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Abstract

The nuclear periphery is a specialized environnrettie nucleus that contributes to
genome organization and correspondingly to genglaggn. Mammalian
chromosomes and certain genes occupy defined asivithin the nucleus that are
heritable and tissue-specific. Genes located attickear periphery tend to be
inactive and this negative regulation can be reckrghen they are released from the
periphery in certain differentiation systems. Reéaeork using specially designed
systems has shown that genes can be artificidheted to the nuclear periphery by
an affinity mechanism. The next important step Wdlto identify the endogenous
nuclear envelope and chromatin proteins that ppéte in affinity-driven nuclear

envelope tethering and determine how they are atgpll
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Introduction
Chromosomes in mammalian cells tend to occupy ddfpositions within the 3D-
framework of the nucleus. The Bickmore laboratarst fdemonstrated this by
showing that in fibroblasts chromosome 18 tendsettocated at the nuclear
periphery while chromosome 19 tends to be intdifjalSubsequently the Misteli
laboratory found that the chromosomes involvedsisuie-specific tumor
translocations were positioned adjacent to onehanaturing interphase in those
particular tissues [2]; thus different cell typasdr certain chromosome groupings.
The Bridger laboratory has further shown that chosome positioning with respect
to the nuclear periphery is altered in aging délJsPeripheral localization of DNA is
generally thought to correlate with silencing bessai) gene poor chromosomes tend
to be at the periphery [1], ii) most dense chrom#gnds to be at the periphery as
assessed by electron microscopy, and iii) muchrigiécating DNA is at the
periphery [4].

Only a portion of a chromosome located at the perp actually interacts
with the nuclear envelope (NE), the double membsyséem that defines the nuclear
compartment. In lymphocytes, gene poor regionsiactive genes of chromosome 7
are proximal to the NE compared to active genesdteamore internal [5].
Additionally, internal chromosomes can extend loopsvard that reach to the NE
[6]. Thus chromosomes adopt a wide range of cordtions and interactions. The
logical purpose of combining chromosome-positiomagterns with such

chromosome plasticity would be that it plays a iolgene regulation.

Specific Gene Regulation from the Nuclear Periphery
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Several individual genes move to and from the rargberiphery correlating with

their activation state. The immunoglobulin heavgiohgH locus remains inactive at
the NE in early lymphocyte lineages but moves #orthclear interior concomitant
with the initiation of V(D)J recombination [7]. Sikarly the Mashl (Ascll) gene

moves away from the NE when it needs to be actveteneural development [8].
Mashl contains heterochromatic epigenetic marks andcagpk late when at the
periphery and these switch to active chromatin marid early replication when the
locus is in the interior, but it is unclear whethige change in chromatin marks drives
the movement or vice-versa. The cystic fibrosisgraembrane conductance regulator
(CFTR) gene, however, could be induced to move away treNE upon treatment
with trichostatin A, which promotes histone hypatgtation [9]. Although this
suggests that alterations in epigenetic marks dae the movement of genes to and
from the NE,CFTR s internal and active in some cell types anditneat of these
cells with a transcriptional repressor that inleBNA polymerase promoted
movement ofCFTR to the periphery [9]. Thus the question of whethanscription
factors or local epigenetic marks dominate in geostioning remains unresolved. In
either case, to position a gene at the NE thessdrgtion factors or epigenetic marks
must interact with proteins of the NE.

The protein complement of the NE includes an meatiate filament lamin
polymer that directly underlies the membrane [1@] hundreds of transmembrane
proteins, many of which are unique to the innerdearcmembrane (INM) [11]. Many
different aspects of genome regulation have bededi to the NE: lamins and several
INM proteins can influence replication [12,13],ns&ription [14,15], and signaling
cascades [16,17]. Specific interactions have baew:s between several INM

proteins and both negative and positive transomgati regulators [15,18,19]. Thus,
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though the predominant effects of NE tetheringuhsed above were in gene
silencing, NE localization can also direct genevation: thePLP, ERBB-2, COL1A1
andIFN-ygenes all become activated at the nuclear pexphieen respectively glial,

breast, bone and immune cells differentiate [2Q-23]

An Affinity Mechanism for NE Tethering of Genes

Three elegant recent studies used different adifsystems to inducibly tether genes
to the NE [24-26]. In all systems, bacterial laegtor (lacO) sequences were
inserted into the mammalian genome in different loat were not typically close to
the NE. The lac repressor (lacl) binds lacO segeeméth high specificity and
affinity; so these cells were transfected with lased to a reporter alone or fused to
the reporter plus the NE proteins lamin B1 [25],R2R [24], or emerin [26]. Lamin
B1 is part of the intermediate filament polymer enthe NE while LAP213 and
emerin are NE transmembrane proteins predominanttye INM. Expression of the
simple lacl-reporter fusion had no effect on thsipon of the lacO locus within the
3-dimensional organization of the nucleus; howevieen lacl was also fused to the
NE proteins, the locus moved to the nuclear peripf#4-26] (Figure 1).

