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[1] The consistency of tropical tropospheric temperature trends with climate model
expectations remains contentious. A key limitation is that the uncertainties in observations
from radiosondes are both substantial and poorly constrained. We present a thorough
uncertainty analysis of radiosonde‐based temperature records. This uses an automated
homogenization procedure and a previously developed set of complex error models where
the answer is known a priori. We perform a number of homogenization experiments in
which error models are used to provide uncertainty estimates of real‐world trends. These
estimates are relatively insensitive to a variety of processing choices. Over 1979–2003, the
satellite‐equivalent tropical lower tropospheric temperature trend has likely (5–95%
confidence range) been between −0.01 K/decade and 0.19 K/decade (0.05–0.23 K/decade
over 1958–2003) with a best estimate of 0.08 K/decade (0.14 K/decade). This range
includes both available satellite data sets and estimates from models (based upon scaling
their tropical amplification behavior by observed surface trends). On an individual
pressure level basis, agreement between models, theory, and observations within the
troposphere is uncertain over 1979 to 2003 and nonexistent above 300 hPa. Analysis of
1958–2003, however, shows consistent model‐data agreement in tropical lapse rate
trends at all levels up to the tropical tropopause, so the disagreement in the more recent
period is not necessarily evidence of a general problem in simulating long‐term global
warming. Other possible reasons for the discrepancy since 1979 are: observational errors
beyond those accounted for here, end‐point effects, inadequate decadal variability in model
lapse rates, or neglected climate forcings.

Citation: Thorne, P. W., et al. (2011), A quantification of uncertainties in historical tropical tropospheric temperature trends
from radiosondes, J. Geophys. Res., 116, D12116, doi:10.1029/2010JD015487.

1. Introduction

[2] Over the past twenty years the vexatious issue of
whether the troposphere is warming or not and, if it is, then
whether it is warming at a rate consistent with climate
model expectations, has spawned more than 200 research
papers, two dedicated expert panel reviews [National
Research Council Panel on Reconciling Temperature

Observations, 2000; Karl et al., 2006], and has been a
focus of reports by Working Group I of the IPCC [Thorne
et al., 2011]. Over time, attention has shifted from the global
mean to changes in the deep tropics, which are dominated by
convective processes and where climate model behavior is
strongly constrained [Santer et al., 2005]. Here, any change in
temperature at the surface is amplified aloft. The physical
reasons for amplification are well understood. On month‐to‐
month and year‐to‐year time scales, all climate models and
observational estimates exhibit remarkable agreement with
each other and with simple theoretical expectations. But on
multidecadal time scales, many observational estimates of
amplification behavior depart from basic theory, while cli-
mate models do not. The most recent major assessment [Karl
et al., 2006, p. 2] concluded that such discrepancies “may
arise from errors that are common to all models, from errors in
the observational data sets, or from a combination of these
factors. The second explanation is favored, but the issue is
still open.” In this paper, we explore observational error.
[3] With the notable exception of the Keeling curve of

CO2 concentration changes [Keeling et al., 1976], to date
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there exists no climate record that is definitively tied to SI
standards. Such records require comprehensive metadata,
traceability at every step to absolute (SI) standards, and a
careful and comprehensive calculation of error budgets
[Immler et al., 2010]. They are expensive, time consuming
to produce, and difficult to construct and maintain. It is
therefore understandable that virtually all of the historical
meteorological data available to the community fail, usu-
ally substantially, to measure up to such exacting stan-
dards. As a result, there will always be uncertainty in
establishing how the climate system has evolved, not-
withstanding careful attempts to identify and adjust for all
apparent nonclimatic artifacts. Despite some claims to the
contrary, no single approach is likely to encapsulate all of
the myriad uncertainties in the data set construction pro-
cess. The issue is most critical for multidecadal trends,
since residual errors act as red noise, projecting most
strongly onto the longest timescales [Seidel et al., 2004;
Thorne et al., 2005b].
[4] Upper‐air monitoring involves single‐use radiosondes

(weather balloons) and, more recently, satellites with indi-
vidual lifetimes of a few years. Radiosonde technologies, and
to a lesser extent practices, have changed markedly over the
years. As a result, historical radiosonde temperature trends
remain uncertain despite substantial efforts by a number of
independent groups to address the issue [Sherwood et al.,
2008; Haimberger et al., 2008; Free et al., 2005; Thorne
et al., 2005a]. Satellite temperature records are similarly
uncertain and only represent very broad vertical integrals,
which leads to potential issues in interpretation [Christy
et al., 2003; Mears and Wentz, 2009a, 2009b; Zou et al.,
2006; Vinnikov et al., 2006; Fu et al., 2004]. It is essential
to have a comprehensive understanding of the structural
uncertainty, uncertainty arising from uncertain methodolog-
ical choices, in the observations [Thorne et al., 2005b].
Although the recent expansion in the number of upper‐air
temperature data sets has undoubtedly improved our ability
to quantify structural uncertainty, there still exist only a
handful of published data sets, but the number of scientifi-
cally plausible data sets is undoubtedly very much larger
than this.
[5] Automation of the HadAT radiosonde data set con-

