very apparent in this
figure. Although the χ2 contribution restores the minimum near M = 1

2
, the convergence

of the expansion in the vicinity of the minimum is still rather slow.
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This is made more explicit in figure 6, where we plot the intercept c(αs) as a function
of αs. This is calculated by using the same expression for χ as in figure 5, but with the
coupling chosen to be symmetric, so that all the curves are symmetric about M = 1

2 , and
then defining c(αs) = χ(αs,

1
2
), ie the value of χ the stationary point. While the fixed

order perturbation series is clearly good for very small αs, say αs
<∼ 0.05, with αs ∼ 0.1

there are signs that the series has yet to converge. For yet larger values of αs (as would be
appropriate for phenomenological studies) the results from the fixed order series are clearly
not very useful, and a resummation of collinear and anti-collinear singularities along the
lines discussed in Ref. [33,9,22,8] becomes necessary.

5. Outlook

In this paper we have presented an approximate determination of the NNLO contri-
bution to the BFKL kernel. In the process, we have provided a full treatment to this order
of various issues which affect the determination of the BFKL kernel: the relation between
the MS and Q0 factorization schemes, the duality relations which connect the BFKL kernel
to the GLAP anomalous dimension, specifically in the presence of running coupling, the
choice of kinematic variables in the definition of the BFKL kernel, the relation between
the form of the BFKL kernel and the argument of the running coupling, and the relation
between BFKL kernels for integrated and unintegrated parton distributions. All these
issues become rather nontrivial to next-to-next-to leading order, and require full control
of factorization scheme and running coupling.

Because the perturbative expansion of the BFKL kernel in both the collinear and
anticollinear regions is alternating in sign, a knowledge of NNLO corrections is necessary
for an accurate assessment of the uncertainty involved in a fixed–order determination of the
kernel: indeed, whereas the qualitative features of the NLO kernel are completely different
from those of the LO, the NNLO result is qualitatively similar, though we have shown
that it is quantitatively not so reliable because of the slow convergence of the perturbative
expansion, even in the central region away from the singularities.

Fixed–order BFKL kernels have been widely used recently in studies of nonlinear
(saturation) corrections to the BFKL equation and their phenomenological implications
for RHIC and the LHC (see e.g. [34] and ref. therein). Also, they are the foundation
of numerical approaches to the BFKL equation (see [35] and ref. therein), which in turn
are relevant for Monte Carlo simulations (see e.g. ref. [36] and ref. therein). Because
of the slow convergence of the perturbative expansion, the determination of the NNLO
BFKL kernel presented here is useful in assessing the reliability of these calculations.
Finally, the approximate form of the LO and NLO kernels given here are extremely accurate
while having a very simple analytic form, and are thus amenable to simple numerical and
phenomenological implementations.
Acknowledgement: We thank T. Binoth, V. del Duca, G. Ridolfi and A. Vicini for
various discussions during the course of this work. S. M. is supported through a SUPA
graduate studentship. S. F. was partly supported by a PPARC visiting fellowship and a
PRIN2004 grant (Italy).
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Appendix A. Higher–order duality

Higher-order duality relations can be obtained by pursuing to higher orders the ex-
pansion of the Baker-Campbell-Hausdorff equation for a pair of non-commuting operators
p̂, q̂ which act in the same way on a state G, according to eq. (2.12). To fifth order we get

f(q̂)G(N,M) =

[
f(p̂) − 1

2f(p̂)
′′

[p̂, q̂] + 1
6f(p̂)

′′′

[q̂, [q̂, p̂]] +

+ 1
3f(p̂)

′′′

[p̂, [p̂, q̂]] + 1
24f(p̂)IV [q̂, [q̂, [q̂, p̂]]] +

+ 1
8
f(p̂)IV [q̂, [p̂, [p̂, q̂]]] − 1

8
f(p̂)IV [p̂, [p̂, [p̂, q̂]]] +

+ 1
8f(p̂)IV [p̂, q̂]

2 − 1
24f(p̂)V [p̂, q̂] [q̂, [q̂, p̂]] +

− 1
24
f(p̂)V [q̂, [q̂, p̂]] [p̂, q̂] − 1

12
f(p̂)V [p̂, q̂] [p̂, [p̂, q̂]] +

− 1
12f(p̂)V [p̂, [p̂, q̂]] [p̂, q̂] − 1

48f(p̂)V I [p̂, q̂]
3

+O(α̂4
s)

]
G(N,M) .