Movement to the periphery was not observed dumigrphase: instead
repositioning of the locus required the cells talymugh mitosis (Figure 1). While
chromosomes undergo moderate shape changes duenghase, they generally do
not move significantly in bulk. In contrast, chrosoones undergo dramatic
movements in mitosis. At the end of mitosis, maxiliproteins bind to mitotic
chromosomes and this helps drive NE reassemblyese tproteins are embedded in
mitotic vesicles [27,28]. Thus, before chromosoraeathdensation, affinity binding

of the lacO array with lacl-NE proteins would britinge lacO-integrated chromosome
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in contact with the reforming nuclear membraneebwd though the lacO array is
only a small part of the chromosome, tethering flist region to the NE was able to
pull the entire chromosome to the periphery [24]isTis a very important observation
as it shows that minimal directed high affinitydractions have the potential to
drastically change the nuclear landscape. It i3 m¢geworthy that with the advent of
the high affinity interaction, other presumably wesinteractions were lost as
chromosome 4 moved away from the periphery whearnshsome 11 containing
lacO repeats moved to the periphery [24]. Thus gfecteomosomes compete for
place based on the strength of affinity interadiorhe lacO-lacl binding is disrupted
by IPTG (isopropyl 3-D-1-thiogalactopyranoside)paing the heritability of lacO
repositioning to be assessed. Apparently the &ffinteraction must be maintained
because treatment of cells with IPTG resulted s lof peripheral localization.

Transcription from a marker gene inserted in tl®larray was reduced when
the array was at the periphery [24,26]. Some adjagenes were also inhibited while
others were unaffected, indicating that additidaators direct the mechanism of
inhibition [24]. One such factor is the ability thie INM proteins that were fused to
lacl to recruit specific transcriptional repressgesm cell-less, Btf and Lmo7, that
each has target gene specificity and cell typeispige[15,18,19]. Thus gene
repression may be an indirect effect from groupimigganscriptional repressors at
the periphery. Disrupting peripheral tethering Wi G restored the lost

transcriptional activity [24,26].

| dentification of Endogenous Proteins Involved in Affinity Tethering of

Chromatin
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An affinity mechanism likely also functions in ttethering of endogenous genes and
chromosomes to the periphery. Knockdown of lamirr&slilts in release of
chromosome 18 from the periphery in human cell$.[PBough disruption of lamins
may Yyield pleiotropic effects, this result makemsosense because the volume of a
whole chromosome would predispose that its anclagrstable (e.g. an intermediate
filament polymer), a predominant protein (~3,000,@80pies of lamins per average
mammalian nucleus; [30]), and that the chromosoamnpr was abundant (lamins
bind histones H2A/H2B [31]). Nonetheless, somethimgst be missing from this
model because lamin B1 is distributed uniformlytighout the nuclear periphery in
nearly all cell types and histones H2A/H2B arerdisted throughout all
chromosomes. Thus this fails to explain why speaify chromosome 18 is at the
periphery while 19 tends to the interior. The ptztiof a missing partner is
supported by observations using a set of threergifit antibodies to different regions
of lamin B1. In various tissues different combionas of two antibodies recognized
lamin B1, but the epitope recognized by the thimtlendy was masked. Thus, distinct
regions of lamin B1 were bound to different pargni@rthe various tissues [32]. This
suggests that either chromosome 18 has histondinatitins that increase its affinity
for lamin B1 in the cell types where it is at thexiphery or other as yet unidentified
proteins are involved. The only other NE proteinsven to tether chromatin are the
SUN proteins that recruit telomeres [33,34].

An affinity mechanism directing the tethering oesgic chromatin to the NE
in certain cell types would predispose that a uaigombination of a NE protein and a
specific chromatin protein occur in that cell typer example, a type of chromatin
such as epigenetically modified heterochromatinhinigave a higher affinity for a NE

protein than euchromatin and this NE protein wdagdexpressed highest in cell types
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that have heterochromatin at the periphery. Indi@idjenes associated with a
particular differentiation pathway could also hapecific affinity for the NE. For
example the Msx1 protein interacts with the histbidevariant H1b, which is in
several muscle-specific genes and this interadtemps these genes repressed until
the commencement of myogenesis [35]. If either Msixthe H1b histone variant or
the complex they form has significantly higher @itly for a specific NE protein,
which is expressed differentially, this could dirspecific tethering of that gene to
the periphery.