struction procedure [Thorne et al., 2005a] has enabled the
creation of an ensemble of HadAT data sets. This has allowed
analysts to explore the structural uncertainty (in this particular
radiosonde product) arising from a wide variety of subjective
choices made in data set construction [McCarthy et al., 2008]
(hereinafter M08). In order to evaluate this ensemble,
Titchner et al. [2009] (hereinafter T09) generated a set of
benchmark error models that share many of the complex
features of real world temperature monitoring systems, such
as spatiotemporal changes in sampling, random errors, and
systematic errors. The results from the error models were used
to infer the likely relationship of the HadAT ensemble to real
world changes (T09). Both M08 and T09 found that the
automated HadAT system tended on average to shift the data
in the right direction, toward the true solution, but usually not
far enough. T09 found that the behavior depended on the
assumed error structure. In the case of one error model, they
could not capture the true lower tropospheric tropical trends.
T09 were therefore able to place a lower bound on the

observed trend, precluding a cooling tropical troposphere, but
were not able to establish a reliable upper bound.
[6] This paper is a final contribution from the current

HadAT radiosonde temperature project (although real‐time
updates of the HadAT radiosonde data will continue). It
complements M08 and T09 in two fundamental ways. First,
it includes a wider range of methodological choices, such as
input data time resolution, entire adjustment procedure, and
dynamical neighbor selection. These results should give a
more comprehensive guide to the true structural uncertainty.
Second, a conditional probability assessment of “true”
atmospheric temperature trends is made. This permits, for
the first time, a bounded estimate of the uncertainties in the
observations. The paper focuses upon the tropics as apparent
discrepancies between modeled and observed lapse‐rate
changes there continue to receive considerable attention
[Santer et al., 2005, 2008; Karl et al., 2006; Thorne et al.,
2007; Douglass et al., 2008; Allen and Sherwood, 2008;
Klotzbach et al., 2009; Bengtsson and Hodges, 2009]. Trend
estimates are also presented and briefly discussed for the
globe and the extratropics in each hemisphere.
[7] Section 2 outlines the data set construction algorithm

that is employed and the data that are utilized. In section 3 the
suite of systematic experimentation that was performed
subsequent to T09 is outlined and analyzed. Section 4 out-
lines the method used to combine the information from these
experiments to create a conditional estimate of the true world
behavior. Section 5 discusses the observational results.
Sections 6 and 7 provide a discussion and conclusions.

2. Data Set Construction

2.1. Automated HadAT System Methodology Overview

[8] The HadAT system is an iterative neighbor‐based
breakpoint identification and adjustment algorithm. Neigh-
bors are selected from the contiguous region where, accord-
ing to the NCAR [Kalnay et al., 1996] or ERA‐40 [Uppala
et al., 2005] reanalyses over the satellite era the correlation
between atmospheric temperatures and the target station is
>1/e. Neighbor averages are then constructed from these
neighbor composites, and the difference series (target minus
neighbor average) is used to define breakpoints and calculate
adjustments. Use of the difference series removes common
climate signals and hence enhances signal‐to‐noise ratios for
both breakpoint identification and adjustment steps [Santer
et al., 2000]. If no breaks existed in candidate or neighbor
series, it is assumed that the difference series would simply
constitute white noise with variance governed by neighbor
density and local climate noise. The system adjusts the
most obvious breaks in the data in initial iterations, and
then relaxes the breakpoint identification criteria in sub-
sequent iterations so that it picks up smaller breaks. It was
originally run manually [Thorne et al., 2005a], but this
approach was expensive and irreproducible so the system
was subsequently fully automated (M08). In standard form,
it uses seasonal resolution radiosonde data for each man-
datory reporting level for which a climatology can be
calculated.
[9] A Kolmogorov‐Smirnov (KS) test [Press et al., 1992]

applied to the available difference series at each level,
together with the available (known incomplete) metadata
(Gaffen [1993] and updates), are used to estimate local
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maxima in the likelihood of a breakpoint. Breaks having p
values greater than a specified threshold (a system tunable
parameter) are adjusted in the station series.
[10] The adjustment is a constant applied to all data prior

to an assigned break. Following adjustment of all stations,
anomalies are recomputed, and the neighbor composite
temperature series is recalculated and the critical threshold
reduced. The number of iterations is defined by the user.
[11] After the iterations have completed the data are grid-

ded and vertically weighted to produce Microwave Sounding
Unit (MSU) equivalent layer temperature anomalies. Global
and regional series and trends are then calculated for all
pressure levels and the MSU layer equivalents. Full system
methodological details are given by M08 and T09.
[12] Although automation has the disadvantage that any

individual data set realization is not subject to the same expert
scrutiny applied in a manual approach, there are three distinct
advantages: (1) It is reproducible (2) it takes hours to weeks
rather than years to create a data set version and (3) the pro-
cess can be parallelized across many computers, enabling
large ensembles to be produced. To take full advantage of
the automated processing, all subjective methodological
choices (such as the number of iterations, the initial
breakpoint test critical value, etc.) are regarded as tunable
parameters. By randomly selecting parameter values within
reasonable bounds (M08 and T09), ensembles of “plausible”
climate realizations can be produced. Since the true evolution
of historical climate change is uncertain, a set of “radiosonde
data” error models constructed from an atmosphere‐only
climate model run was created to benchmark the performance
of the automated data adjustment system. This provides
guidance regarding the inferences that can be drawn when the
automated data adjustment system is applied to real‐world
radiosonde data (T09).

