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Abstract

The nuclear envelope is a complex double membrgsiers that serves as a dynamic
interface between the nuclear and cytoplasmic comesats. Among its many roles

is to provide an anchor for gene regulatory pr@ein its nucleoplasmic surface and
for the cytoskeleton on its cytoplasmic surfacethBsets of anchors are proteins
called NETs, embedded respectively in the inneruber nuclear membranes. Several
lines of evidence indicate that the nuclear envelamtributes to cell cycle
regulation. These contributions come from both frared outer nuclear membrane
NETs and appear to operate through several distiechanisms ranging from
sequestration of gene regulatory proteins to atitig&kinase cascades.



Introduction

The nuclear envelope (NE) is a highly organizedoflidmembrane system
sequestering the nuclear contents from cytoplaswtieities. At the same time the
NE must mediate all communication between the mptésm and the cytoplasm.
This is largely controlled by nuclear pore compke&PCs), >44 MDa structures
which regulate trafficking of soluble macromoleauiie and out of the nucleus
[reviewed in 1]. However, direct connections betwd® cytoskeleton and the
nucleoskeleton across the NE may provide an aliemachanism for transducing
signals between the cytoplasm and nucleus [reviewati

The two membrane components of the NE termeditimef” and “outer”
nuclear membrane (INM and ONM) are concentric aphgated by ~50 nm in
mammalian cells [30 nm in yeast; reviewed in 3]e Timen created by this spacing
is continuous with the lumen of the ER and the ONM fact both a part of the NE
and of the ER with which it is continuous. Noneé#ssl, there are many distinctions
between the protein content of the ONM and theikfRerms of both ER proteins that
are absent from the ONM [3,4] and ONM-specific pmag such as Syne/ Nesprin
proteins. Nesprins interact either directly or nedtly with the cytoskeleton [reviewed
in 2] and facilitate nuclear positioning necesdanycell polarization [5].

The INM of any given mammalian cell contains ptolgaon the order of 100
different transmembrane proteins, many of whichtigseie specific [6-8]. Very few
of these proteins have been analyzed in detailmst of those tested have been
found to interact with chromatin and the interméelfdament Lamin polymer that
underlies the INM [reviewed in 9,10]. The Lamin yroler and associated proteins are
collectively referred to as the nuclear lamina, hade been shown to play critical
roles in NE disassembly at the beginning of mitasiglear shape and mechanical
stability, nuclear anchoring/ migration within tbell, signaling cascades, as well as
support of replication, transcription, and splic[ngviewed in 9,10].

Several studies also indicate a role for the NEgelhcycle regulation. It
appears that this role can be achieved by mangrdiit mechanisms, ranging from
NE functions in gene regulation to NE involvementytoskeletal organization to as
yet undefined mechanisms. The consequences aktusation cover the range from
controlling entry into S-phase for stem cell preddtion to initiating withdrawal from
the cell cycle and could explain NE functions inesal debilitating diseases such as
muscular dystrophies and the premature ageing symaliHutchison-Gilford Progeria
[reviewed in 11,12].

The Nuclear Envelopein Mitosis

At the most simplistic level the NE can affect t&#l cycle in mitosis. This statement
may seem paradoxical since the NE is absent frgmehnieukaryotes during mitosis;
however, defects in NE disassembly in prophaseddoeave pleiotropic
consequences. If the NE does not disassemble ubeihrt cannot get in to assemble
the mitotic spindle. Along a similar line, if NE mtacts with the cytoskeleton are not
dissolved then the mitotic scaffold may be disrdaie cytokinesis defective. If the
NE only partially disassembles and sister chrorsatdnain in contact with any
remaining NE then the segregation of chromosomesdilme compromised. An early
and possibly driving force in NE disassembly is hiyperphosphorylation of Lamins,
which destabilizes the Lamin polymer [13,14]. Migas in critical phosphorylation
sites blocked entry into mitosis [15]. Thus failtoeproperly disassemble the NE can
negatively impact on mitotic progression.



A second resolution to the paradox can be fourtderguestion of what
happens to NE proteins when the NE is no more?dR#tlan being turned over, these
proteins appear to have separate functions in mitBsth NPC structural
components (the Nup107-160 complex) and regulatomsicleo-cytoplasmic
transport through the NPCs (Ran-GTP and Imp)tirave mitotic roles in spindle
assembly and on kinetochores [16-18]. Lamins andraéNETs also have been
found on mitotic spindles and/ or the centrosom&d20].