The fundamentals of this hypothesis are supporyeskberal examples of
chromatin interactions with NE proteins. In additto the lamin interaction with core
histones mentioned above, several INM proteins ha&esn found to interact with
specific chromatin proteins and/ or post-transteilanodifications on chromatin
proteins. The lamin B receptor (LBR) interacts sfpeadly with heterochromatin
protein 1 (HP1p andy [36] and histones H3/H4 [37]. Moreover LBR wasriduo
pull down chromatin with a strong preference féersting modifications [38].
Conversely, HP1 appears to have a higher affimityNE proteins compared to other
parts of the nucleus because microinjectedd&icumulated at the periphery before
eventually being distributed to other nuclear |mre [39]. Barrier-to-autointegration
factor (BAF) is a protein that modifies the condshstate of chromatin by
crosslinking DNA/histones [40]. BAF binds the mantiaua INM proteins LAP2(3,
emerin and MANL1 [41-43].

Thus far, no endogenous NE proteins or chromatiteprs have been found
that are involved in tethering of individual gerteshe periphery. To identify
additional NE proteins involved in tethering chramao the NE we have engaged a

visual screen with lacO insertions and lacl repsrtbut without fusing the reporter to
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a NE protein. Instead roughly 40 INM proteins idied in a proteomic study of the
NE [44] were overexpressed in cells that carrie®lansertions in different areas of
the genome and the position of the locus was addayeroximity to the NE. Several
proteins were identified that when upregulatechenNE resulted in preferential
accumulation of the marked chromatin region atNEe(NZ, W. Bickmore and ECS,
unpublished observations). Future studies will ®oon determining if these proteins

have higher affinities for specific genes and/lmomatin proteins.

Summary

Twelve different NE proteins have now been linkedhtiman disease including
lamins, INM proteins and associated soluble praetghd,46]. NE diseases affect
many different tissues including muscle, braincits, heart, skin, bone, immune
cells, and also include the aging disease prog&riavored hypothesis for how NE
proteins can cause disease is alteration of ggmession due to physical disruption
of regulatory contacts at the NE. This hypothessuipported by observations that the
myoD and Rb pathways are misregulated in NE-relategicular dystrophies [47,48],
and that cells from patients with different NE dises have altered distribution of
dense peripheral chromatin [49-51]. Thus, detemgitihe proteins involved in
affinity tethering of specific chromatin to the Nias significant implications for the
understanding of human disease.

Much work also still needs to be done to clarifyettter the nuclear envelope
silences genes (i) by sterically reducing acceldsilbd factors, (ii) by inactivating
transcriptional regulators through sequestratiiii bfy bringing genes into an already
silenced environment rich with enzymes that propageactive chromatin, or (iv) by

recruiting already silenced chromatin. To fully enstand genome regulation and
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how it changes in differentiation will require fber addressing the 3-dimensional

constraints on the genome that, in part, appestalt from interactions at the NE.
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Legendsto Figuresand Tables

Fig. 1.
Interphase Mitosis Interphase
—
® | acO array ® | acO array ® | acO array
NE NE vesicle 4 Lacl-NE protein
> Transcription % NE vesicle with Lacl ,%e» No Transcription

Affinity mechanism for tethering of specific chrotimaat the NE.

In the lac operator system a gene inserted witleit® locus is active when in the
nuclear interior (left cell), but becomes repressbén recruited to the periphery by
binding to lacl fused to a NE protein (right ceNJovement to the periphery requires
going through mitosis (middle cell) where membraesicles carrying the NE
protein-lacl fusion bring the lacO locus in assborawith the reforming nuclear

membrane through an affinity mechanism.
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Fig. 2.
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Endogenous inner nuclear membrane proteins coeldhas affinity for certain
chromatin proteins to recruit and tether chromosotaehe periphery. For example,
lamins bind core histones, LBR binds to epigené#yicaarked histones and HP1, and
emerin, LAP23, and MAN1 bind the BAF DNA crosslinkBifferences in the
interactions between INM proteins and their chrompéartners could result in

different types of chromatin (silenced/active) analating at the periphery.
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