2.2. Observational Data

[13] The observational data described in detail by T09
are used in these analyses. The observations are a merge
of ERA‐40 input data radiosonde holdings [Uppala et al.,
2005] and the Integrated Global Radiosonde Archive (IGRA)
[Durre et al., 2006] undertaken as part of the RAOBCORE
effort [Haimberger et al., 2008]. Where duplicate records
existed the ERA‐40 ingest data were used. From this com-
bined data set, those station records for which a 1981–2000
climatology could be calculated were retained. Day and night
data were considered separately, being defined by an algo-
rithm using the station’s recorded longitude and observing
time; and that also removes polar latitude sondes where day
and night assignment would be dubious. Following T09, who
found the automated HadAT data adjustment approach was
not sufficiently constrained by the sparser nighttime network
in regions outside the Northern Hemisphere midlatitudes, the
focus herein is on the daytime record, despite its well docu-
mented radiative heating issues with changes in the materials
and shielding of temperature sensors [Sherwood et al., 2005;
Randel and Wu, 2006]. To facilitate direct comparison with
the earlier work, the analysis is restricted to the period 1958 to
2003 used by M08 and T09.

2.3. Error Models

[14] Error models were derived from a run of the Hadley
Centre’s atmospheric model HadAM3 [Pope et al., 2000]

forced with observed sea surface temperatures (SSTs) and
natural and anthropogenic forcings as used by Tett et al.
[2006]. The 4‐D atmospheric temperature field from this
integration was subsampled with the observed spatiotem-
poral pattern from the daytime radiosonde coverage. White
noise was then added to approximate the point nature in
both space and time of radiosonde measurements compared
to the grid box average values of the model output. Then
seasonally invariant break structures were added to
approximate nonclimatic influences. All error models tested
here assume step changes in bias, with no trend‐like bias
changes.
[15] Four distinct error models were constructed: (1) cur-

rent understanding, using breakpoints based upon existing
literature; (2) many small breaks, using a large number of
small breakpoints and a few large breakpoints; (3) removal of
signal, where breakpoints were deliberately biased so that
above the 150 hPa level they cancel stratospheric cooling
while those below cancel tropospheric warming, with a net
result of removing the deep layer signal; and (4) few large
breaks, using fewer breakpoints than other models, where
most of these are quite large.
[16] Further details are given in Appendix A of T09. The

four error models were designed to be as distinct from each
other as possible; each includes at least some of the error
characteristics that are likely to affect the real observations
including concurrent changes across countries or instrument
types. These constitute a small sample of a much larger
population of potential error models against which one
could benchmark system performance. Principal differences
between the error models relate to the prevalence, timing
and magnitude of the breaks, how well they are associated
with metadata events, and the tendency toward breaks of a
given sign. The white noise which was added to approxi-
mate measurement sampling effects is similar across the
four error models. It is important that the homogenization
algorithm is able to cope with error structures other than a
priori assumptions regarding the true underlying error
structure in case these subsequently prove unfounded. These
assumptions could include the prevalence, magnitude,
preferential sign bias, geographical coherence or other as-
pects of the bias structure. Creation of distinct error models
should avoid the otherwise insidious potential to overtune
homogenization algorithm performance toward a desired
outcome.
[17] The only difference from the data used by T09 is in

the time resolution. While T09 used seasonal data only, a
small subset of the present analysis uses data with monthly
or pentadal (5 day means) resolution. Pentads are the finest
resolution on which the raw climate model data run used
was archived. In the error models, this required randomly
assigning the break events to a given date within the stated
season to ensure a degree of uniformity in the temporal
distribution of breaks. This and the effects of the increased
number of data points had only a small impact on the
resulting raw large‐scale average trend estimates. The
pentad resolution model data were available substantially
before the equivalent resolution observational data. So it
was necessary to assume that if a month reported in the
observations then all pentads in that month reported. So
there is a very slight mismatch in pentad resolution sam-
pling between the error models and observations where
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this assumption is not valid, which will have negligible
impact.

3. Systematic Experimentation With Error
Models

[18] This section summarizes the results of systematic
experimentation since T09. Consideration is deliberately
limited to the four error models, where the answer is known
a priori. The principal aim is to ascertain whether there were
any methodological aspects overlooked in the analyses up to
and including T09 that may better constrain the uncertainty
in real‐world trends. Many of these experiments involve
mimicking the choices of other independent teams of ana-
lysts who promoted particular strengths of their respective
approaches compared to the HadAT methodology. T09
found that removal of signal was the only error model for
which the HadAT methodology could not capture the true
tropical daytime trend with its range of ensemble estimates,
so this issue is also addressed.
[19] The section aims to answer the following questions:
[20] 1. Is the homogenization system capable of encap-

sulating the true trend within its range of estimates if perfect
knowledge of breakpoint locations is given? (The answer is
yes: see section 3.1.)
[21] 2. Does the phasing of the breakpoint locations affect

system performance (yes) and can we reject as a plausible
error model the removal of signal error model which shows
a substantial clustering of the largest breaks? (Our conclu-
sion is no; see section 3.2.)