(A.1)

We can now obtain higher-order generalizations of the BFKL-like equation obtained
starting from a GLAP equation by a suitable identification of p̂ and q̂. Because, as well-
known (see e.g. [7]) at the fixed-coupling level the dual of the expansion of χ(αs,M) in
powers of αs at fixed M is the expansion of γ(αs, N) in powers of αs at fixed αs/N , it is
convenient to expand

γ(α̂s, Nα̂
−1
s ) = γs(Nα̂

−1
s ) + α̂sγss(Nα̂

−1
s ) + . . . (A.2)

We then perform the identification eq. (2.16) of p̂ and q̂ and use eq. (A.1) with f(p̂) =
χ̄(α̂s, p̂), where

χ̄(α̂, γ(α̂, Nα̂−1)) = Nα̂−1. (A.3)

Namely, χ̄(α̂s,M) = α̂−1
s χ̃(α̂s,M), where χ̃ is the naive (fixed-coupling) dual of γ, so that

χ̄(α̂,M) = χ̃0(M) + α̂χ̃1(M) + α̂2χ̃2(M) + ... . (A.4)

Using eq. (A.1) we then get

Nα̂−1G(N,M) =
{
χ̄(α̂,M) − 1

2 [M, γ̂]χ̄
′′

(α̂,M) −
1

6
[M, [M, γ̂]]χ̄

′′′

(α̂,M)+

+
1

6
[γ̂, [γ̂,M ]]χ̄

′′′

(α̂,M) + 1
8
[M, γ̂]

2
χ̄IV (α̂,M)

}
G(N,M) ,

(A.5)

where primes denote derivatives with respect to M , and we define γ̂ ≡ γ(α̂s, Nα̂
−1
s ).

All commutators can now be determined explicitly using the expression

α̂−1
s =

1

αs

− β0
∂

∂M
+ β1

(
−αsβ0

∂

∂M
− 1

2
(αsβ0)

2 ∂2

∂M2

)
+O(α3

s) (A.6)
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of the running coupling at the operator level:

[γ̂,M ] = −(Nβ0 +Nβ0α̂sβ1)
∂γ(α̂s, Nα̂

−1
s )

∂Nα̂−1
s

+

+ β0α̂
2
s

∂γ(α̂s, Nα̂
−1
s )

∂α̂s

+O(α̂3
s), (A.7)

[γ̂, [γ̂,M ]] = O(α̂3
s) (A.8)

[M, [M, γ̂]] = (Nβ0)
2 ∂

2γ(α̂s, Nα̂
−1
s )

∂(Nα̂−1
s )2

+O(α̂3
s), (A.9)

([γ̂,M ])
2

= (Nβ0)
2

(
∂γ(α̂s, Nα̂

−1
s )

∂Nα̂−1
s

)2

+O(α̂3
s). (A.10)

Substituting the commutators (A.7)-(A.10) in eq. (A.5) and back-substituting order
by order the low-order expansion of the enduing equation in the higher-order terms one
may remove all the N dependence from the right-hand side of eq. (A.5), with the result:

Nα̂−1
s G =

{
χ̄(α̂s,M)− 1

2
α̂sβ0

χ̄(α̂s,M)χ̄′′(α̂s,M)

χ̄′(α̂s, γ̂)
+

+ α̂2
s

[
1
4β0

2χ̄(α̂s, γ̂)
χ̄

′′

(α̂s, γ̂)

χ̄′(α̂s, γ̂)

2

− 1
2β0β1

χ̄(α̂s,M)χ̄′′(α̂s,M)

χ̄′(α̂s, γ̂)
+

+ β0
2 χ̄(α̂s,M)

2

24χ̄′(α̂s,M)
4

(
12(χ̄

′′

(α̂s,M))3+

− 7χ̄
′

(α̂s,M)χ̄
′′

(α̂s,M)χ̄
′′′

(α̂s,M) + 3(χ̄
′

(α̂s,M))2χ̄IV (α̂s,M)
)
+

− 1
2
β0
∂χ̄(α̂s,M)

∂α̂s

χ̄′′(α̂s,M)
]}
G .