The nucleoskeleton is connected to the cytoskelethe LINC complex
[21]. The basic units of this complex are SUN damMdETs in the INM and KASH
domain proteins in the ONM. The SUN domain protdimsl lamins while the KASH
domain Syne/ Nesprin proteins directly or indirgdtind to cytoskeletal components
and centrosomes [reviewed in 2]. A recently idesdilk ASH domain protein, KDP-1
in C. elegans, was found to be important for the timing of agltle progression
between the end of S phase and entry into mit@2is however, the mechanism of its
action remains speculative.

Cell Cycle Regulation by Transcription Factor Sequestration

One mechanism by which NE proteins can affectmalle regulation is by
sequestering transcription factors critical fotiating the cell cycle (Figure 1). The
best-studied mechanism is the interaction of thaagblastoma protein (pRb) with
lamin A [23] and LAP2 [24]. pRb regulates the cell cycle at the G1/8&dri#@on by
regulating the E2F family of transcription fact@rsviewed in 25].
Hypophosphorylated pRb sequesters E2F early iGthphase of the cell cycle. In
cells preparing to divide pRb becomes graduallysphorylated at first by cyclin
D/cdk 4 and 6 and later by cyclin E/cdk2. The plsplation releases E2F
transcription factors so that they can activateegenvolved in S-phase progression
[26,27].

The interaction of pRb with Lamin A and LARZerves to both sequester the
pRb/E2F complex and stabilize it from degradatigriie proteasome [28].
Overexpression of LARRZresults in cell cycle arrest presumably by stainfj the
complexes to the point that E2F transcription fexcere never released [24,29].
Knockdown of Lamin A yields a similar outcome irllag/cle arrest, but presumably
from the opposite effect of destabilizing pRb coexgls so they are degraded by the
proteasome [30]. The importance of the Lamin A-L&ARIRb complex is
underscored by observations that depletion of LRP2fibroblasts stimulates cell
proliferation [29] and hyperproliferation of erythd and epidermal progenitors was
observed in mice with LAR2disruption [31]. It is not clear, however, thaisth
Lamin A-LAP2a-pRb interaction occurs at the NE: while most merailoé the LAP2
family are NETs, LAP2 is a soluble splice variant distributed throughtiet
nucleoplasm and though most Lamins are at the MEethre also nucleoplasmic
pools [32].

Nonetheless, though less characterized, simifestpf interactions occur for
several NETSs that due to their membrane spansatected to the NE. LARR a
membrane bound splice variant of the LAP2 genejdthe transcriptional regulator
Germ cell-less [33]. Transcription factors and otinenscriptional regulators such as
Germ cell-less, Btf, and Lmo7 have all been foundihd to the NET Emerin
[reviewed in 34] while Smad transcription factorsdthe NET MANL1 [35,36].
Phosphorylation of NETs may regulate such inteoastias some Emerin residues are
phosphorylated at particular stages in the cellecjg7,38]. Thus it appears that



sequestering transcriptional regulators at the N& common mechanism by which
NETs can regulate gene expression and correspdpdiagous aspects of the cell
cycle.

Many New Tissue-Restricted NETs I nfluence Cell Cycle Progression

To identify additional NETs that contribute to cejicle regulation, 39 novel NETs
were screened for their ability to alter flow cytetny cell cycle/ DNA content
profiles upon exogenous expression [39]. Eights$taahg effects with seven
increasing and one decreasing the 4N:2N DNA comtgid. A secondary screening
of this subset found that these effects were lostgnificantly impaired for two

NETs when tested in cells lacking the p53 mastgulegor. Thus 75% of the NETs
that affected the cell cycle did so by novel oslebaracterized pathways. These
NETs, NET11/Sccpdh, NET31/Tmem209, Tmubl, Fam3gtleand Tmem126a,
are generally uncharacterized proteins with no kméwnctions. They are also highly
restricted in expression: according to the BioGR8dcriptome database [40] Tmubl,
Fam3c and Magtl are all expressed more than 5xhiglcertain blood cell types
compared to the median value for over 80 tissuasméed while Tmem126a is
expressed in blood at roughly 50x higher than tlediem. These four NETs were all
identified in a proteomic study of NEs isolatednfrblood [6]. In contrast,
NET11/Sccpdh was preferentially expressed in baiashtestis [40].

Of the NETSs that required p53 for their effectstioa cell cycle, one was
widely expressed and the other more restrictetvén and fat cells [39]. The widely
expressed NET59/NcIn has separately been link@dtel3 signaling pathways
through an indirect interaction with Smad protd#ik]. Smads also interact with the
NET MANL1 [35,36], which is also widely expresseds the NET Emerin also
intersects with signaling pathways (3-catenin; J4®]dely expressed NETs may
yield effects on the cell cycle through such int&iens with well characterized
signaling pathways.