[22] 3. Does the temporal resolution of the input data affect
system performance? (We conclude yes; see section 3.3.)
[23] 4. Does removing apparently breakpoint‐impacted

neighbors before undertaking adjustments improve system
performance? (The answer is no; see section 3.4.)
[24] 5. Does applying a fundamentally different adjust-

ment algorithm improve system performance? (Our con-
clusion is yes, slightly; see section 3.5.)

3.1. System Performance With Perfect Knowledge
of Breakpoint Locations

[25] M08 and T09 underestimated the required shifts in
large area average trends, despite capturing the required
sign. It is important to ascertain whether this was a result of
inadequate adjustment, or of their incomplete break detec-
tion (<50%, although better for big breaks). The first addi-
tional test was to assess the adequacy of the adjustment step
in isolation. If the automated adjustment process cannot
capture the true trends, even with perfect knowledge of
break locations, it should be rejected. For radiosonde tem-
peratures, homogenization where breaks are known is better
than where breaks are unknown [e.g., Sherwood, 2007]. T09
undertook a similar experiment using the GUAN network of
161 stations, and found that for this sparser network, the true
trend was not consistently captured for the error models.
Given that the algorithm is neighbor‐based, this may simply
reflect the sparseness of the GUAN network. It should be
noted that a bias free GUAN would adequately capture
global and regional scale changes [McCarthy, 2008].

Figure 1. Tukey box plot [Cleveland, 1994] for tropical average TLT trends for 1979–2003 from a
10‐member “perfect metadata sensitivity” ensemble for each error model. The shaded region denotes the
interquartile solution range (with a horizontal line denoting the median value), and the whiskers denote
the data range beyond these bounds. Here and elsewhere, tropical averages have been derived by zonally
averaging and then cos(lat) weighting over the region 20°S–20°N. The resulting trends have been cal-
culated using a median of pairwise slopes estimation technique that is robust to outliers [Lanzante, 1996].
The thick horizontal lines are the trends in the HadAM3 data after imposition of the errors. The dashed
horizontal line is the trend in the HadAM3 data before imposition of the errors, and therefore represents
the target for homogenized trends.
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[26] By tagging all breakpoints through provision of
complete error model metadata to the automated system and
by tuning system parameters, one can force the automated
system to assign a break at all real breakpoints, specifying a
single break for multiple real breaks in quick succession and
few, if any, additional breaks. A 10‐member ensemble for
each error model was run with the breakpoint identification
parameters set to minimize the chances of finding any
breaks not associated with recorded metadata events. The
number of iterations and all system parameters associated
with the adjustment step were unconstrained.
[27] Results (Figure 1) show that if the system were able

to find all the real breaks, and only these breaks, then it
would be able to encompass the true trend in all error
models, although it is not within the interquartile range of
this small ensemble for removal of signal. The experiment
therefore confirms that the adjustment algorithm taken in
isolation is adequate. However, we caution against overin-
terpretation of this result. The reason for this is that in the
real world, there is imperfect a priori knowledge of break
locations, and the breakpoint identification and adjustment
steps are intertwined in the automated system.

3.2. Sensitivity to Breakpoint Phasing

[28] All four error models had a large number of biases
applied at the same time across countries or across com-
monly recorded metadata event types, such as the VIZ to
VIZ‐B instrument change (T09’s Appendix A). Such biases

are not randomly distributed in space and time. Available
metadata and previous analysis by multiple groups [Thorne
et al., 2005a; Sherwood et al., 2008; Haimberger et al.,
2008; Lanzante et al., 2003] strongly implies that some
biases with similar characteristics exist in the observational
data. However, because the available metadata are grossly
incomplete, it is impossible to accurately ascertain the extent
of spatiotemporal clustering of nonclimatic effects in the
real‐world observations. It is therefore of interest to deter-
mine to what extent the degree of clustering of such breaks
may inhibit system performance.
[29] Figure 2 shows that the distribution of breakpoint

frequency with time differs substantially between the four
error models; removal of signal has a greater clustering
(particularly of the system‐detectable breakpoints >0.5K;
see M08) than the other error models. This was not a design
feature of the error model, and may partially explain its
resistance to homogenization found by T09. To understand
the relative contributions of geographical and temporal
breakpoint clustering, two further versions of removal of
signal were created. In the first, breaks assigned within
6 seasons of valid (nonmissing) data points at the arbitrarily
chosen 300 hPa level at individual stations were averaged at
all levels and placed at the location of the largest 300 hPa
break. No homogenization procedure can be reasonably
expected to identify individual breaks which are very close
in time, and the automated system specifically assigns only
a single break in such cases. The second new version of