(A.11)

Identifying the term in curly brackets in eq. (A.11) with the BFKL kernel

χ(α̂s,M) = α̂sχ0(M) + α̂sχ1(M) + α̂2
sχ2(M) + ... . (A.12)

and expanding χ̄ as in eq. (A.4), eq (A.11) gives an order-by-order expression of the
running–coupling dual in terms of the naive dual. Up to NNLO we get

χ0 = χ̃0 (A.13)

χ1 = χ̃1 −
1
2β0

χ̃0χ̃
′′
0

χ̃′
0

(A.14)

χ2 = χ̃2 −
1
2β0β1

χ̃0χ̃
′′
0

χ̃′
0

+

+
1

24
β2

0

(χ̃0)
2

(χ̃′
0)

4

(
12 (χ̃′′

0)
3
− 14χ̃′

0χ̃
′′

0 χ̃
′′′

0 + 3 (χ̃′

0)
2 ˜χIV

0

)
+

− 1
2β0

χ̃0χ̃
′′
1

χ̃′
0

− β0
χ̃1χ̃

′′
0

χ̃′
0

+ 1
2β0

χ̃0χ̃
′′
0 χ̃

′
1

(χ̃′
0)

2

+ 1
4
β2

0

χ̃0

(χ̃
′

0)
2

(
2χ̃

′

0χ̃
′′′

0 − (χ̃
′′

0 )2
)
, (A.15)
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where all χi and χ̃i are functions of M and the prime denotes differentiation with respect
to M .

By inverting this relation (i.e. expressing order by order χ̃ in terms of χ), this result
can be used to determine the running–coupling corrections to the anomalous dimension γ
determined from a given BFKL kernel χ. These corrections up to NNLO were first derived
in ref. [14], and then reproduced more recently in refs. [18],[7]. However in both cases only
the leading-order kernel χ0 and leading-order running of the coupling were included. For
completeness, we derive them here consistently including the running of the coupling up
to NLO.

Namely, we start from a given BFKL kernel χ(α̂s, N) and determine first the GLAP
anomalous dimension γ̃(αs, Nα

−1
s ) which is obtained from it using naive duality, which

we then expand according to eq. (A.2). We wish to determine the anomalous dimension
γ(α̂s, Nα̂

−1
s ) which is related through running–coupling duality to the starting χ. We

observe that the naive-duality relations between χ and γ̃ and between χ̃ and γ imply that

N/αs = χ(αs, γ̃(αs, N/αs)) = χ̃(αs, γ(αs, N/αs)). (A.16)

Note that in eq. (A.16) it is immaterial whether αs is considered to be an operator or not,
because [α̂s, N ] = 0 anyway. Defining

∆χ(α̂s,M) = χ̃(α̂s,M) − χ(α̂s,M)

∆γ(α̂s, Nα̂
−1
s ) = γ̃(α̂s, Nα̂

−1
s ) − γ(α̂s, Nα̂

−1
s ),

(A.17)

and expanding eq. (A.16) in powers of αs we get

∆χ1 = −χ′

0∆γss

∆χ2 = −χ′

0∆γsss − χ1∆γss
′ − χ′

1∆γss + 1
2χ

′′

0∆γss
2 + χ′

0∆γss
′∆γss,

(A.18)

where ∆χi(M) and ∆γi(Nα̂
−1
s ) are respectively the coefficients of the expansion of

∆χ(α̂s,M) and ∆γ(α̂s, Nα̂
−1
s ) in powers of α̂s, and on the left-hand side all ∆χi are

evaluated as functions ∆χi(γ̃(αs, Nα
−1
s )).

Furthermore, inverting eq. (A.15) we can determine the coefficients ∆χi of the expan-
sion of ∆χ(αs,M) in powers of αs in terms of χ (all χi functions of M):

∆χ1 = 1
2β0

χ0χ
′′
0

χ′
0

∆χ2 = 1
2β0β1

χ0χ
′′
0

χ′
0

+ 1
2β0

χ0χ
′′
1

χ′
0

+ β0
χ1χ

′′
0

χ′
0

− 1
2β0

χ0χ
′′
0χ

′
1

(χ′
0)

2

+
1

24
β2

0

(χ0)
2

(χ′
0)

4

(
6 (χ′′

0)
3
− 10χ′

0χ
′′

0χ
′′′

0 + 3 (χ′

0)
2
χ0

IV
)

+ 1
4β

2
0

χ0

(χ
′

0)
2
χ

′′

0

2
.

