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Abstract: Recently, the diagrammatic description of soft-gluon exponentiation in scat-

tering amplitudes has been generalized to the multiparton case. It was shown that the

exponent of Wilson-line correlators is a sum of webs, where each web is formed through

mixing between the kinematic factors and colour factors of a closed set of diagrams which

are mutually related by permuting the gluon attachments to the Wilson lines. In this

paper we use replica trick methods, as well as results from enumerative combinatorics,

to prove that web mixing matrices are always: (a) idempotent , thus acting as projection

operators; and (b) have zero sum rows: the elements in each row in these matrices sum up

to zero, thus removing components that are symmetric under permutation of gluon attach-

ments. Furthermore, in webs containing both planar and non-planar diagrams we show

that the zero sum property holds separately for these two sets. The properties we establish

here are completely general and form an important step in elucidating the structure of

exponentiation in non-Abelian gauge theories.
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1. Introduction

Correlators of Wilson lines are important in many applications of gauge field theories in

both the perturbative and non-perturbative regimes. Recently Wilson lines have been

playing a major role in exploring the properties of scattering amplitudes in non-Abelian

gauge theories. The best known example is the conjectured duality in N = 4 super-

symmetric Yang-Mills theory at large Nc, between scattering amplitudes and the vacuum

expectation value of polygon Wilson-loops in an auxiliary coordinate space. This rela-

tion was first proposed by Alday and Maldacena [3] to hold at strong coupling, where the

AdS/CFT correspondence [4] gives a handle on the computation. Immediately thereafter

it was discovered that the relation holds also at weak coupling [5, 6]. This progress, hint-

ing at integrable structures, stimulated much further work, e.g. [6–19], leading to better

understanding of the symmetries that dictate the structure of the amplitude, and further

remarkable relations [20–23]. For a recent review see [24–26].

Another important example is given by correlators of semi-infinite Wilson-line rays

branching out of a local interaction vertex, where an arbitrary colour exchange occurs. Such

correlators provide an effective-theory description of soft gluon interactions with energetic

partons participating in a hard scattering process. Each hard parton in the scattering

amplitude is replaced, in the “eikonal” approximation, by a Wilson line along its classical

trajectory, providing a source for the soft-gluon field. The recoil of the hard parton due to
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the interaction with the soft gluons is neglected. Owing to the factorization of soft modes

with respect to hard and collinear ones [27–33], many properties of the scattering amplitude,

notably its infrared singularity structure, are captured by this description. Importantly,

this picture is valid for general Nc, where there is interesting interplay between colour-flow

and kinematics. Because Wilson line correlators are, in general, much simpler than the

corresponding amplitudes, this effective description is of prime importance for studying

scattering amplitudes. The Wilson-line description allows access to all-order properties in

perturbation theory, as well as to strong coupling limit methods.

The fundamental property of an operator made of Wilson lines is that it renormalizes

multiplicatively [34–37] (see also [38–42]). Consequently Wilson-line correlators exponen-

tiate,

S = P exp

{
− 1

2

∫ µ2

0

dλ2

λ2
ΓS(λ2)

}
, (1.1)

and their structure is encoded, to all orders, in the “soft anomalous dimension” matrix

ΓS , which is itself a matrix in colour-flow space (hence the ordering operator P), encoding

both colour and kinematic dependence.

The analysis of the soft anomalous dimension has been the basis of much theoreti-

cal work in recent years leading to substantial progress in understanding the structure of

infrared (long-distance) singularities in multi-leg amplitudes, developments that are im-

portant both from the field-theoretic perspective and the collider-physics one. Infrared

singularities of scattering amplitudes have been fully determined to two-loop order, with

both massless [43,44] and massive partons [45–55]. Moreover, in the massless case, stringent

all-order constraints were derived [56–58] based on factorization and rescaling symmetry,

leading to a remarkable possibility, namely that all soft singularities in any multi-leg ampli-

tude take the form of a sum over colour dipoles formed by any pair of hard coloured partons.

Despite recent progress [56–63], the basic questions of whether the sum-over-dipoles for-

mula receives corrections, and at what loop order, remain so far unanswered. Further

progress in understanding the singularity structure of multiparton scattering amplitudes

in both the massless and massive cases requires new techniques to facilitate higher-loop

computations.

An alternative approach to non-Abelian exponentiation, aiming at a direct diagram-

matic construction of the exponent, is that of ‘webs’ [1, 2, 64–66]. In an Abelian theory,

webs – the diagrams that contribute to the exponent – are simply the set of all connected

diagrams1, since disconnected diagrams would be generated by expanding the exponential.

In a non-Abelian theory complications arise due to the fact that multiple gluon attach-

ments to a given Wilson line give rise to a sequence of non-commuting colour generators.

Nevertheless, it has long been known [64–66] that for a Wilson loop – or two eikonal lines

meeting at a cusp, where a colour singlet hard interaction takes place – the concept of webs

1The term ‘connected diagrams’ excludes the eikonal lines themselves: diagrams with gluons (or photons)

that are attached to the same eikonal line(s) are not considered connected. Examples can be found in

Section 1 of [1].
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naturally generalises to the non-Abelian theory: the expression for a Wilson loop is then

S = exp

{∑
D

F(D) C̃(D)

}
, (1.2)

where for any given diagram D, F(D) and C̃(D) denote, respectively, the kinematic de-

pendence and the “Exponentiated Colour Factor” (ECF), where the latter is distinct from

the conventional colour factor of the diagram, C(D). This replacement encapsulates the

non-Abelian nature of the interaction. Furthermore, the diagrams that contribute to the

exponent can be characterized as those which cannot be partitioned by cutting only the

Wilson lines2. These diagrams are sometimes referred to as “two-eikonal-line irreducible”

or “colour connected”.

Recently, the concept of webs has been further generalized to address non-Abelian

exponentiation in the multiparton case [1,2]. Considering L Wilson lines branching out of

a local interaction vertex, where some arbitrary colour exchange occurs, the two groups

of authors have shown that exponentiation in the form of eq. (1.2) survives, although the

simple topological criterion of irreducibility does not. Ref. [1] provided an explicit formula3

for the ECF’s C̃(D) in terms of conventional colour factors. Diagrams at arbitrary loop

order were found to form closed sets containing diagrams related by permutations of gluon

attachments to the external Wilson lines. The ECF of a given diagram D is a linear

combination of conventional colour factors of diagrams D′ belonging to the same closed

set, namely

C̃(D) =
∑
D′

RDD′C(D′), (1.3)

where RDD′ is a web mixing matrix.

The emerging generalization of a web in the multiparton case is therefore the entire

set of diagrams whose colour factors mix: those which are mutually related by permuting

the gluon attachments to the Wilson lines. Each such set of diagrams can be labelled

by the number of gluon attachments nk to each of the Wilson lines k = 1 . . . L. Distinct

diagrams D in the set differ only by the order of attachments of the gluons to each line.

The contribution of each web to the exponent is

W(n1,n2,...,nL) ≡
∑
D

F(D) C̃(D) , (1.4)

where, as above, F(D) is the kinematic part of diagram D and C̃(D) is its ECF. Substi-

tuting eq. (1.3), we may rewrite this as a double sum

W(n1,n2,...,nL) =
∑
D,D′

F(D) RDD′ C(D′) = FTRC , (1.5)

2A useful review of these concepts, followed by treatment of the three eikonal line case can be found in

Chapter 3 of [67].
3Both papers provided an algorithmic way to determine the ECF C̃(D) using an inverse relation where

conventional colour factors are written as a linear combination of ECF’s. We show that the two are

equivalent in appendix A.
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which makes the role of the web mixing matrix explicit. As is clear from eq. (1.5), we

may think of this matrix as acting either on the vector of conventional colour factors for

each web, or as acting on the (transposed) vector of kinematic parts. The web mixing

matrices thus encode subtle relationships between the kinematic and colour structure of

the exponent, and the further study of these matrices is crucial to understanding the all-

order structure of scattering amplitudes.

Having at hand an explicit formula for determining the ECF’s, Ref. [1] examined

several classes of diagrams, exploring the properties of the web mixing matrices and their

effect on the singularity structure of the exponent. Through these examples a couple of

interesting properties were noted [1]:

1. Idempotence: for any web mixing matrix R, one has R2 = R, or

RDE =
∑
D′

RDD′RD′E ∀D,E . (1.6)

As a consequence, any mixing matrix R is diagonalizable, and its eigenvalues can only

be 0 or 1. Of course, both eigenvalues will generically be degenerate. As explained

in [1], R can therefore be interpreted as a genuine projection operator, which selects,

as the eigenvectors corresponding to eigenvalue 1, those combinations of colour fac-

tors and kinematic factors that build up the exponent. In contrast the eigenvectors

corresponding to eigenvalue 0 do not enter the exponent: they correspond precisely

to those contributions that are generated from lower order webs by expanding the

exponential. Ref. [1] further demonstrated that this structure is intimately related

to the cancellation of subdivergences4 in the exponent.

2. Zero sum rows: for any mixing matrix R, the elements in any row sum to zero,∑
D′

RDD′ = 0 ∀D. (1.7)

This amounts to the fact that terms that are fully symmetric in colour under permu-

tation of the attachments to the Wilson lines do not contribute to the exponent, but

rather are generated by the exponentiation of lower-order webs [1]. In other words,

this is the generalization of the “maximally non-Abelian” nature of webs [65] from

the two parton to the multiparton case.

In [1] these properties were conjectured to hold for any web, based on explicit examples up

to four loop order. The aim of the present paper is to prove that these properties indeed

hold in general.

In order to prove the above conjectures, it will be useful to recall techniques that

were already used in [1, 68] to establish the structure described above and compute the

web mixing matrices. We will use the replica trick, a technique borrowed from statistical

physics (see e.g. [69]) which shortcuts the combinatorics involved in deriving exponentiation

4Here we only discuss unrenormalized webs. Upon renormalizing the multieikonal vertex, additional

cancellations take place involving commutators of lower order webs and counter-terms [2].
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properties. In particular, we will see that the replica trick provides an elegant explanation

of why idempotence must be an inherent property of web mixing matrices. The proof of

the zero sum row property relies upon a closed form combinatoric formula for ECF’s given

in [1], which is further developed here. We show that it is possible to relate this formula to

known results from the theory of integer partitions, and the zero sum row property then

emerges from known combinatoric identities.

The structure of the paper is as follows. In section 2 we review the replica trick

formalism of Ref. [1], and then, in section 3, use it to prove the idempotence property. In

section 4 we recall the formula for ECF’s derived in Ref. [1], and introduce the concept

of ‘overlap functions’ in order to derive an explicit expression for the mixing matrices; the

latter is then used in section 5 to prove the zero sum property. In section 6 we discuss some

further constraints on the mixing matrices based on the planar limit. Finally, in section 7

we conclude with a short discussion of our results. We also include two appendices: In

appendix A we explain the equivalence between the combinatoric formulae presented in [1]

and those obtained using the alternative approach of [2]. Appendix B summarizes useful

properties of the Stirling numbers of the second kind, which emerge in the proof of the

zero sum property.