Figure 2. Temporal distribution of worldwide breaks added to the four error models used by T09. Black
denotes total breaks, orange denotes large breaks (>1K at three or more levels), red denotes medium
breaks (>0.5K at three or more levels), and blue denotes small breaks. Total break number differs by a
factor of 4 between the error models, reflecting the fundamental uncertainty in the real‐world break
structure and frequency.
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removal of signal had similar gross tropical vertical trend
profile characteristics, but with a completely new set of
breakpoint locations and profiles (Figure 3). Break locations
and timings were again derived from a random number
generator, under the same assumptions applied in the orig-
inal error model test. The new breaks were somewhat more
evenly distributed in time, with less clustering of medium
and large breaks.
[30] The 100‐member ensemble of the automated system

used by T09 was rerun on both these alternative versions of
removal of signal (Figure 4). Both ensembles on average
perform better than the original, although this may be partly
because their overall initial biases are slightly smaller. In
particular, the version with less overall breakpoint clustering
moves the bulk of the estimates much closer to the true trend

and the full spread of trend estimates encompasses the
“true” model trend. It is somewhat more consistent with the
other T09 error model results, but still more conservative.
[31] T09 could not place an upper bound on the observed

ensemble results because removal of signal did not capture
the true trend and could not be rejected. It is worth consid-
ering whether removal of signal can be unambiguously
rejected as a plausible error model due to the apparently
extreme nature of its breakpoint distribution. If so, T09 could
be reassessed to provide a bounded estimate. For a randomly
selected member of the ensemble used by T09, the system
captures the overall shape of the break locations, although it
substantially underestimates their frequency (Figure 5, top).
This similarity of overall breakpoint identification and real
structure is consistent across most ensemble members and all

Figure 3. Same as Figure 2 but for the original and alternative versions of removal of signal. The total
number of breaks applied is identical, but the distribution, particularly for the largest breaks, is sub-
stantially different.

Figure 4. Box‐whisker plot for removal of signal and the two sensitivity studies of amalgamating rapid‐
succession breaks and using an entirely new break structure (Figure 3). Results are for tropical TLT for
1979–2003 from T09’s 100‐member ensemble settings. Legend is as in Figure 1 except that any outliers
beyond 1.5 (3) interquartile ranges are shown by open (closed) symbols.
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error models (not shown). The same settings applied to the
observations yield little or no clustering. HadAT2, which
with its manual intervention identifies many more break-
points (see M08 for further discussion), exhibits even less
clustering. The available metadata exhibit some spikes that
may be related primarily to when the major metadata col-
lection efforts occurred (the early 1990s) rather than to any
real effect. However, Sherwood et al. [2008], who did not
use metadata in the breakpoint identification step, show a
degree of clustering similar to the original removal of signal
error model (their Figure 2). So, although there is at best
limited evidence for real‐world breakpoint clustering as
severe as that in the removal of signal error model, it cannot
entirely be ruled out.

3.3. Impacts of Using a Finer Temporal Resolution

[32] Many of the other radiosonde homogenization meth-
odologies that have been developed have used a finer tem-
poral resolution than the seasonal resolution in the manually
produced HadAT data set and T09. The RICH (Radiosonde
Innovation Composite Homogenisation) methodology con-
siders data at the individual observation level to both identify
and adjust for breakpoints [Haimberger et al., 2008]. IUK
(Iterative Universal Kriging) considers observation level data

in its homogenization step and monthly mean data in its
breakpoint identification step [Sherwood et al., 2008]. Both
exhibit a greater shift from the raw data than T09 or HadAT.
Both groups had claimed that this may constitute a relative
strength of their approach.
[33] A new 20‐member ensemble using “optimal” system

parameter settings from T09 (for those parameters for which
these could be ascertained; see Table 1) was therefore
applied to the original seasonal resolution data, and to ver-
sions of the error models and the observations at monthly
and pentad (5 day) resolution. The seasonal resolution en-
sembles are invariably shifted closer to the true trend than
the equivalent larger 100‐member seasonal ensembles use
by T09 (Figure 6; see also Figure 5 of T09). This reflects the
choice of more optimal parameter keyword settings in this
ensemble, which removes an artificial tail toward the raw
data used by T09: many experiments used by T09 would
have been too conservative when identifying breakpoints
and applying adjustments.
[34] Temporal resolution has a substantial impact on

performance. For each error model, the monthly resolution
ensemble generally performs best and contains the true
trend, although this is still not within the interquartile range
for removal of signal. For pentad resolution, the ensembles