(A.19)

Equating the right-hand side of each of eqs. (A.18) to the corresponding equa-
tions (A.19) we determine finally

∆γss = −1
2β0

χ0χ
′′
0

χ′2
0

∣∣∣
M=γ̃s

(A.20)
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and
∆γsss = ∆γ(0)

sss + ∆γ(1)
sss + β1∆γss, (A.21)

where we have defined

∆γ(0)
sss = −

1

24
β2

0

(χ0)
2

(χ′
0)

5

(
15 (χ′′

0 )
3
− 16χ′

0χ
′′

0χ
′′′

0 + 3 (χ′

0)
2
χ0

IV
) ∣∣∣

M=γ̃s

(A.22)

and

∆γ(1)
sss =

(
1
2
β0χ0χ

′

0γ̃
′′

ss + 1
2
β0χ0χ

′

1γ̃
′′

s + 1
2
β0χ

′

0χ1γ̃
′′

s + 1
2
β0χ0χ

′′

0 γ̃
′′

s γ̃ss

) ∣∣∣
M=γ̃s

. (A.23)

The full NNLO running coupling correction eq. (A.21) is given here for the first time.

In particular, the term ∆γ
(0)
sss, which depends only on χ0 and β0, was already derived

in ref. [14] (eq. (14) of that reference) and later confirmed in ref. [18] [eq. (4.16) of this

reference, which gives N (N, t) eq. (3.11)]. However, the terms ∆γ
(1)
sss, which are due to the

next-to-leading order kernel χ1, and the last term on the right-hand side of eq. (A.20), due
to the next-to-leading order running of the coupling were never computed before.

Appendix B. Expansion of the GLAP anomalous dimensions

The coefficients of the expansion eqs. (4.5)-(4.7) of the leading, next-to-leading and
next-to-next-to-leading GLAP anomalous dimensions in powers of N are easily determined
by recalling that γ is the large eigenvalue of the 2× 2 anomalous dimension matrix, given
by

γ = 1
2

[
γgg + γqq +

√
(γgg − γqq)2 + 4γgqγqg

]
, (B.1)

and using the expressions of γij given in Refs. [31,32,6]. In the MS scheme we get

g0,−1 = CA

π

g0,0 = −11CA

12π
+

(
− 1

6π
+ CF

3πCA

)
nf

g0,1 = −CAπ
6 + 67CA

36π
−

11CF nf

36πCA
+

(
− C2

F

9πC3

A

+ CF

18πC2

A

)
n2

f

g1,−1 =
(

13CF

18π2 − 23CA

36π2

)
nf

g1,0 = −2ζ(3)C2

A

π2 +
1643C2

A

216π2 − 11C2

A

36 +
(

43CA

54π2 + CF

18 − 547CF

216π2 +
C2

F

4π2CA

)
nf

+
(

13CF

108π2CA
− 13C2

F

54π2C2

A

)
n2

f

g2,−2 =
ζ(3)C3

A

2π3 +
11C3

A

72π
− 395C3

A

108π3 +
(

C2

A

36π
− 71C2

A

108π3 − CF CA

18π
+ 71CF CA

54π3

)
nf

g2,−1 = −143ζ(3)C3

A

24π3 − 29πC3

A

720 − 389C3

A

432π
+

73091C3

A

2592π3 +
(
−11ζ(3)C2

A

12π3 − C2

A

9π

+
301C2

A

81π3 + 8ζ(3)CF CA

3π3 + 35CF CA

108π
− 28853CF CA

2592π3 − 2C2

F ζ(3)
3π3 +

11C2

F

12π3

)
nf

+
(

59CA

648π3 − 65CF

324π3

)
n2

f .

(B.2)
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Appendix C. The R scheme change to next-to-next-to-leading order.