2. The replica trick

In this section, we recall the replica-trick formalism that was used in [1] to establish the

existence of web mixing matrices and compute them. In the next section we will use a

similar method to prove that web mixing matrices are idempotent.

Our starting point is to consider a hard interaction H(x1, . . . xL)a1...aL which produces

L coloured particles (partons) with colour indices ak at 4-positions xk. The scattering

amplitude for such an interaction, dressed by any number of soft (eikonal) gluon emissions,

may be written in the path integral representation [1, 68]:

Mb1...bL(p1, . . . , pL) =

∫
[DAµs ]Ha1...aL(0, . . . , 0) eiS[Aµs ]

∏
k

(
P exp

[
igs

∫
dtβk ·As

])
akbk

,

(2.1)

where Aµs is the soft gauge field with action S[Aµs ]. Associated with each external line is a

Wilson line factor describing soft gluon emissions, where the trajectory of the kth particle

having 4-velocity βk, is a straight line, zk(t) = xk + tβk. We have used the fact that, at

eikonal level, one may set xk = 0 in eq. (2.1) [68], making the hard interaction effectively

local and independent of Aµs . Taking the hard interaction outside the path integral, one

may write

Mb1...bL(p1, . . . , pL) = Ha1...aLZa1...aL,b1...bL , (2.2)

which makes explicit the fact that soft gluons are described by the matrix

Za1...aL,b1...bL =

∫
[DAµs ] eiS[Aµs ]

∏
k

(
P exp

[
igs

∫
dt βk ·As

])
akbk

. (2.3)

This has the form of a generating functional for a quantum field theory for the soft gauge

field. The Wilson line factors act as source terms coupling the gauge field to the outgoing
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hard partons. Feynman diagrams in this theory are subdiagrams in the full theory, which

span the external parton lines. Thus, exponentiation of diagrams in the quantum field

theory of eq. (2.3) amounts to the exponentiation of soft gluon subdiagrams in the full

theory. In this paper we shall refer to them as diagrams – not subdiagrams – as we

directly consider here correlators of Wilson lines, not partonic amplitudes. By definition,

diagrams which exponentiate will be referred to as webs. We have restricted ourselves to

the eikonal approximation in eq. (2.1) so as to simplify equations in what follows. However,

as explained in [1], conclusions reached about the exponentiation of eikonal corrections can

also be extended to next-to-eikonal order (see [70] and Refs. therein).

Projecting the amplitude of eq. (2.2) onto a basis of colour tensors corresponding to

distinct colour-flows (see [32]), we have

M =MJ c
J
b1...bL

,

where summation over the colour-flow index J is understood. One may then rewrite

eq. (2.2) for each component in colour-flow space,

MJ =
∑
I

HIZIJ , (2.4)

where

ZIJ =

∫
[DAµs ] eiS[Aµs ] [Φ1 ⊗ . . .⊗ ΦL]IJ (2.5)

is the soft gluon generating functional, and where we denote the Wilson line factor associ-

ated with the kth parton line by

Φk = P exp

[
igs

∫
dt βk ·As

]
. (2.6)

The ⊗ symbol is used in (2.5) (L−1 times) since each Wilson line carries distinct partonic

colour indices in some representation. Equation (2.5) makes clear that the soft gluon

generating functional is matrix-valued in colour flow space. This imbues the quantum field

theory for the soft gauge field with a non-trivial degree of combinatorics, so that further

work is involved in ascertaining which diagrams exponentiate in the theory, and what their

associated colour factors are. ¿From now on we suppress the colour flow indices I and J

for brevity.

One may derive the exponent of the generating functional using the replica trick [69]5,

as explained in [1]. The argument proceeds as follows. Firstly, one considers a replicated

theory consisting of N identical copies of the soft gauge field, each with the same action

and source terms as in eq. (2.5). That is, each gauge field has its usual self-interactions,

but fields in a given replica do not interact with ones in other replicas. The generating

function for the replicated theory is given by

ZN =

∫
[DAµ1 ] . . . [DAµN ]ei

∑
i S[Aµi ]

[
(Φ

(1)
1 . . .Φ

(N)
1 )⊗ . . .⊗ (Φ

(1)
L . . .Φ

(N)
L )

]
. (2.7)

5For other applications of the replica trick in high energy physics, see [71–75].

– 6 –



Here we have dropped the subscript s to denote the soft gauge field, and used Ai to

represent a gauge field with replica number i (with N the total number of replicas). The

action for the replicated theory is given by the sum of the individual replica actions, due

to the fact that the replicas do not interact with each other. Finally, Φ
(i)
k is a Wilson line

factor associated with replica number i and parton line k: it provides a source for soft

gluons of replica i, Ai, in the colour representation corresponding to parton k.

We have recognized on the left-hand side of eq. (2.7) that the generating functional for

the replicated theory is related to the original generating functional raised to the power

N , a direct consequence of the fact that the replicas are non-interacting. Each parton line

now carries a product of N Wilson line factors, ordered along each parton line (away from

the hard interaction vertex) in terms of increasing replica number. This product has the

form6

Φ
(1)
k . . .Φ

(N)
k =

(
P exp

[∫
dtβk ·A1

])
. . .

(
P exp

[∫
dtβk ·AN

])
. (2.8)

One cannot immediately read off the Feynman rules from a product of path-ordered expo-

nentials. Instead, one needs to rewrite eq. (2.8) as a single path-ordered exponential. One

may do this by first noting that upon expanding the product of exponentials in eq. (2.8),

each term contains a product of gauge field operators, ordered according to increasing

replica number. Thus one may write [1](
P exp

[∫
dtβk ·A1

])
. . .

(
P exp

[∫
dtβk ·AN

])
= RP exp

[∑
i

∫
dtβk ·Ai

]
, (2.9)

where R is a replica-ordering operator which reorders any product of gauge fields to ensure

that the replica numbers are increasing. The generating functional for the replicated theory,

eq. (2.7), may thus be rewritten as

ZN =

∫
[DAµ1 ] . . . [DAµN ] ei

∑N
i=1 S[Aµi ] ×

R

{
P exp

[
N∑
i=1

∫
dtβ1 ·Ai

]
⊗ . . .⊗ P exp

[
N∑
i=1

∫
dtβL ·Ai

]}
. (2.10)

Feynman diagrams in this replicated theory have kinematic parts which are the same as

the topologically similar diagrams in the original theory. However, the colour factors are

different in the replicated theory due to the presence of the R operator. That is, colour

matrices are reordered on each parton line so as to satisfy the replica ordering constraint.

The reason for replicating the original theory is as follows [1]. Upon expanding in

powers of N ,

ZN = 1 +N logZ +O(N2) . (2.11)

Applying such an expansion to (2.10), and picking the O(N1) coefficient, it then follows

that

lnZ =
∑
D

C̃(D)F(D) , (2.12)

6We have not written explicitly the indices on individual path-ordered exponentials. It is essential,

however, that these are matrix-valued, so their order is important.
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(a) (b)

i

j j

i

Figure 1: Example diagrams in the replicated theory, where the indices label the replica number

of each gluon.

where D is a diagram in the replicated theory with kinematic part F(D), and C̃(D) is the

O(N1) part of CN (D), the colour factor of D in the replicated theory. Eq. (2.12) gives the

sought exponent; in other words we have obtained:

Z = exp

[∑
D

C̃(D)F(D)

]
. (2.13)

Equation (2.13) explicitly expresses the exponentiation of soft gluons, and provides a means

to calculate the exponent directly: one draws all possible diagrams in the replicated theory,

and calculates the part of each diagram which is linear in the number of replicas N . This

then enters the exponent according to eq. (2.13).

Many examples of this procedure were considered in [1]. To illustrate it, we repeat here

the simple two-loop example shown in figure 1, which shows two diagrams in the replicated

theory, where each gluon has an associated replica index (i and j, respectively). The two

diagrams of figure 1 have the conventional colour factors (the colour factors in the original

theory):

C(a) = TA ⊗ TBTA ⊗ TB ⊗ I ; (2.14a)

C(b) = TA ⊗ TATB ⊗ TB ⊗ I , (2.14b)

where T is the colour generator in the representation corresponding to a given eikonal line

(which we do not specify here) and A and B denote adjoint indices: as usual, these are

summed over for any gluon exchange.

Consider now diagram (a) in the replicated theory. In order to obtain its colour factor

CN (a) one must consider all possible assignments of replica numbers to the two gluons.

Thus the two replica indices i and j vary, independently, between 1 and N . The total colour

factor has contributions from i = j, i < j and i > j. The first of these contributes NC(a)

i.e. the colour factor is the same as in the original theory, and there is a multiplicity factor

of N corresponding to the number of ways of choosing i = j. If i < j, the colour matrices

are reordered on the second parton line, corresponding to the fact that the replica numbers

must increase away from the hard interaction; this therefore yields the conventional colour
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factor of diagram (b). Thus, summing over i and j with i < j one gets a total contribution

N(N − 1)

2
C(b),

where the prefactor arises from the number of ways of choosing i < j. Finally, if i > j the

replica numbers are already ordered on the second parton line, and one gets a contribution

N(N − 1)

2
C(a).

Putting things together, the total colour factor of diagram (a) in the replicated theory,

which we denote by CN (a), is

CN (a) = NC(a) +
N(N − 1)

2
C(b) +

N(N − 1)

2
C(a)

=
N

2
[C(a)− C(b)] +

N2

2
[C(a) + C(b)]. (2.15)

The replica trick then tells us that this diagram contributes to the exponent of the Wilson-

line correlator with an exponentiated colour factor

C̃(a) =
1

2
[C(a)− C(b)], (2.16)

which is the O(N1) part of CN (a) in eq. (2.15). Note that this is a linear combination of

the original colour factors of both diagrams in figure 1. Carrying out a similar procedure

for figure 1(b), one finds

C̃(b) =
1

2
[C(b)− C(a)], (2.17)

and thus the diagrams of figure 1 form a closed set, mixing only with each other under expo-

nentiation. The contribution of these two diagrams to the Wilson-line-correlator exponent

is

C̃(a)F(a) + C̃(b)F(b) =

(
F(a)

F(b)

)T (
C̃(a)

C̃(b)

)
=

(
F(a)

F(b)

)T
1

2

(
1 −1

−1 1

)(
C(a)

C(b)

)
,

(2.18)

which agrees with the explicit calculation presented in Ref. [44]. Comparing this to eq. (1.5),

one sees that the web mixing matrix associated with this pair of diagrams is

R =
1

2

(
1 −1

−1 1

)
. (2.19)

It is easy to verify that R indeed has the two properties of eqs. (1.6) and (1.7).