Figure 5. Analysis of structure of real or suspected breaks. First panel shows the real break structure
from removal of signal (solid line) and the identified breaks (dashed line) from the first of the T09
“top seven” experiments. Note that the pattern matches but the absolute number of breaks (printed at
top left) is substantially different with T09’s experiment finding only a subset of the real breaks. Second
panel is the same experiment but applied to the observations. Third panel is the manually derived HadAT2
break structure. The fourth panel shows available metadata events in the IGRA data holding [Durre et al.,
2006] and based upon substantial efforts by Dian Seidel (nee Gaffen) in the early 1990s [Gaffen, 1993].
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incorporate the truth for each error model but, on average,
overestimate the required adjustment and exhibit much
larger variance.
[35] The iterative HadAT procedure is not compelled to

converge to any apparent minimum unbiased solution. So
potentially, it can migrate to unrealistic states before it is
halted. The error models have substantial value in ascer-
taining and quantifying the potential for such behavior.
Without them, it may have proved tempting to put dispro-
portionate weight on the pentad resolution results as that
ensemble gave apparently best agreement with climate
model expectations when applied to the observations. But

clearly, this would have yielded an unwarranted optimistic
assessment of the extent of model expectation‐observation
agreement as the error models consistently imply that the
system will have, on average, shifted the data too far. That is
to say there is a propensity to shift beyond the known true
solution in the error models.

3.4. Neighbor Selection Effects

[36] The automated system uses a composite weighted
average of neighboring stations for both breakpoint identi-
fication and adjustment steps (M08). To date, it has weighted
the neighbors by the expected correlation coefficient derived

Table 1. Apparently Optimal Settings in the Analysis Done by T09, Used in Fixed Configuration in Many of the Further Experiments
Herea

Parameter Range Given by T09 Value Used in Present Analyses

Max iteration 3, 6, or 9 9
Number of iterations of the breakpoint identification
and adjustment algorithm

Adjustment method Adaptive or nonadaptive Adaptive
Whether previously identified adjustments are recalculated
for all previously identified breaks with new neighbor
composites (adaptive) or not (nonadaptive) at each iteration.

Adjustment threshold [1,1], [5,8], [5,11], or [7,11] [1,1] or [5,8]
Number of additional tests a calculated break must pass to be
adjusted based upon the series behavior. Higher numbers
imply harder criteria. The first number is a threshold for the
average across all levels and the second that at least one
level must attain. See M08.

Adjustment period 5–20 or 40–55 seasons 5–20 seasons (scaled for monthly and pentad analyses)
The maximum window either side of the break used to derive
the adjustment.

aA complete listing of system parameters is given by Table B1 of T09. If not included above, then the range given by T09 is used here.

Figure 6. Analysis of tropical TLT trend sensitivity to input time resolution, 1979–2003. Based upon a
20‐member ensemble with system tunable settings used by T09 set to their optimal values where these
could be ascertained (Table 1). Legend is as in Figure 4.
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from reanalysis products over the post‐1979 era (during
which time reanalyses were constrained by assimilated sat-
ellite and radiosonde information). However, this explicitly
ignores any available information on the actual data quality
at the station level.
[37] As a first alternative, instead of using the expected

correlation between each neighbor and the candidate station
to weight the values, the neighbor average was calculated as
the winsorized mean (average within the interquartile range
of neighbor values at each time step) of the candidate
neighbors. This approach was applied solely to the system
settings that yielded the top 7 experiments identified by T09
at the seasonal timescale (Figure 7). In all cases the resulting
adjusted trends are biased toward zero trend, very substan-
tially so for some error models. Gaffen et al. [2000] found
very similar behavior in early assessments of the effects of
statistical techniques, with or without metadata, on tem-
perature trends at individual radiosonde stations, though
these efforts did not use neighbors. Subsequent analysis in
the development of the IUK system also yielded similar
conclusions [Sherwood, 2007]. Logically, the winsorized
mean would tend to be closer to zero at each time step and
therefore lead to adjustments (based on neighbor average
minus target station), that would on average bias the target
station record toward zero trend. However, explicit analysis
of the issue was not undertaken.
[38] The RICH data set uses only apparently homoge-

neous neighbor segments to adjust each candidate station at
suspected breakpoints [Haimberger et al., 2008]. Although
there are two system parameters which can exclude the use
of neighbors from the same country and/or with similar
metadata records, employing these choices does not guar-
antee a set of homogeneous neighbors around each identi-
fied breakpoint. Ignoring stations afflicted with apparent

breaks within the adjustment period in the adjustment step
would reduce the chances of simply exporting error
structure from these inhomogeneous series through their
impact upon the neighbor composite across the network
and retaining some systematic mean bias. However, use of
adaptive adjustments which are recalculated each iteration
based upon the modified neighbor series may mitigate
against this. When applying the automated system to
humidity data, where data issues are even more substantial,
to create HadTH [McCarthy et al., 2009] the use of a first‐
guess adjustment prior to data input to the system was
required to handle this issue.
[39] Two variations on blacklisting were tested: ignoring

neighbor data around breaks found in all iterations; and
around those breaks found only in the current iteration. In
both cases neighbors were recalculated after masking out
data within the specified adjustment period used (which is a
system tunable parameter) each side of the identified breaks
before proceeding to calculate the adjustment factors. The
more aggressive blacklisting causes many stations to have
too few neighbors when recalculated to form a neighbor
average which meant that no neighbor estimate existed
around the identified breakpoints and let through an unac-
ceptably high number of breaks unadjusted. This is a sub-
stantial issue in data sparse regions (including much of the
tropics) and for experiments where many breaks are found.
RICH gets around this issue by expanding the search radius
until a sufficient number of apparently homogeneous
neighbors are identified. However, with increasing distance
the degree of correspondence to the candidate station being
adjusted will, on average, decrease. Such an approach was
not pursued as it would have required a substantial system
rewrite.