The R scheme change [15,37,18] is related to the fact that the MS anomalous dimen-
sion contains interference terms between collinear poles and the β function in d dimen-
sions. The factorization of collinear singularities for a d–dimensional partonic cross section
σ̂ which depends on a single dimensionful variable Q2 can be written as

σ

(
Q2

µ2
, αs(µ

2), N, ε

)
= σ(0)(Q2, α0, N, ε) exp

[∫ αs(µ2)

0

dα
γ(α,N, ε)

β(α, ε)

]
, (C.1)

where αs(µ
2) is the dimensionless renormalized coupling, α0 is the bare coupling,

σ(0)(Q2, α0, N, ε) is the regularized cross section and σ(Q2

µ2 , αs(µ
2), N, ε) is free of collinear

singularities. The factorization scale is µ2 and γ(αs, N, ε) and β(αs, ε) are respectively
the d–dimensional anomalous dimension and beta function. The former is defined as the
Mellin transform of the d–dimensional Altarelli–Parisi splitting function. The latter is
given by

β(αs, ε) = αsε+ β(αs) (C.2)

in terms of the usual four–dimensional β function

β(αs) = −β0α
2
s(1 + αsβ1 + . . .). (C.3)

The MS anomalous dimension is the residue of the simple pole in ε in the integrand
of the exponential in eq. (C.1), namely

γMS(αs, N) = Resε

[
αsγ(αs, N, ε)

β(αs, ε)

]

= γ(αs, N) −
β(αs)

αs

γ̇(αs, N) +

(
β(αs)

αs

)2

γ̈(αs, N) + . . . ,

(C.4)

where the various coefficients are defined through the Taylor expansion

γ(αs, N, ε) ≡ γ(αs, N) + εγ̇(αs, N) + ε2γ̈(N) + . . . . (C.5)

The MS anomalous dimension thus receives two different classes of contributions: pure
collinear singularities and interference terms between the ε-dependent anomalous dimen-
sion and the poles arising from the expansion of the d-dimensional β-function. In particular
up to next-to-next-to leading order we have

γMS
0 = γ0 ,

γMS
1 = γ1 + β0γ̇0 ,

γMS
2 = γ2 + β0β1γ̇0 + β2

0 γ̈0 + β0γ̇1.

(C.6)

The R scheme change, which appears in the relation between MS and Q0 schemes
eq. (3.15), takes us from the MS scheme to the MS

∗

scheme where the anomalous dimension
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is simply given by γ(αs, N, 0), i.e. γ0(N), γ1(N), etc. Thus in order to compute γMS
∗

we
have to subtract from the MS anomalous dimension eq. (C.6) the contributions coming from
the interference between the d-dimensional kernel and the β function, which are in turn
determined from the knowledge of the d–dimensional anomalous dimension γ(αs, N, ε).

The d dimensional leading order splitting functions have been known for a long time,
at least for x < 1 [38]:

Pqq(x, ε) = CF

1

(1 − x)ε

[
1 + x2

1 − x
− ε(1 − x)

]
+ aqq(x, ε)δ(1 − x) ,

Pqg(x, ε) = CF

1

(1 − x)ε

[
1 + (1 − x)2

x
− εx

]
,

Pgq(x, ε) = TR

1

(1 − x)ε

[
1 − 2x

1 − x

1 − ε

]
,

Pgg(x, ε) = 2CA

1

(1 − x)ε

[
x

1 − x
+

1 − x

x
+ x(1 − x)

]
+ agg(x, ε)δ(1 − x) .

(C.7)

The end–point contribution aqq (agg) can be extracted from any process with collinear
radiation from incoming quarks, such as Drell-Yan, or gluons, such as Higgs production
from gluon fusion: the O(αs) coefficient of the δ(1 − x) provides a determination of the
end–point term in the splitting function after factoring a simple ε pole and the Born cross
section (and a factor of two when there are two incoming partons). Using the known NLO
corrections for Drell-Yan [39] and Higgs [40] production we get

aqq(ε) = CF

[
2

ε
+

3

2
+ ε

(
4 −

π2

3

)]
+O(ε2) ,

agg(ε) =
2CA

ε
+

11CA − 4nfTR

6
− επ2 +O(ε2) .

(C.8)

The simple ε pole cancels against that coming from the expansion of (1 − x)−(1+ε) =
1
ε
δ(1 − x) + . . . in the splitting functions Pqq and Pgg, thereby providing a check of the

result.
Using the splitting functions (C.7)-(C.8) we can now determine the coefficients of the

expansion in powers of N of the large eigenvalue of the ε-dependent GLAP anomalous
dimension matrix: we find

γ̇0(N) =
ġ0,−2

N2
+
ġ0,−1

N
+ ġ0,0 +O(N) ,

γ̈0(N) =
g̈0,−1

N
+O(N0)

(C.9)

with
ġ0,−2 = 0, ġ0,−1 = 0,

ġ0,0 = −
67

12π
−

7

81

nf

π
, g̈0,−1 = −

π2

12
.