This simple example illustrates why diagrams at any loop order form closed sets.

For our purposes in the next section it is useful to note that one may systematise the

replica ordering operation above by momentarily assigning replica indices to the colour

generators associated with each gluon emission, then ordering the generators as required

– 9 –



by the ordering operator R, and finally removing these indices. For example, the colour

factor of eq. (2.14a) may be written in the replicated theory as

CN (a) =

N∑
i,j=1

R
[
TAi ⊗ TBj TAi ⊗ TBj ⊗ I

]
, (2.20)

where TAi is a colour generator with adjoint index A and replica number i. The sum is

over all assignments of replica numbers, and one may separate this sum into the three

hierarchies of replica numbers given above i.e.

CN (a) =

∑
i=j

+
∑
i<j

+
∑
i>j

R [TAi ⊗ TBj TAi ⊗ TBj ⊗ I] . (2.21)

One may now use the fact that

R
[
TAi ⊗ TBj TAi ⊗ TBj ⊗ I

]
=

{
TAi ⊗ TAi TBj ⊗ TBj ⊗ I, i < j

TAi ⊗ TBj TAi ⊗ TBj ⊗ I, otherwise
(2.22)

to rewrite eq. (2.21) as

CN (a) =

∑
i=j

+
∑
i>j

 [TAi ⊗ TBj TAi ⊗ TBj ⊗ I]+
∑
i<j

[
TAi ⊗ TAi TBj ⊗ TBj ⊗ I

]
. (2.23)

Having carried out replica ordering, the replica indices may now be removed. Each distinct

sum then gives a multiplicity factor times the appropriate colour factor, so that eq. (2.23)

becomes

CN (a) =

[
N +

N(N − 1)

2

]
C(a) +

N(N − 1)

2
C(b), (2.24)

in agreement with eq. (2.15) above. In general, the colour factor of a diagram D in the

replicated theory has a form similar to eq. (2.20), with a sum over all possible replica

numbers and a string of colour matrices associated with each Wilson line. The R operation

then interchanges colour matrices on each line, such that the colour factor in the replicated

theory is given by a superposition of the conventional colour factors of all graphs related to

the original graph by gluon permutations along each of the Wilson lines. That is, eq. (1.3)

holds, where D′ runs over the closed set of diagrams obtained by taking diagram D and

permuting the gluons on each external line. The above procedure of assigning replica

numbers to colour generators will be useful when proving the idempotence property of the

web mixing matrices in section 3.

In this section, we have reviewed the replica trick formalism of [1] for calculating the

exponent of the soft gluon amplitude. In the following section we will see that a similar

line of argument can be used to prove the idempotence of web mixing matrices.
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3. Proof of idempotence

In section 2 we reviewed the use of the replica trick in deriving the exponent of a correlator

of any number of Wilson lines, recalling how web mixing matrices arise and how they are

computed. In this section we will extend this argument to prove the idempotence of mixing

matrices.

Our starting point is the generating functional for the original theory, given by eq. (2.5).

As already shown in eq. (2.10), we may replicate the theory to produce a generating

functional

ZM =

∫
[DAµ1 ] . . . [DAµM ] ei

∑M
i=1 S[Aµi ] ×

R

{
P exp

[
M∑
i=1

∫
dtβ1 ·Ai

]
⊗ . . . ⊗ P exp

[
M∑
i=1

∫
dtβL ·Ai

]}
, (3.1)

where the R operator orders gluon emissions by replica number, such that the latter in-

creases away from the hard interaction. Here we have used M as the number of replicas,

for reasons that will become clear. We may shorten notation in eq. (2.10) by introducing

the following definitions:

DA(I)
µ = DA1µDA2µ . . .DAMµ; (3.2a)

S[A(I)
µ ] =

M∑
i=1

S[Aiµ]; (3.2b)

Φ
(I)
k = P exp

(
i

M∑
i=1

∫
dxµkAiµ

)
. (3.2c)

That is, we associate a superindex I with the entire set of replica numbers from 1 to M ,

such that eq. (2.10) becomes

ZM =

∫
DA(I)

µ e iS[A
(I)
µ ]R

[
Φ

(I)
1 ⊗ . . .⊗ Φ

(I)
L

]
. (3.3)

This is highly suggestive, as it looks schematically just like the original theory defined by

eq. (2.3). The only difference is the presence of the R operator, which modifies the colour

factors as we have already discussed, such that the O(M1) part of the colour factor of any

given diagram is its ECF rather than the conventional colour factor. Given that R acts

separately on each parton line, we may rewrite eq. (3.3) slightly to give

ZM =

∫
DA(I)

µ eiS[A
(I)
µ ]
[(
RΦ

(I)
1

)
⊗ . . . ⊗

(
RΦ

(I)
M

)]
. (3.4)

¿From now on, we refer to this as the generating functional for the singly replicated theory.

That is, we have applied the replica trick once to the original (non-replicated) theory. This

yields singly-replicated colour factors, CM (D) whose O(M1) parts are the ECF’s C̃(D);

these determine the exponent in the original theory:

lnZ =
∑
D

C̃(D)F(D) . (3.5)
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Having constructed the singly-replicated theory described by eq. (3.4), our next step

is to construct the generating functional(
ZM

)N
=

∫
DA(I1)

µ . . .DA(IN )
µ ei

∑N
j=1 S[A

(Ij)
µ ] ×[(

RΦ
(I1)
1

)(
RΦ

(I2)
1

)
. . .
(
RΦ

(IN )
1

)
⊗ . . . ⊗

(
RΦ

(I1)
L

)(
RΦ

(I2)
L

)
. . .
(
RΦ

(IN )
L

)]
.

(3.6)

Here, we have replicated the singly-replicated theory by creating N identical copies of each

block of M replica numbers. We may take the replica numbers of individual gluons in

block j as going from [(j − 1)M + 1] to jM , and there are NM individual replicas of the

original theory in total. Associated with each block of replicas j is

• A path integral over the set of gauge fields A
Ij
µ .

• A term in the action S[A
Ij
µ ]; as usual these combine additively due to the fact that

the replicas do not interact with each other.

• A replica-ordered factor
(
RΦ

(Ij)
k

)
on parton line-k, where the replica-ordering oper-

ator is associated with the first replication, thus acting only within the specific block

of replica numbers associated with Ij .

Clearly the generating functional of eq. (3.6) is related to that of eq. (3.4) by being the

latter raised to the N th power, as recognized on the left-hand side of eq. (3.6). We will

call this the generating functional for the doubly-replicated theory, due to the fact that the

replica trick has now been applied twice - once in replicating gluons in the original theory

(to make the singly-replicated theory), and again in replicating the blocks of replicas (to

make the doubly-replicated theory). In any diagram generated by (3.6) the block indices

Ij must be increasing as one moves away from the hard interaction, analogously to the way

that replica indices must increase in the singly-replicated theory.

As in the singly-replicated theory, one may write the Wilson line factors in eq. (3.6) as

a single Wilson line factor. To do this one inserts an additional replica-ordering operatorR,

so as to write the Wilson-line factors on line k as(
RΦ

(I1)
k

)(
RΦ

(I2)
k

)
. . .
(
RΦ

(IN )
k

)
= RRP exp

i N∑
j=1

∫
dxµkA

(Ij)
µ

 . (3.7)

Here the replica-ordering operator that acts first (closest to the Wilson line) orders the

replica numbers within each block. The second operator acts to order the block indices

along the Wilson line. The generating functional for the doubly-replicated theory, equa-

tion (3.6), can then be written as

ZMN =

∫
DAI1µ . . .DAINµ ei

∑N
j=1 S[A

(Ij)
µ ] ×

R

RP exp

i N∑
j=1

dxµ1A
(Ij)
µ

⊗ . . . ⊗RP exp

i N∑
j=1

dxµLA
(Ij)
µ

 . (3.8)

– 12 –



Property Original Theory Singly-Replicated Theory Doubly-Replicated Theory

Generating functional Z ZM ZMN

Result of replication Singly-replicated theory Doubly-replicated theory —

Colour factors C(D) CM (D) CMN (D)

ECF’s C̃(D) = CM (D)|O(M1) C̃′(D) = CMN (D)|O((MN)1) = C̃(D) —

Action of R — Ordering of replica indices Ordering of block indices

Table 1: Table representing the relationships between the original and replicated theories. The

fact that the ECF’s of the singly-replicated theory C̃ ′(D) coincide with the ECF’s of the original

theory C̃(D) will be derived below, see eq. (3.14).

Again, the replica-ordering operator inside the square brackets acts within each block of

replica numbers. The replica-ordering operator outside the square bracket acts to order the

block indices. We could have used a different symbol for each of these operators; however,

they result from the same replica ordering operation as applied to individual gluons, hence

the use of the same notation.

Let us now examine colour factors in the doubly-replicated theory. Using a similar

notation to that of section 2, we denote by CMN (D) the colour factor of diagram D in the

doubly-replicated theory, and C̃ ′(D) the O((MN)1) part of this. A summary of properties

of the original, singly-replicated and doubly-replicated theories is shown in table 1.

By the usual replica trick argument, one has

ZMN = 1 +NM log(Z) +O(M2N2), (3.9)

and thus that the generating functional of the original (non-replicated) theory exponenti-

ates, taking the form:

lnZ =
∑
D

C̃ ′(D)F(D) , (3.10)

where the colour factors in the exponent are given by the O((MN)1) parts of the colour

factors in the doubly-replicated theory, C̃ ′(D). We can find these by using a similar pro-

cedure to that presented in section 2. First, one considers the string of colour matrices

associated with each external line, and assigns two sets of indices to each generator. For

example, considering a line with s gluon emissions, we may write the associated string of

colour generators as

T I1i1 . . . T
Is
is
, (3.11)

where we have suppressed the adjoint indices. The subscripts in eq. (3.11) denote replica

indices taking values from 1 . . .M , whereas the superscripts are block indices ranging from

1 . . . N , which indicate which block of M replicas a given gluon originates from. In the

doubly-replicated theory, the procedure for finding the colour factor of a graph is as follows:

1. Write down the conventional colour factor of the graph (as in the non-replicated

theory).

2. Consider all possible assignments of replica indices. For each such assignment, reorder

the colour matrices according to the replica-ordering operator.
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3. At this stage, the replica indices can be removed, and the O(M) part of the colour

factor of the graph is

C̃(D) =
∑
D′

RDD′C(D′), (3.12)

as in section 2.