Figure 7. Sensitivity of tropical TLT trend, 1979–2003, to using winsorized means as an alternative
neighbor technique. Results are from the seven best experiment configurations identified by T09.
Legend is as in Figure 4.
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[40] For the less aggressive blacklisting these issues were
much less obviously pervasive. It was applied to the monthly
error model data using the same 20 experimental setups as
was used in section 3.3 (Figure 8). The ensembles produced
exhibit a larger spread of solutions and are on average biased
toward zero compared to the default approach. The impact is
largest in data sparse regions, implying that the masking out
of neighbors is still the fundamental issue, and that bad
neighbors are better than no neighbors: at least the former
allow some estimate of an adjustment factor rather than
simply letting the data through in raw form without any
adjustment at all. Without a complete adjustment step
rewrite, therefore, blacklisting does more harm than good.

3.5. Sensitivity to Fundamental Adjustment Approach

[41] In section 3.1 it was shown that in the presence of
perfect knowledge regarding breakpoint locations, the auto-
mated system could adequately retrieve the true trends in all
error models. In the real‐world situation, where knowledge
of breakpoint location is far from perfect, it is of interest to
consider whether an alternative adjustment algorithm may
perform better. The Iterative Universal Kriging (IUK) system
explicitly separates the breakpoint identification and adjust-
ment steps [Sherwood et al., 2008]. It was therefore possible
to feed the IUK adjustment step with the breakpoints iden-
tified by the automated system after its final iteration. This
enables a clean assessment of whether an alternative, pub-
lished, adjustment methodology offers any advantages.
Certain performance indicators of the IUK system on the
error models not covered here are detailed by Sherwood et al.
[2008, section 4]. Importantly, like the automated system,
IUK recovered the true trend when all break locations were
specified (“perfect metadata,” section 3.1) for all four error
models [Sherwood et al., 2008].

[42] The IUK adjustment step involves fitting the entire
global data set, with missing values imputed, to a regres-
sion model that includes leading modes of variability, the
trend, breakpoints and noise terms [Sherwood et al., 2008;
Sherwood, 2007]. It iterates to a maximum likelihood
unbiased estimate given the data availability, characteristics,
and the specified break timing and locations. Therefore,
unlike in the automated HadAT system, convergence is an
integral component of IUK.
[43] IUK was developed to be applied at the individual

observation level. Although it is trivial to apply IUK to
seasonal averages, it is possible that much of its power may
be lost in coarsening up the temporal resolution to the sea-
sonal level. The selection of time resolution needs to be
balanced against the substantially reduced computational
overhead necessary to produce an ensemble of realizations.
[44] In addition to the documented IUK, a variant was

developed in which the trend basis function in the regression
was allowed to take a polynomial form (up to fifth order)
rather than a linear form if the data supported this. True
climate evolution may well be better described by other than
simple linear functions [Seidel and Lanzante, 2004; Thorne
et al., 2005a; Karl et al., 2006]. Allowing the temporal
evolution term to take an optimal form based upon the data
may help in retrieving the true trend so long as there is
sufficient information in the data to specify the form of the
variation and distinguish it from the bias pattern.
[45] The break locations output from each of the 100‐

member ensembles used by T09 for the four error models
and the observational data were used as input to the IUK
system. In the observations (but not the error models) four
of the ensemble members used by T09 were found to con-
tain too few breaks for the IUK system to run and so these
ensemble members were not included for either error models

Figure 8. Sensitivity of tropical TLT trend, 1979–2003, to blacklisting apparently inhomogeneous seg-
ments identified in the current iteration prior to the adjustment step. Based upon the 20‐member monthly
ensemble (Figure 6). Legend is as in Figure 1.
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or observations. The published IUK methodology consis-
tently outperforms T09 across the four error models, moving
the estimated trend slightly closer to the truth (Figure 9).
However, it does not move the ensembles all the way to the
truth and as shown by T09, IUK‐based adjustment does not
encompass the truth for Removal of Signal. Results allowing
a polynomial time series basis function are much more mixed
than when IUK assumes an underlying linear trend function.
In current understanding it does better, for many small
breaks it substantially overshoots and for the remaining error
models it shows no discernible difference from the standard
version. This implies a critical dependence with this poly-
nomial trend basis function upon the underlying error
structure that is in the real world unknown. The spread in
solutions also tends to be greater than either the original
adjustment approach or the IUK default approach.