(C.10)
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The next-to-leading order d dimensional splitting function is not available, though in
principle it could be extracted from d–dimensional splitting amplitudes [41]. However, the
R scheme change has been determined long ago [15] to the level of the next-to-leading
N = 0 singularities, i.e. for γss(αs/N) eq. (3.9). This corresponds to the O(ε) correction
to the leading N = 0 singularities, because [18]

γMS
s = γs ,

γMS
ss = γss + β0γ̇s,

(C.11)

where we have used a notation similar to that of eq. (C.5) but for the expansion eq. (3.9)
of the anomalous dimension. Hence, if we let

γ̇1 =
ġ1,−3

N3
+
ġ1,−2

N2
+
ġ1,−1

N
+O(N0) . (C.12)

the coefficients ġ1,−3 and ġ1,−2 can be extracted using eq. (C.11) from the scheme change
of ref. [15].

Equation (C.11) implies that γs is left unaffected by the scheme change, so it follows
from eq. (C.6) that ġ0,−i = ġ0,−1 = ġ1,−3 = 0 thereby confirming the result of eq. (C.10).

Also, the scheme change [15] of γss starts at O
(
αs

(
αs

N

)3
)

γ̇s

(αs

N

)
= 2ζ(3)

(αs

N

)3

+O

((αs

N

)4
)
. (C.13)

Collecting everything we get

ġ1,−3 = 0; ġ1,−2 = 0, (C.14)

while the sub–subleading coefficient ġ1,−1 remains undetermined: it would require knowl-
edge of the O(ε) correction to the simple N–pole contribution to γ1(αs, N, ε).

Summarizing, the MS
∗

anomalous dimension is given in terms of the coefficients
eq. (B.2) of the expansion of the MS anomalous dimension and of the scheme change
coefficients eqs. (C.10),(C.14) by

γMS
∗

0 =
g0,−1

N
+ g00 + g0,1N +O(N2) ,

γMS
∗

1 =
g1,−1

N
+ ḡ1,0 +O(N) ,

γMS
∗

2 =
g2,−2

N2
+
ḡ2,−1

N
+O(N0) ,

(C.15)

where
ḡ1,0 = g1,0 − β0ġ0,0 ,

ḡ2,−1 = g2,−1 − β0ġ1,−1 − β2
0 g̈0,−1 .

(C.16)
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Appendix D. The BFKL kernel in the Q0 scheme

In this appendix we give explicit expressions for our approximation to the NNLO
BFKL kernel in the Q0 factorization scheme. The kernel for evolution of the unintegrated
distribution, with the argument of the strong coupling chosen as αs(Q

2), and the symmetric
choice of kinematic variables eq. (4.24) is given by

χ0(M) = CA

π

(
1
M

+ 1
(1−M) − 1 −M(1 −M)

)
; (D.1)

χ1(M) = − C2

A

2π2
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1

M3 + 1
(1−M)3

)
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π

(
− 11CA

12π
−

nf

6π
+

CF nf

3πCA

)(
1
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(1−M)2

)
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π
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1
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(13CF nf
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36π2

)(
1
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+ 1
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71CAnf
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18
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71CF nf
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π
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(D.2)

χ2(M) =
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2π3
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1
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)
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1
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12π
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nf
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(D.3)
Substituting the numerical values of the Casimirs CA = 3 and CF = 4

3 we get

χ0(M) = 3
π

(
1
M

+ 1
1−M

− 1 −M(1 −M)
)
, (D.4)

χ1(M) = − 9
2π2
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1
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nf

18π2
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1
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162π2 + 27ζ(3)
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)
,

(D.5)
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2π3
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(D.6)

The expression of the NNLO kernel in DIS variables can be obtained by inverting
eqs. (4.30)-(4.31), with the result

χDIS
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(D.7)

Finally, the kernel for the evolution of the integrated parton density can be obtained
from the unintegrated one through eq. (4.23). Using DIS kinematics the difference at
NNLO is given by

χi
2(M) − χu
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(D.8)
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