4. Next, consider all possible assignments of block indices. For each assignment, reorder

the colour matrices according to the block index ordering operator, the second R
operator in eq. (3.8). The ordering of block indices is exactly analogous to the

ordering of replica indices, and introduces the same mixing matrix R again, only now

it acts on C̃, since the internal indices within each block have already been ordered

in the previous steps.

5. Now that the blocks have been ordered, the block indices can also be removed, and

the O(N) part of the colour factor is

C̃ ′(D) =
∑
E

RDEC̃(E) =
∑
E,D′

RDERED′C(D′) , (3.13)

where in the last step we used (3.12).

Note that in the above procedure that we ordered the replica indices (associated with M)

followed by the block indices (associated with N). However, this order is unimportant, due

to the fact that the O(MN) part of the colour factor in the doubly-replicated theory can

be obtained by taking the O(N) part of the O(M) part (as done here), or vice versa.

At first sight one may consider C̃ ′(D) in (3.13) to be different from C̃(D). In fact

they are the same. This follows straightforwardly from eq. (3.9): as summarized by

(3.10), the original generating functional Z exponentiates, with colour factors which are

the O((MN)1) parts of the colour factors in the doubly-replicated theory (C̃ ′(D)). How-

ever, we already know from the original replica trick argument, that Z exponentiates with

ECF’s C̃(D), eq. (3.5) above. Thus we deduce that

C̃(D) = C̃ ′(D) , (3.14)

as anticipated in table 1.

The essential reason for this can be seen as follows. In eq. (3.8) we introduced two

replica ordering operators, where the first orders replica indices within each block of M

replica numbers, and the second orders the N blocks in sequence. There is, however, a

second way to think about the doubly replicated theory, namely as a singly replicated

theory with NM individual replica numbers, with the replica indices in block j going from

[(j − 1)M + 1] to jM as discussed above. The double replica ordering of block indices

and replica indices within blocks is then entirely equivalent to replica ordering of the NM

individual replica numbers. That is, one may write

R2 = R (3.15)

– 14 –



in eq. (3.8), where R on the right-hand side is the usual replica ordering operator. The

generating functional for the doubly replicated theory can then be rewritten

ZNM =

∫
DAI1µ . . .DAINµ ei

∑N
j=1 S[A

(Ij)
µ ] ×

R

P exp

i
N∑
j=1

dxµ1A
(Ij)
µ

⊗ . . . ⊗ P exp

i
N∑
j=1

dxµLA
(Ij)
µ

 . (3.16)

Now we may replace each superindex Ij with its corresponding block of M individual

replica numbers, so that eq. (3.16) becomes

ZNM =

∫
DA(1)

µ . . .DA(MN)
µ ei

∑
j S[Ajµ] ×

R

P exp

i
MN∑
j=1

dxµ1Ajµ

⊗ . . . ⊗ P exp

i
MN∑
j=1

dxµLAjµ

 . (3.17)

This has manifestly the same form as the singly-replicated theory given by eq. (2.7), but

where there are MN replica numbers rather than M . That is, upon replicating the singly-

replicated theory, one obtains a theory that is equivalent to a singly-replicated theory.

In other words, one does not gain anything by replicating the theory twice, due to the

idempotence of the replication procedure. This is ultimately a consequence of the fact that

the replica operation R is itself idempotent.

We have shown that the colour factors C̃ ′(D) and C̃(D) are equal. Combining this

information with eqs. (1.3) and (3.13) gives∑
E,D′

RDERED′C(D′) =
∑
D′

RDD′C(D′) (3.18)

and thus

RDD′ =
∑
E,D′

RDERED′ , (3.19)

which is the idempotence property of eq. (1.6). This completes the proof.

The interpretation of the idempotence property has already been discussed in [1]: the

mixing matrix R is a projection operator. An important corollary is that R is diagonaliz-

able, with eigenvalues which are either 0 or 1. By rewriting eq. (1.5) in the diagonal basis,

Ref. [1] showed that the exponent is built exclusively out of the linear combinations of

colour and kinematic factors corresponding to the eigenvalue 1, while the entire subspace7

corresponding to eigenvalue 0 is removed. This structure was then linked to the cancel-

lation of subdivergences which must occur for webs to conform with the renormalization

of the multieikonal vertex [1, 2]. The proof of idempotence is thus an important step in

understanding the structure of infrared singularities.

In this section, we have proved the idempotence property of web mixing matrices.

The proof proceeds by applying the replica trick twice to the original soft gluon theory.

7It should be noted that this subspace is never empty, as guaranteed by the zero sum row property (1.7).
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Idempotence of the mixing matrices then stems from the fact that a doubly-replicated

theory is equivalent to a singly-replicated one. The above analysis demonstrates the power

of the replica trick formalism: not only does it facilitate a direct calculation of the exponent,

it also provides deep insight into its structure.

4. Combinatoric formulae for webs in terms of overlap functions

In the previous sections, we reviewed the replica trick formalism which determines the

structure of webs and then used it to prove the idempotence property of the mixing ma-

trices. One can in fact go further and find explicit combinatoric formulae relating the

exponentiated colour factors C̃(D) to the conventional colour factors C(D). Such formulae

were first presented in section 4.1 in [1]; here we develop these further so as to establish

an explicit expression for the mixing matrix elements in terms of combinatoric “overlap

functions”. This will give us a handle to study further properties of these matrices, and in

particular, to prove the zero sum row property of eq. (1.7), which we address in the next

section.

First, we introduce the notion of a decomposition P of a diagram D. This is a parti-

tioning of D into a number of parts, each containing one or more connected pieces from

D. One may label a given decomposition by the number of elements n(P ) it contains8. An

example of a graph together with its decompositions is shown in figure 2. In the replica

trick formalism, decompositions arise as possible assignments of replica numbers to a given

graph. An assignment with m distinct replica numbers corresponds to a decomposition

with n(P ) = m, where each element in the decomposition corresponds to a single replica

number. We have represented different replica numbers by different colours in figure 2.

Each decomposition consists of a set of subdiagrams g1, g2 . . . , gn(P ), and in [1] it was

shown that the ECF of any diagram D can be written in terms of the conventional colour

factors of its possible subdiagrams as follows:

C̃(D) =
∑
P

(−1)n(P )−1

n(P )

∑
π

C(gπ1) . . . C(gπn(P )
), (4.1)

where the sum is over all permutations π of [1, 2, . . . n(P )]. In each term, the ordering of

the colour factors is important owing to the fact that they do not commute.

Our next step will be to extract an explicit combinatoric expression for the mixing

matrix element RDD′ from eq. (4.1). Each term on the right-hand side of this equation

contains a product of conventional colour factors of subdiagrams of the diagram D on the

left-hand side. The rule for dealing with products of colour factors is as follows. If the

colour factors of two diagrams G and H involve strings of generators on a given parton line

TA1 . . . TAs1

and

TB1 . . . TBs2

8Note that there may be more than one decomposition with a given number of elements. For example

in figure 2 there are three distinct decompositions P having n(P ) = 2.
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(a) (b) (c)

Figure 2: Decompositions of an example three loop diagram, with (a) n(P ) = 1 (equivalent to the

original diagram); (b) n(P ) = 2; (c) n(P ) = 3.

(A) (B)

Figure 3: Example one loop graphs.

respectively, where Asi and Bsi are adjoint indices, then the colour factor C(G)C(H)

involves the string

TA1 . . . TAs1TB1 . . . TBs2 .

One then applies this rule to every parton line in turn. As an example, consider the two

graphs shown in figure 3. These diagrams have colour factors

C(A) = I ⊗ TA ⊗ TA ⊗ I (4.2a)

C(B) = TB ⊗ TB ⊗ I ⊗ I, (4.2b)

where, as usual, I is the identity matrix in colour space. The product of colour factors is

C(A)C(B) = TB ⊗ TATB ⊗ TA ⊗ I, (4.3)
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which we recognise (from eq. (2.14a) after relabelling) as the colour factor of the diagram in

figure 1(a). As perhaps is clear from this example, there is a simple graphical interpretation

for the product of colour factors. The colour factor of a product of subdiagrams is the

colour factor of the graph obtained by drawing each subdiagram in sequence, moving

progressively outwards from the hard interaction vertex. A more complicated example is

shown in figure 4.

=C C C C

Figure 4: Example of a product of colour factors of three diagrams.

Returning to eq. (4.1), each term on the right-hand side contains a complete set of

subdiagrams of D, by which we mean that all connected pieces of D occur in one of the

subdiagrams on the right-hand side. The product of the colour factors of the subdiagrams

of D in a given decomposition gives either the colour factor of D itself, or one of the

other diagrams in the closed set – web – to which D belongs (it can only differ from D

by permutation of the gluon attachments to the Wilson lines). Furthermore, each product

uniquely specifies a diagram in the set. That is,

C(gπ1) . . . C(gπn(P )
) = C(D′) (4.4)

for some D′ related to D by permutations of gluons on the external lines. Let PD denote

a given decomposition of D. Then we may write∑
π

C(gπ1) . . . C(gπn(PD)
) =

∑
D′

〈D′|PD〉C(D′), (4.5)

where we have introduced 〈D′|PD〉, which we call the overlap of D′ with the decomposition

PD of D. That is, the number of ways that diagram D′ is formed by considering all the

permutations of all the elements in PD.

To clarify the notation let us examine a couple of examples. Consider the set of graphs

given in figure 5, which constitute the web to which the diagram of figure 2(a) belongs,

where we have labelled the diagrams as in [1]. Now consider the decomposition of diagram

(3a) given by the top diagram in figure 2(b). There are two permutations of the elements

of this decomposition. Using the graphical rule exemplified by figure 4, one sees that one

permutation makes diagram (3a), and the other makes diagram (3c). That is, labelling

this decomposition by P , one has

〈(3a)|P 〉 = 1, 〈(3b)|P 〉 = 0, 〈(3c)|P 〉 = 1, 〈(3d)|P 〉 = 0. (4.6)

As a second example, consider the decomposition of (3a) shown in figure 2(c), consisting

of three distinct replica numbers, and which we label by Q. There are six permutations of
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(3a) (3b) (3c) (3d)

Figure 5: Three loop web to which the diagram of figure 2(a) belongs.

the elements of the decomposition, and the reader may verify that

〈(3a)|Q〉 = 2, 〈(3b)|Q〉 = 1, 〈(3c)|Q〉 = 1, 〈(3d)|Q〉 = 2. (4.7)

As argued above, each permutation of the elements of a decomposition PD of a given

diagram D contributes to one (and only one) diagram D′ in the web to which D belongs.

Different permutations may, of course, give the same diagram D′, as occurs in the example

of eq. (4.7) above, in which diagrams (3a) and (3d) are each formed from two different

permutations. It follows that if one sums the overlap functions for a given decomposition

over all diagrams in the web, this must be equal to the total number of permutations in

the decomposition PD. That is, ∑
D′

〈D′|PD〉 = n(PD)!, (4.8)

where n(PD) is the number of elements in PD. We will use this property in what follows,

but note for now that this is indeed satisfied in eqs. (4.6) and (4.7).