NET4/Tmem53 was not only dependent on p53 but@tspRb for its effects.
Knockdown of NET4/TMEMS53 resulted in a decreasphiosphorylated pRb along
with a doubling of p53 levels and a 7-fold increasp21. These changes were all
dependent upon active p38 MAP kinase [39]. This&eis often associated with
stress pathways [43]. The consequence of thesgebavas that cells withdrew from
the cell cycle, becoming prematurely senescent.préferential expression of
NET4/Tmem53 in liver and fat cells and the othefTNEn blood is consistent with
the tissues where they were originally identifiédLD]. That so many NETSs that were
positive in the screen are tissue-specific sugghatshey might participate in
differentiation and/ or tissue regeneration throoghintenance of satellite stem cell
renewal in particular tissues.

Four of the eight NETs with effects in the screamehbeen tested for
compartmentalization between the INM and ONM andrestingly NET4/Tmem53
and NET31/Tmem209 were both restricted to the ONMMesNET59/Ncln and
Magtl appeared in the INM. This distribution is sistent with the hypothesis that
some of these NETs will influence the cell cycleotigh ONM connections to the
cytoplasm and others through INM regulation of gergression.

Summary

Over a dozen different NE proteins have been lirthdsuman diseases ranging from
muscular dystrophies to neuropathies to prematgirgayndromes [11,12].
Misregulation of the cell cycle is one of the thfaeored hypotheses for how NE



proteins can cause disease, possibly by blockarg stll renewal. This hypothesis is
supported by the observation that the Rb pathwayissegulated in the NE-linked
Emery-Dreifuss muscular dystrophy (EDMD) and byulion of the NET Emerin

in mice [44,45]. As misregulation of pRb through Né&fects caused
hyperproliferation of erythroid and epidermal proger cells [31] the misregulation
in EDMD could result in an early loss of muscleediéie cells. This is consistent with
the timing of disease onset in late childhood.

Additionally, two Emerin mutations caused a nearlding in the length of
the cell cycle [46]. While this points to a possibble of the cell cycle in EDMD
pathology, the fact that four other EDMD mutatidested had no effect indicates that
there must be multiple pathways to disease patlyoldigernatively, it may just be an
issue of severity as knockdown of Emerin alon€.ielegans did not have notable
effects on cell division whereas combined knockd@ivBEmerin and the NET MAN1
effectively blocked cell division [47].

The range of possible cell cycle links found forMD parallels the many
ways that the NE has been found to intersect waighcell cycle (Table I). The fact
that nearly 20% of new NETSs tested affect the ogdle [39] further suggests that we
have just uncovered the proverbial tip of the icglder NE regulation of cell cycle
progression.
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Table|. Examples of NE proteinswith various cell cycle effects

NE protein Up- or down- Céll cycle effect Reference
regulation
Lamin A and LAP2 | downregulation of | hyperproliferation of | [29-31]
LAP2a progenitor cells
Emerin and MAN1 downregulation chromosome [47]
segregation defects
KDP-1 downregulation timing between S- | [22]
phase and mitosis
NET4/Tmem53 upregulation G1 accumulation [39]
downregulation cell cycle withdrawal  [39]
NET59/NclIn upregulation p53-dependent G2/M39]
accumulation
downregulation defect in Smad [41]
signaling
NET31/Tmem?209 upregulation G2/M accumulation [39]
NET11/Sccpdh upregulation G2/M accumulation [39]
Tmubl upregulation G2/M accumulation [39]
Fam3c upregulation G2/M accumulation [39]
Magtl upregulation G2/M accumulation [39]
Tmem126a upregulation G2/M accumulation [39]
NET5/Sampl downregulation centrosome [19]
positioning defect
Ran upregulation aids spindle assembly  [17]
ImportinB upregulation aids spindle assembly [18]




Figuresand L egends

A

—" ] 0 —ONM
— — ——~INM
ET lamina

cell cycle gene

lamina

—Ql cell cycle gene

to Figures

Fig. 1.

NETs can affect the cell cycle by sequesteringstteptional regulators. A.
Transcription factors (TF) are kept away from tloall cycle gene targets in the
nucleoplasm by binding to NETs. This is similahtow overexpression of LARR
causes cell cycle arrest. B. Release of the trgntignral regulator from the NET, in
this case suggested to result from NET phosphaoylatnables transcriptional
activation of the cell cycle gene target.
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