Having defined the overlap functions, we may substitute eq. (4.5) into eq. (4.1) to

obtain

C̃(D) =
∑
PD

(−1)n(PD)−1

n(PD)

∑
D′

〈D′|PD〉C(D′)

=
∑
D′

∑
PD

(−1)n(PD)−1

n(PD)
〈D′|PD〉C(D′), (4.9)

where we have interchanged the order of the summations over D′ and PD in the second

line. Comparing this with eq. (1.3), one finds

RDD′ =
∑
PD

(−1)n(PD)−1

n(PD)
〈D′|PD〉. (4.10)

This is an explicit combinatoric formula for the web mixing matrix, which should prove

useful in further studies of webs. Furthermore, eq. (4.10) makes explicit the fact that there

are two9 sources of combinatoric complexity involved in the structure of the exponent of

9A third layer of combinatoric complexity occurs when webs are renormalized, involving nested commu-

tators of lower-order counterterms and webs as explained in [2].
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Wilson-line correlators. Firstly, there are combinatoric factors resulting from exponentia-

tion — the factor involving n(PD) in eq. (4.10). Secondly, there are combinatoric factors

relating to how diagrams in a web are related to one another via permutations of gluons

— the overlap functions.

5. Proof of the zero sum row property

Armed with eq. (4.10), which is an explicit formula for the web mixing matrix R, we can

now address the zero sum row property. Summing the elements in row D of R using (4.10)

one finds ∑
D′

RDD′ =
∑
PD

(−1)n(PD)−1

n(PD)

∑
D′

〈D′|PD〉, (5.1)

where we have interchanged the order of the summations over PD and D′. We will shortly

see that this is indeed zero. First though one may note that, given 〈D′|PD〉 ≥ 0, the right-

hand side is able to give zero only through cancellations from the alternating signs in the

n(PD)-dependent factor. Thus, there is an interesting interplay between the combinatorics

stemming from exponentiation (which has been determined using the replica trick), and

that coming from the internal structure of the web and encoded in the overlap functions.

We may simplify eq. (5.1) using the result of eq. (4.8), to get∑
D′

RDD′ =
∑
PD

(−1)n(PD)−1(n(PD)− 1)! (5.2)

Each term in the sum now depends only on the number of elements of each decomposition

n(PD). We may thus replace the sum over decompositions PD with a sum over the number

of elements m = n(PD) in each decomposition, to give

∑
D′

RDD′ =

nc∑
m=1

(−1)m−1 (m− 1)!N(nc,m), (5.3)

where nc is the number of connected pieces in graph D, and N(nc,m) is the number

of decompositions (of a graph with nc connected pieces) which have m elements. For

example, in figure 2 there are three connected pieces of the full diagram, and thus nc = 3.

The number of elements in each decomposition has the range 1 < m < 3, and one has

N(3, 1) = 1, N(3, 2) = 3 and N(3, 3) = 1, as can be easily verified by counting the number

of decompositions in figures 2(a), (b) and (c) respectively.

The problem of proving the zero sum row property now amounts to showing that the

right-hand side of eq. (5.3) is zero. To do this, note that a decomposition of a given graph

is a partition of the set of its connected pieces into non-empty subsets. Thus, N(nc,m)

counts the number of partitions of a set of nc objects into m non-empty subsets, which is

given by a Stirling number of the second kind. That is

N(nc,m) =

{
nc

m

}
, (5.4)
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where we have used the conventional notation. For completeness, we summarise the prop-

erties of these numbers in appendix B (see also e.g. [76, 77]). Rewriting eq. (5.3) as

∑
D′

RDD′ = −
n∑

m=1

(−1)m(m− 1)!

{
nc

m

}
, (5.5)

this immediately gives zero by a known identity of Stirling numbers (eq. (B.3) in ap-

pendix B). This completes the proof of the zero sum row property, eq. (1.7).

The interpretation of the zero sum row property has been discussed in [1]. From

eq. (1.3), we see that this property implies a symmetry of the exponent of the Wilson-line

correlator under the transformation

C(D′)→ C(D′) +K, (5.6)

for the conventional colour factor of all the diagrams D′ in a given web, where K is a

constant independent of which diagram one is considering. In other words, the part of

each colour factor which does not depend on the ordering of gluon attachments – thus con-

tributing equally to all C(D′) in the web – does not enter the exponent. These symmetric

terms are instead generated by the explicit exponentiation of lower order webs.

In fact, we can go further than the result of eq. (1.7), in specific cases in which webs

contain subsets of diagrams of differing degree of planarity. This is the subject of the

following section.

6. Constraints from the planar limit

In this section, we consider specific cases in which the zero sum row property of eq. (1.7)

can be specialized. That is, it is sometimes possible to prove a stronger statement, namely

that the zero sum property holds also for∑
D′∈D

RDD′ = 0, (6.1)

where D is a subset of diagrams in the web. To illustrate this, we use the example web

shown in figure 6 (also considered in [1], where it was used to illustrate the cancellation of

subdivergences). The corresponding web mixing matrix is given by

1

6



3 0 −3 −2 −2 4

−3 6 −3 1 −2 1

−3 0 3 4 −2 −2

0 0 0 1 −2 1

0 0 0 −2 4 −2

0 0 0 1 −2 1





C(3A)

C(3B)

C(3C)

C(3D)

C(3E)

C(3F )


, (6.2)

where we include the vector of conventional colour factors so as to make clear the ordering

of the matrix. As can be seen from eq. (6.2), the subsets of diagrams (3A)-(3C) and (3D)-

(3F) each separately satisfies the condition of eq. (6.1). For example, in the second row
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[[1,2],[2,1,3],[3]]=(3A) [[1,2],[2,3,1],[3]]=(3B) [[1,2],[3,2,1],[3]]=(3C)

[[1,2],[1,2,3],[3]]=(3D) [[1,2],[1,3,2],[3]]=(3E) [[1,2],[3,1,2],[3]]=(3F)

Figure 6: Example diagrams in which three parton lines are linked by three parton emissions.

of the matrix, the former and latter three entries give −3 + 6 − 3 = 0 and 1 − 2 + 1 = 0

respectively. This hints at an extra structure of web mixing matrices over and above the

zero sum row property of eq. (1.7), and in fact this extra structure can be understood, and

shown to hold in general, by appealing to the planar limit of non-Abelian gauge theory, as

we now show.

We consider the limit in which the number of colours Nc becomes large, with the

’t Hooft coupling g2
sNc held fixed. As is well known [78], only planar diagrams contribute

in this limit. The structure of those diagrams which contribute to the exponent of the

soft-gluon amplitude are discussed, for example, in [79]. Considering planar diagrams,

soft gluons may only connect adjacent parton legs, an example of which can be seen in

figure 7. Thus, each diagram corresponds to a set of wedges. As discussed in [79], each

wedge generates half the infrared singularities of a Sudakov form factor associated with the

partons i, i+ 1 forming the wedge. It may also be shown to all orders that the soft gluon

amplitude becomes proportional to the identity matrix δIJ in the space of possible colour

flows. That is, although there is more than one possible colour flow possible in any given

multiparton diagram, the different possible colour flows do not interfere with each other

at leading order in the large-Nc expansion. As a consequence, the colour factors C(G)

for gluon subdiagrams commute with each other. Furthermore, n-parton scattering in the

planar limit becomes a set of n copies of the two-eikonal line case, with each wedge in the

diagram behaving as two Wilson lines joined by a colour singlet cusp.

How does the above structure emerge from the methods used in [1] and in the present

paper? Firstly, one notes that on any given parton line i, there are gluons which connect

this line to the adjacent lines i + 1 and i − 1 (gluons that connect to non-adjacent lines

would form non-planar diagrams, and thus should not be considered). We may draw these
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Figure 7: Example diagram which survives in the planar limit. Gluons can only connect adjacent

parton legs.

= +

A

B

CA

B B

A

Figure 8: Graphical representation of the commutation property of gluons on parton line i in the

planar limit. Gluons above and below the line represent connections to lines i + 1 and i − 1. The

second term on the right-hand side is non-planar and thus can be neglected.

pictorially as gluons lying on either side of the line i, as in figure 8. One may now commute

all lower gluons to the left of the upper gluons. Such a commutation is shown pictorially

in figure 8, and corresponds to writing

TAi T
B
i = TBi T

A
i + [TAi , T

B
i ], (6.3)

where TAi and TBi are the colour matrices for the upper and lower gluons respectively.

Using the Lie algebra definition

[TAi , T
B
i ] = ifABCTCi , (6.4)

the second term on the right-hand-side of eq. (6.3) is equivalent to a three-gluon coupling,

which links all three lines i, i− 1 and i+ 1. Such a contribution is necessarily non-planar,

and thus can be neglected in the large-Nc limit. It follows that the colour factor of any

diagram of the form of figure 7 is the same as that for an equivalent diagram in which the

gluon subdiagrams in each wedge are decoupled from each other, as shown for example in

figure 9.

As already discussed above, in the planar limit the colour factors for individual subdi-

agrams C(G) are proportional to the identity matrix in colour space, thus commute with

each other. The ECF of any subdiagram can then be determined using the equations (A.15)
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Figure 9: Diagram whose colour factor is equivalent to that of figure 7 in the planar limit, but

where the subdiagrams in each wedge are mutually decoupled.

or (A.17) (rather than (4.1) or (A.3)). It then follows from eq. (A.15) and the above discus-

sion that the ECF of a given planar diagram is equal to the ECF of an equivalent diagram

in which the subdiagrams in each wedge are decoupled from each other (for example the

ECF’s of figures 7 and 9 are the same, as well as their conventional colour factors). To see

this from eq. (A.15), one must replace all colour factors C(G) on the right-hand-side with

the colour factors of their equivalent diagrams in which the subdiagrams are decoupled.

The left-hand side then represents the ECF of the decoupled graph corresponding to G.

Next, we shall use eq. (A.17) to establish the following lemma: in the planar limit the

ECF’s for reducible graphs are zero. By reducible graphs we mean diagrams such as those

in figure 5, whose colour factors can be decomposed as

C(G) = C(G1)C(G2) , (6.5)

where G1 and G2 may themselves be further reducible. The notion of irreducibility of

webs is well-known in the case of two-eikonal lines, and in the planar limit this notion

extends to n-parton scattering. The proof of this result is essentially the same as that

given in e.g. [65] for the two-line case, but simplified slightly due to eq. (A.2), which was

not recognized in [65].

One proceeds by induction, after noting that the decompositions of a given diagram G

may be separated into the trivial decomposition – the one containing G itself – and proper

decompositions in which G genuinely reduces into lower order diagrams. One may then

rewrite eq. (A.17) as

C(G) = C̃(G) +
∑
{m′

H}

(∏
H

C̃(H)m
′
H

)
, (6.6)

where the prime denotes proper decompositions. The inductive hypothesis assumes that

the vanishing of ECF’s for reducible diagrams has already been shown up to some order,

so that each of the factors C̃(H) on the right-hand side of eq. (6.6) corresponds to an

irreducible diagram. One may then show that C̃(G) on the left-hand side is zero, if G is

reducible.
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A

B

...
...

...

...

Figure 10: General form of a reducible diagram, involving subdiagrams connected to the same

parton line.

A general form of a reducible diagram involving subdiagrams connected to the same

parton line is shown in figure 10. More generally, one may have a further subdiagram

connecting the third and fourth lines in figure 10, although the following argument is easily

generalized so that it is sufficient to consider the present form only. For such a diagram

one may write

C(G) = C(AB) = C(A)C(B), (6.7)

so that eq. (6.6) becomes

C(A)C(B) = C̃(AB) +
∑
{m′

H}

(∏
H

C̃(H)m
′
H

)
. (6.8)

Each subdiagram H on the right-hand side is irreducible, thus contributes to A or B but

not both (otherwise this would contradict the reducibility of G). One may thus decompose

the product over decompositions into two separate products (one for each subdiagram):

C(A)C(B) = C̃(AB) +

 ∑
{mAH}

(∏
H

C̃(H)m
A
H

) ∑
{mBH}

(∏
H

C̃(H)m
B
H

) , (6.9)

where we have separated the sum over proper decompositions into separate sums for each

subdiagram. By eq. (A.17), the second term on the right-hand side of eq. (6.9) is clearly

C(A)C(B), so that

C̃(AB) = 0. (6.10)

This result shows that the ECF’s for reducible graphs at O(αn+1
S ) are zero provided this

is true at O(αnS). Given that diagrams are irreducible at one loop order, this proves the

result that the ECF’s for reducible graphs vanish in the planar limit to all orders.

Given that we have also argued above that to leading order in the large-Nc limit, the

ECF of a general planar diagram is the same as that of an equivalent diagram in which

subdiagrams in different wedges are decoupled from each other – a reducible diagram

– it follows that the ECF for any diagram which contains emissions in more than one
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wedge is zero in the large-Nc limit. Thus, in this limit the exponent of any Wilson-line

correlator contains only diagrams in which emissions occur in a single wedge, and where

the subdiagrams are two-eikonal line irreducible with respect to the Wilson lines forming

the wedge. This agrees with the argument of [79], that in the planar limit, the n eikonal

line amplitude is given by n copies of the two eikonal line amplitude.

Returning to the example of figure 6, the above discussion tells us that to leading

order in the large-Nc limit, C̃(D) = 0 for all diagrams D in the web, as they all involve

emissions in more than one wedge. However, we may also note that diagrams (3A)-(3C)

are non-planar, whilst diagrams (3D)-(3F) are planar. Thus, in the large Nc limit, one has

C(3A) = C(3B) = C(3C) = 0, and the commuting property of gluons in the planar limit

implies C(3D) = C(3E) = C(3F ) (where each is non-zero, as these are planar diagrams).

We may write eq. (1.3) in the large Nc limit as

0 =
∑
D′

RDD′C(D′) =
∑
D′∈D1

RDD′C(D′) +
∑
D′∈D2

RDD′C(D′), (6.11)

where D1 = {(3A), (3B), (3C)} and D2 = {(3D), (3E), (3F )}. The first term on the right-

hand side is zero using the above results for C(3A) etc., and the second term can be

simplified using C(D′) = C(3D) for each term (up to corrections that are subleading in

Nc) to give

C(3D)
∑
D′∈D2

RDD′ = 0, (6.12)

and therefore ∑
D′∈D2

RDD′ = 0. (6.13)

This has the form of eq. (6.1), where the sum is over the subset of diagrams in the web which

are planar. Note that eq. (6.13) applies to any row of the mixing matrix. Furthermore,

the full zero sum row property of eq. (1.7) then also implies∑
D′∈D1

RDD′ = 0. (6.14)

This is trivially satisfied for the latter three rows of the mixing matrix (eq. (6.2)), in which

the first three elements are zero (as essentially follows from the fact that one cannot make

a diagram with a crossed gluon pair out of partitions of a diagram in which gluons are

not crossed). However, eqs. (6.13) and (6.14) give us useful information in the first three

rows of the mixing matrix, namely that the first and last three entries of each row must

separately sum to zero.

The generalization of the above remarks is straightforward, and can be compactly

stated as follows: in any multiparton web – closed set of diagrams related by permutations

– the zero sum property holds separately for the planar and nonplanar diagrams in each

row. This is a stronger condition than the overall zero sum row property, and provides

an example of the rich substructure of the web mixing matrices. Clearly, these matrices

must have further interesting substructure related to the cancellation of subdivergences [1],

which remains to be fully understood.
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Note that in section 5 we used pure mathematical arguments to arrive at the zero

sum row property – this was an exercise in enumerative combinatorics. In contrast, in the

present section we have applied a known piece of physics – colour structures in the large-

Nc limit – to pin down additional properties. This suggests two main avenues for further

research into the properties of webs. Either one may adopt a purely mathematical approach,

based on the combinatoric result of eq. (4.10). Or, one may continue to investigate known

examples of physical behaviour, and translate these into constraints on the mixing matrix.

7. Discussion

In this paper we have studied the exponents of Wilson-line correlators, following on from

the results of [1,2], which generalized the concept of webs from two-parton to multiparton

scattering. In particular, we have examined the properties of web mixing matrices, whose

existence was derived in [1], and proved in full generality the properties of idempotence

and zero sum rows that were conjectured there. This is an important step in establishing

the properties of webs, and thus in understanding the structure of exponentiation in non-

Abelian gauge theory amplitudes.

The importance of the web mixing matrices stems from the fact that they encapsulate

the correlation between colour and kinematic dependence in the exponent, correlation

which becomes highly non-trivial for multiparton amplitudes (or Wilson-line correlators) at

general Nc. As emphasized in [1] these matrices are responsible, in particular, for intricate

cancellations of subdivergences rendering the singularity structure of webs consistent with

that required by the renormalization properties of the multi-eikonal vertex [1, 2].

The proof of idempotence presented here relies on the replica trick formalism. This

formalism was already used in [1] to show the existence of web mixing matrices and to

compute them. Here, it allows the idempotence property to be derived in an elegant

fashion, by replicating the theory twice and then showing that the doubly-replicated theory

is essentially equivalent to the singly-replicated one. In this analysis idempotence of mixing

matrices ultimately derives from the idempotence of the replica-ordering operator R.

The physical interpretation of the idempotence property [1] is that the web mixing

matrices act as projection operators. Their space of eigenvalues is composed exclusively of

0 and 1, both of which are generically degenerate (note that there is always at least one

zero eigenvalue, as a consequence of the zero sum row property). The mixing matrices

thus select those linear combinations of kinematic and colour factors which correspond

to the eigenvalue 1 to enter the exponent, while removing all those which correspond to

eigenvalue 0. The latter are precisely the terms that are generated by expanding the

exponential containing lower order webs. Ref. [1] demonstrated (using non-trivial three-

loop examples) that the required cancellations of subdivergences in the exponent indeed

take place in the particular linear combinations of kinematic functions of eigenvalue 1. The

general structure responsible for this cancellation remains to be fully explored.

Another important result of the present paper is the explicit combinatorial formula

for the mixing matrices in eq. (4.10) in terms of overlap functions. An overlap function

〈D′|PD〉 counts the number of ways a given diagram D′ in a closed set of diagrams (web)
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can be made out of a particular decomposition PD of another diagram (D) in the set. This

explicit formula would be a convenient starting point for further mathematical exploration

of webs.

Indeed, starting with this formula, the zero sum rows property was shown in section 5

to correspond to known results from enumerative combinatorics involving Stirling numbers

of the second kind. This analysis strongly suggests that further results from enumerative

combinatorics, and in particular from the theory of integer partitions, will prove useful in

studying the properties of webs. This is an interesting connection, which we are continuing

to investigate.

We have further used the zero sum rows property, in conjunction with ’t Hooft’s large-

Nc limit, to derive a stronger result, namely that in any multiparton web containing both

planar and non-planar diagrams, the zero sum property holds, in each row, separately for

elements of the mixing matrix corresponding to the planar and the non-planar diagrams.

This result relies on the fact that in the planar limit multi-parton webs reduce to a simple

sum over two-parton webs between adjacent partons (wedge), excluding from the exponent

any diagram that incorporates exchanges in more than one wedge. Despite the trivial

nature of webs in this limit, it provides a useful constraint on web mixing matrices valid

for general Nc. This is another promising avenue for further exploration of webs.

Finally, it is clear from the analysis of Ref. [1], as well as section 6 here, that web mix-

ing matrices must have a rather subtle substructure, which remains to be fully explored.

Formulating the properties of webs would very likely be a necessary prerequisite for deter-

mining the all-order structure of multiparton scattering amplitudes. In particular, these

would be essential for a detailed understanding of the singularity structure of webs, and

how this conforms with the renormalization properties of the multi-eikonal vertex, which

involves nested commutator structures of lower-order counterterms and webs [2]. Research

in this direction is ongoing.
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A. Inverted ECF formula in Refs. [1] and [2]

The purpose of this section is to elucidate the relation between our approach to webs, as

first described in [1], and the one of reference [2]. These two papers, which appeared simul-

taneously, have both presented formulae which express the conventional colour factors in
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terms of the ECF’s. While using somewhat different considerations and different notation,

the two have the same content as we now explain.

While the primary approach of ref. [1], much like the present paper, has been based on

the replica trick, yielding an explicit formula for ECF’s in terms of the conventional ones,

Section 4.2 in [1] presented an inverse relation, expressing the conventional colour factors

in terms of the ECF’s, which we shall now recall.

To this end one may first consider the set {H} of all possible subdiagrams at all orders

in perturbation theory. Each decomposition P of a general graph D can be uniquely

labelled by a set of numbers mH , each representing how many times subdiagram H occurs

as an element of the decomposition (mH = 0 if H does not occur). The conventional colour

factors are then related to the ECF’s by the following formula, as given in [1]:

C(D) =
∑
{mH}

ND|{mH}

n!

(∏
H

mH !

)−1 [
C̃(H1)m1C̃(H2)m2 . . .+ perms

]
, (A.1)

where n =
∑

H mH and ND|{mH} represents the number of ways in which diagram D can

be formed from the decomposition specified by {mH}. This is taken to be zero for those

decompositions which cannot lead to D; otherwise this multiplicity factor is given by

ND|{mH} =
∏
H

mH ! . (A.2)

One may form D in multiple ways by permuting identical subdiagrams, and there are mH !

such permutations for each subdiagram H, so that eq. (A.1) may be simplified to

C(D) =
∑
{mH}

1

n!

[
C̃(H1)m1C̃(H2)m2 . . .+ perms

]
. (A.3)

An identical result was also given in [2], and it is our purpose here to convert the results

of that paper into the present notation, so as to demonstrate this equivalence.

Reference [2] considers the correlator of a number of Wilson lines meeting at a common

vertex, writing it as follows:

A[Ci] = exp

( ∞∑
i=1

w(i)

)
, (A.4)

where w(n) collects all diagrams at O(αns ) in the exponent, and implicitly contains a factor

αns . This is further decomposed as

w(i) =
∑
E

w
(i)
E , (A.5)

where the sum is over sets of numbers E = {e1 . . . eL}, such that ei is the number of gluon

attachments on parton line i. The sum over E is thus equivalent to summing over closed

sets of diagrams related by gluon permutations, as discussed in the previous section. Each

set E corresponds to a distinct web according to our definition. In position space, each

web may be written as [2]

w
(i)
E = IE [W(i)

E ], (A.6)
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where IE denotes the integrals over the positions of the gluon emissions on each parton line

(with appropriate measure and limits), and W(i)
E the integrand, containing both kinematic

and colour information. With this notation, [2] gives the following formula for the exponent

of the soft gluon amplitude at O(αN+1
s ):

w(N+1) =
∑
E

∑
D

(N+1)
E

D(N+1)
E − IE

N+1∑
m=2

∑
Ωm(D

(N+1)
E )

∏
cmc!

m!

∑
sym

W(im)
Em

. . .W(i1)
E1


 .

(A.7)

This is an iterative formula, which explicitly relates the exponent at a given order to lower

order webs. Some explanatory comments are in order. The first sum on the right-hand

side is over sets of numbers E as explained above i.e. a sum over distinct closed sets of

diagrams related by gluon permutations. The second sum is over all diagrams DN+1
E which

have gluon attachments characterized by E, and which are O(αN+1
s ). That is, the sum

goes over all diagrams within the closed set labelled by E. In what follows, we will shorten

this notation and simply write D ≡ D
(N+1)
E . The first term in the brackets is then the

complete expression for the diagram D, which in our notation is given by

D ≡ F(D)C(D), (A.8)

where as usual F(D) and C(D) are the kinematic and (conventional) colour parts respec-

tively. In the second term in the curly brackets, IE represents the position space integrals

over the eikonal attachments corresponding to the particular diagram D. The integrand

is in the square brackets, and consists of a sum over products of lower order webs. The

index m labels the number of lower order webs in each term, and W(im)
Ei

is the integrand of

a lower order function w(i), including both colour and kinematic information. The index

Ωm(D
(N+1)
E ) runs over over all sets of lower order web integrands, whose combination gives

diagrams which are topologically equivalent to D. There is a further combinatoric factor

for each number of webs m, where each lower order web integrand is assumed to occur

mc times. Finally, there is a sum over all distinguishable permutations of the W factors,

denoted by
∑

sym.

It is straightforward to show that eq. (A.7) is equivalent to eq. (A.3). Firstly, we may

write the sum over distinguishable permutations as a sum over all permutations of the

lower order web factors:

∑
sym

W(im)
Em

. . .W(i1)
E1

=

(∏
c

1

mc!

)([
W(i1)
E1

]m1

. . .
[
W(in)
En

]mn
+ perms.

)
, (A.9)

where we have counted all permutations (including indistinguishable ones) on the right-

hand side, and the inverse factorial factors correct for the fact that we have overcounted

permutations which are related by interchanging identical web factors. Also, n is the

number of distinct lower order webs. We may also write

IE
[
W(i1)
E1

]m1

. . .
[
W(in)
En

]mn
= FD

[
C̃(H1)m1 . . . C̃(Hn)mn

]
. (A.10)
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That is, the integral over the kinematic part of the product ofW factors is, by construction,

the kinematic part of D. The colour part is given by the product of the colour factors of the

individual webs: these are exponentiated colour factors rather than conventional ones. We

have denoted these lower order web diagrams by Hi on the right-hand side of eq. (A.10),

where each diagram occurs mH times with
∑

mH
= m. We may then recognise the sum in

the square brackets in eq. (A.7) as a sum over all possible decompositions {mH}, as defined

above, but where these have at least two elements. Denoting such proper decompositions by

{m′H}, the contents of the curly bracket in eq. (A.7) (which, by definition, is C̃(D)F(D))

thus has the form

C̃(D)F(D) = C(D)F(D)−
∑
{m′

H}

1

m!
F(D)

[
C̃(H1)m1 . . . C̃(Hn)mn + perms.

]
, (A.11)

which gives

C̃(D) = C(D)−
∑
{m′

H}

1

m!

[
C̃(H1)m1 . . . C̃(Hn)mn + perms.

]
. (A.12)

Note that the left-hand side corresponds to the product of exponentiated colour factors in

the trivial decomposition of D, consisting only of D itself. We may thus combine this with

the sum over proper decompositions to get

C(D) =
∑
{mH}

1

m!

[
C̃(H1)m1 . . . C̃(Hn)mn + perms.

]
, (A.13)

which is eq. (A.3) (after relabelling m to n).

It is also useful (see e.g. section 6) to determine the specific form of eqs. (4.1) and (A.3),

in cases where the conventional colour factors of distinct subdiagrams commute with each

other. In eq. (4.1) this allows one to write∑
π

C(gπ1) . . . C(gπn(P )
) = n!

∏
g∈P

C(g) (A.14)

where each permutation has been rearranged to give the same ordering, and there are n!

such permutations, so that eq. (4.1) becomes

C̃(G) =
∑
P

(−1)n(P )−1(n(P )− 1)!
∏
g∈P

C(g), (A.15)

where the product is over all subdiagrams in the decomposition P . Also for the inverse

relation (A.3) a similar simplification occurs in the commuting case: one has

C̃(H1)m1C̃(H2)m2 . . . C̃(Hn)mn + perms = n!
∏
H

C̃(H)mH , (A.16)

so that eq. (A.3) becomes

C(G) =
∑
{mH}

∏
H

C̃(H)mH . (A.17)
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B. Stirling numbers of the second kind

In section 5, we use Stirling numbers of the second kind in the proof of the zero sum

row property of web mixing matrices. As these numbers may not be widely familiar to

all readers, we provide a short summary of their properties in this appendix (see also

e.g. [76, 77]).

m →
1 2 3 4 5 6

n 1 1

↓ 2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

Table 2: The first few Stirling numbers of the second kind.

The Stirling number of the second kind, conventionally written

{
n

m

}
, counts the num-

ber of partitions of a set of n objects into m non-empty subsets. Based on this definition it

is straightforward to construct a recursion relation: one can count the number of partitions

of n objects into m (non-empty) subsets as follows: separate one object from the other

n− 1. This object can either be added to one of m partitions of the other n− 1 objects –

this yields m

{
n− 1

m

}
distinct possibilities – or form a (single-object) partition by itself –

yielding

{
n− 1

m− 1

}
additional possibilities. It therefore follows that

{
n

m

}
=

{
n− 1

m− 1

}
+m

{
n− 1

m

}
. (B.1)

The solution of this recursion can be written in a closed form:{
n

m

}
=

1

m!

m∑
j=0

(−1)j

(
m

j

)
(m− j)n . (B.2)

The first few values are given in table 2; one may readily verify that they admit the above

relations.

A useful additional identity, which is being used here in the proof of the zero sum row

property, is the following (see e.g. [76]):

n∑
m=1

(−1)m(m− 1)!

{
n

m

}
= 0. (B.3)

– 32 –



References

[1] E. Gardi, E. Laenen, G. Stavenga, and C. D. White, Webs in multiparton scattering using the

replica trick, JHEP 1011 (2010) 155, [1008.0098].

[2] A. Mitov, G. Sterman, and I. Sung, Diagrammatic Exponentiation for Products of Wilson

Lines, Phys.Rev. D82 (2010) 096010, [1008.0099].

[3] L. F. Alday and J. M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06

(2007) 064, [0705.0303].

[4] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity,

Adv.Theor.Math.Phys. 2 (1998) 231–252, [hep-th/9711200].

[5] J. M. Drummond, G. P. Korchemsky, and E. Sokatchev, Conformal properties of four-gluon

planar amplitudes and Wilson loops, Nucl. Phys. B795 (2008) 385–408, [0707.0243].

[6] A. Brandhuber, P. Heslop, and G. Travaglini, MHV Amplitudes in N=4 Super Yang-Mills

and Wilson Loops, Nucl. Phys. B794 (2008) 231–243, [0707.1153].

[7] L. F. Alday and R. Roiban, Scattering Amplitudes, Wilson Loops and the String/Gauge

Theory Correspondence, Phys. Rept. 468 (2008) 153–211, [0807.1889].

[8] L. F. Alday and J. Maldacena, Lectures on scattering amplitudes via AdS/CFT, AIP Conf.

Proc. 1031 (2008) 43.

[9] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev, Hexagon Wilson loop =

six-gluon MHV amplitude, Nucl. Phys. B815 (2009) 142–173, [0803.1466].

[10] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev, The hexagon Wilson loop

and the BDS ansatz for the six- gluon amplitude, Phys. Lett. B662 (2008) 456–460,

[0712.4138].

[11] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev, Conformal Ward identities

for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B826 (2010)

337–364, [0712.1223].

[12] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev, On planar gluon

amplitudes/Wilson loops duality, Nucl. Phys. B795 (2008) 52–68, [0709.2368].

[13] V. Del Duca, C. Duhr, and V. A. Smirnov, A Two-Loop Octagon Wilson Loop in N = 4

SYM, JHEP 1009 (2010) 015, [1006.4127].

[14] V. Del Duca, C. Duhr, and V. A. Smirnov, The Two-Loop Hexagon Wilson Loop in N = 4

SYM, JHEP 1005 (2010) 084, [1003.1702].

[15] V. Del Duca, C. Duhr, and V. A. Smirnov, An Analytic Result for the Two-Loop Hexagon

Wilson Loop in N = 4 SYM, JHEP 1003 (2010) 099, [0911.5332].

[16] P. Heslop and V. V. Khoze, Analytic Results for MHV Wilson Loops, JHEP 1011 (2010)

035, [1007.1805].

[17] A. Brandhuber, P. Heslop, P. Katsaroumpas, D. Nguyen, B. Spence, et al., A Surprise in the

Amplitude/Wilson Loop Duality, JHEP 1007 (2010) 080, [1004.2855].

[18] P. Heslop and V. V. Khoze, Regular Wilson loops and MHV amplitudes at weak and strong

coupling, JHEP 1006 (2010) 037, [1003.4405].

– 33 –



[19] A. Brandhuber, P. Heslop, V. V. Khoze, and G. Travaglini, Simplicity of Polygon Wilson

Loops in N=4 SYM, JHEP 1001 (2010) 050, [0910.4898].

[20] B. Eden, G. P. Korchemsky, and E. Sokatchev, More on the duality correlators/amplitudes,

1009.2488.

[21] L. Mason and D. Skinner, Dual Superconformal Invariance, Momentum Twistors and

Grassmannians, JHEP 0911 (2009) 045, [0909.0250].

[22] N. Arkani-Hamed, F. Cachazo, C. Cheung, and J. Kaplan, A Duality For The S Matrix,

JHEP 1003 (2010) 020, [0907.5418].

[23] N. Arkani-Hamed, F. Cachazo, C. Cheung, and J. Kaplan, The S-Matrix in Twistor Space,

JHEP 1003 (2010) 110, [0903.2110].

[24] N. Beisert et al., Review of AdS/CFT Integrability: An Overview, 1012.3982.

[25] J. M. Drummond, Review of AdS/CFT Integrability, Chapter V.2: Dual Superconformal

Symmetry, 1012.4002.

[26] L. F. Alday, Review of AdS/CFT Integrability, Chapter V.3: Scattering Amplitudes at Strong

Coupling, 1012.4003.

[27] A. H. Mueller, On the asymptotic behavior of the Sudakov form-factor, Phys.Rev. D20 (1979)

2037.

[28] A. Sen, Asymptotic Behavior of the Sudakov Form-Factor in QCD, Phys.Rev. D24 (1981)

3281.

[29] A. Sen, Asymptotic Behavior of the Wide Angle On-Shell Quark Scattering Amplitudes in

Nonabelian Gauge Theories, Phys.Rev. D28 (1983) 860.

[30] J. C. Collins, Algorithm to compute corrections to the Sudakov form-factor, Phys.Rev. D22

(1980) 1478.

[31] L. Magnea and G. F. Sterman, Analytic continuation of the Sudakov form-factor in QCD,

Phys.Rev. D42 (1990) 4222–4227.

[32] N. Kidonakis, G. Oderda, and G. F. Sterman, Evolution of color exchange in QCD hard

scattering, Nucl.Phys. B531 (1998) 365–402, [hep-ph/9803241].

[33] G. F. Sterman and M. E. Tejeda-Yeomans, Multiloop amplitudes and resummation,

Phys.Lett. B552 (2003) 48–56, [hep-ph/0210130].

[34] A. M. Polyakov, Gauge Fields as Rings of Glue, Nucl.Phys. B164 (1980) 171–188.

[35] I. Arefeva, Quantum contour field equations, Phys.Lett. B93 (1980) 347–353.

[36] V. Dotsenko and S. Vergeles, Renormalizability of Phase Factors in the Nonabelian Gauge

Theory, Nucl.Phys. B169 (1980) 527.

[37] R. A. Brandt, F. Neri, and M.-a. Sato, Renormalization of Loop Functions for All Loops,

Phys.Rev. D24 (1981) 879.

[38] G. Korchemsky and A. Radyushkin, Loop space formalism and renormalization group for the

infrared asymptotics of QCD, Phys.Lett. B171 (1986) 459–467.

[39] S. Ivanov, G. Korchemsky, and A. Radyushkin, Infrared asymptotics of perturbative QCD:

Contour gauges, Yad.Fiz. 44 (1986) 230–240.

– 34 –



[40] G. Korchemsky and A. Radyushkin, Renormalization of the Wilson Loops Beyond the

Leading Order, Nucl.Phys. B283 (1987) 342–364.

[41] G. Korchemsky, Sudakov form-factor in QCD, Phys.Lett. B220 (1989) 629.

[42] G. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov Evolution Kernels of Parton

Distributions, Mod.Phys.Lett. A4 (1989) 1257–1276.

[43] S. Aybat, L. J. Dixon, and G. F. Sterman, The Two-loop anomalous dimension matrix for

soft gluon exchange, Phys.Rev.Lett. 97 (2006) 072001, [hep-ph/0606254].

[44] S. Aybat, L. J. Dixon, and G. F. Sterman, The Two-loop soft anomalous dimension matrix

and resummation at next-to-next-to leading pole, Phys.Rev. D74 (2006) 074004,

[hep-ph/0607309].

[45] N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark

production, Phys.Rev.Lett. 102 (2009) 232003, [0903.2561].

[46] A. Mitov, G. F. Sterman, and I. Sung, The Massive Soft Anomalous Dimension Matrix at

Two Loops, Phys.Rev. D79 (2009) 094015, [0903.3241].

[47] T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons,

Phys. Rev. D79 (2009) 125004, [0904.1021].

[48] M. Beneke, P. Falgari, and C. Schwinn, Soft radiation in heavy-particle pair production:

All-order colour structure and two-loop anomalous dimension, Nucl.Phys. B828 (2010)

69–101, [0907.1443].

[49] M. Czakon, A. Mitov, and G. F. Sterman, Threshold Resummation for Top-Pair

Hadroproduction to Next-to-Next-to-Leading Log, Phys.Rev. D80 (2009) 074017, [0907.1790].

[50] A. Ferroglia, M. Neubert, B. D. Pecjak, and L. L. Yang, Two-loop divergences of scattering

amplitudes with massive partons, Phys.Rev.Lett. 103 (2009) 201601, [0907.4791].

[51] A. Ferroglia, M. Neubert, B. D. Pecjak, and L. L. Yang, Two-loop divergences of massive

scattering amplitudes in non-abelian gauge theories, JHEP 0911 (2009) 062, [0908.3676].

[52] N. Kidonakis, Two-loop soft anomalous dimensions with massive and massless quarks,

0910.0473.

[53] J.-y. Chiu, A. Fuhrer, R. Kelley, and A. V. Manohar, Factorization Structure of Gauge

Theory Amplitudes and Application to Hard Scattering Processes at the LHC, Phys. Rev.

D80 (2009) 094013, [0909.0012].

[54] A. Mitov, G. F. Sterman, and I. Sung, Computation of the Soft Anomalous Dimension

Matrix in Coordinate Space, Phys.Rev. D82 (2010) 034020, [1005.4646].

[55] A. Ferroglia, M. Neubert, B. D. Pecjak, and L. L. Yang, Infrared Singularities and Soft Gluon

Resummation with Massive Partons, Nucl.Phys.Proc.Suppl. 205-206 (2010) 98–103,

[1006.4680].

[56] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative

QCD, Phys.Rev.Lett. 102 (2009) 162001, [0901.0722].

[57] E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD

scattering amplitudes, JHEP 03 (2009) 079, [0901.1091].

[58] T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory

Amplitudes, JHEP 06 (2009) 081, [0903.1126].

– 35 –



[59] L. J. Dixon, L. Magnea, and G. F. Sterman, Universal structure of subleading infrared poles

in gauge theory amplitudes, JHEP 0808 (2008) 022, [0805.3515].

[60] L. J. Dixon, Matter Dependence of the Three-Loop Soft Anomalous Dimension Matrix,

Phys.Rev. D79 (2009) 091501, [0901.3414].

[61] L. J. Dixon, E. Gardi, and L. Magnea, On soft singularities at three loops and beyond, JHEP

1002 (2010) 081, [0910.3653].

[62] E. Gardi and L. Magnea, Infrared singularities in QCD amplitudes, Nuovo Cim. C32N5-6

(2009) 137–157, [0908.3273].

[63] T. Gehrmann, E. Glover, T. Huber, N. Ikizlerli, and C. Studerus, Calculation of the quark

and gluon form factors to three loops in QCD, JHEP 1006 (2010) 094, [1004.3653].

[64] G. F. Sterman, Infrared divergences in perturbative QCD (talk), AIP Conf.Proc. 74 (1981)

22–40.

[65] J. G. M. Gatheral, Exponentiation of eikonal cross sections in nonabelian gauge theories,

Phys. Lett. B133 (1983) 90.

[66] J. Frenkel and J. C. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B246 (1984) 231.

[67] C. F. Berger, Soft gluon exponentiation and resummation, hep-ph/0305076. PhD Thesis.

[68] E. Laenen, G. Stavenga, and C. D. White, Path integral approach to eikonal and

next-to-eikonal exponentiation, JHEP 03 (2009) 054, [0811.2067].

[69] M. Mezard, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond, . World Scientific

(1987) 476pp.

[70] E. Laenen, L. Magnea, G. Stavenga, and C. D. White, Next-to-eikonal corrections to soft

gluon radiation: a diagrammatic approach, JHEP 1101 (2011) 141, [1010.1860].

[71] I. y. Arefeva, Reduced large N models as amorphous systems, Phys. Lett. B124 (1983)

221–224.

[72] M. Fujita, Y. Hikida, S. Ryu, and T. Takayanagi, Disordered Systems and the Replica Method

in AdS/CFT, JHEP 12 (2008) 065, [0810.5394].

[73] G. Akemann, D. Dalmazi, P. H. Damgaard, and J. J. M. Verbaarschot, QCD(3) and the

replica method, Nucl. Phys. B601 (2001) 77–124, [hep-th/0011072].

[74] P. H. Damgaard and K. Splittorff, Partially quenched chiral perturbation theory and the

replica method, Phys. Rev. D62 (2000) 054509, [hep-lat/0003017].

[75] P. H. Damgaard, Partially quenched chiral condensates from the replica method, Phys. Lett.

B476 (2000) 465–470, [hep-lat/0001002].

[76] E. W. Weisstein, “Stirling Number of the Second Kind. From MathWorld–A Wolfram Web

Resource.” http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html.

[77] “Digital Library of Mathematical Functions. Release date 2010-05-07. National Institute of

Standards and Technology from http://dlmf.nist.gov/. Chapter 26.8, Set Partitions: Stirling

Numbers.” http://dlmf.nist.gov/26.8.

[78] G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B72 (1974) 461.

– 36 –



[79] Z. Bern, L. J. Dixon, and V. A. Smirnov, Iteration of planar amplitudes in maximally

supersymmetric Yang-Mills theory at three loops and beyond, Phys.Rev. D72 (2005) 085001,

[hep-th/0505205].

[80] D. Binosi, J. Collins, C. Kaufhold, and L. Theussl, JaxoDraw: A graphical user interface for

drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009)

1709–1715, [0811.4113].

[81] D. Binosi and L. Theussl, JaxoDraw: A graphical user interface for drawing Feynman

diagrams, Comput. Phys. Commun. 161 (2004) 76–86, [hep-ph/0309015].

– 37 –