4. Combining Estimates to Produce a Final
Estimate of Real‐World Trends

[46] In the study by T09, the use of the error model results
was limited to making qualitative logical inferences about
real‐world trends when the same ensemble of settings was
applied to the real‐world observations. From the analysis by
T09 and the suite of analyses summarized in section 3, there
now exists an expanded set of estimates showing how the
system will behave when applied to simulated data from the
four error models. The next logical step is to attempt to
combine this information to produce a quantitative estimate
of the real‐world trends predicated upon the HadAT meth-
odological framework when the same settings are applied to
the real‐world data. To make the problem tractable, it was
decided to limit further consideration to those ensembles
where the behavior is broadly consistent across all error
models and the skill in trend retrieval at least comparable to

T09’s ensemble. This yields: T09 (100 members), the three
20‐member time scale experiment ensembles (section 3.3)
and the default IUK adjustment (96 members, section 3.5).
[47] For each ensemble, the analysis provides a set of

adjusted trends for each error model and for the real world.
There are also unadjusted trends for each error model and
for the real world, and crucially for the error models the true
trend is also known. This enables an assessment of absolute
performance not afforded in the real world where the solu-
tion is unknown. Figure 10 shows all these values for the
tropical TLT trend over 1979–2003. Each ensemble/error‐
model combination has both a systematic and a random error
component: the random error is shown by the width of the
ensemble of adjusted trends, the systematic error by the
difference between the mean of the adjusted ensemble and
the true trend. To illustrate these distributions quantitatively
it is useful to estimate a PDF from each ensemble, by con-
volving each ensemble value with a smoothing function (a
Gaussian with standard deviation 0.05K/decade was used
here). These PDFs are also shown in Figure 10. It is assumed
that the small ensembles are an unbiased sample of the
population that would be created from running a much larger
ensemble. Given that system parameter settings were derived
randomly for those parameters which were permitted to be
perturbed within each ensemble this seems reasonable.
[48] It is clear from Figure 10 that, for example, removal

of signal generally results in a systematic error (adjustments
are consistently too small), while many small breaks has
little systematic error. Also adjustment at the pentad time
scale produces a much larger random error than adjustment
at the monthly timescale. These effects in the error models
need to be accounted for in the analysis of the real world
observations, so (for TLT trend over 1979–2003), the real
world adjusted trends should be systematically adjusted
upwards to account for the expected underprediction in the

Figure 9. Assessment of sensitivity of tropical TLT trend, 1979–2003, to using the IUK adjustment step
rather than our system’s adjustment step. Results are from T09’s 100‐member experiment except four
ensemble members that could not be run on the observations. Legend is as in Figure 4.
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removal of signal case, and the relatively precise monthly
ensemble should have more influence than the more diffuse
pentad ensemble. To account for these effects, a conditional
probability framework was used to estimate the true solution
for the real observations.
[49] Suppose that the removal of signal error model were

a good representation of the real world. In this case, the real
world adjusted trends would need to be scaled up to remove
the systematic underprediction. For each ensemble member,
the scaling factor needed to convert the adjusted trend to the
true trend in the removal of signal error model is known.
Scaling the real world trend for the same ensemble member
by the same factor will remove this systematic error in the
real world adjusted trends if the real world error is compa-
rable to that in the error model.

Os;j ¼ Ob þ Oa;j � Ob

� �� R� Pb

Pa;j � Pb

� �
ð1Þ

where Os,j is the scaled, adjusted observational trend for
ensemble member j, Oa,j the adjusted observational trend for
ensemble member j before the scaling, Ob the raw observa-
tional trend, R the true trend given the error model, Pa,j the

adjusted pseudo‐observations trend for ensemble member j
given the error model, and Pb the raw pseudo‐observational
trend given the error model.
[50] Repeating this scaling for each ensemble member for

each of the four error models provides the scaled ensembles
shown as the IUK through Seasonal rows of Figure 11. Each
of these ensembles is scaled to have no expected systematic
error under the condition that the selected error model is a
good approximation of reality.
[51] For each error model, each of the five ensembles is an

estimate of the same trend, so the likely values of that trend
are those that have a high probability in all ensembles. If the
ensemble estimates were independent of one another, then
the combined probability would be the product of the
ensemble PDFs. However, as the ensembles are not inde-
pendent, this would produce combined PDFs that were too
narrow, as the same constraint would be used more than
once. Formal methods for combining the ensembles there-
fore need information on the extent to which the ensembles
are independent, and it is not at all obvious how to estimate
this. So a simpler approach has been used: a combined PDF
has been generated by taking the minimum, at each point, of
all of the ensemble PDFs. This uses the unique information

Figure 10. TLT trends 1979–2003. Each plot shows the observed trend including the effects of inhomo-
geneities (blue), an ensemble of trends after adjustment to remove the inhomogeneities (black rug plot),
and a PDF estimate made by smoothing the adjusted ensemble with a Gaussian kernel (black curve). For
the four error models the true trend (in the absence of inhomogeneities) is also known (and shown in red).
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Figure 11. Tropical TLT trends 1979–2003. For each ensemble, the real‐world adjusted trends have
been scaled by the known errors in each error model, and the resulting ensemble of trends are shown
as a rug plot and as a PDF generated by smoothing the ensemble with a Gaussian kernel density estimator.
The “All ensembles” row shows the PDFs from the combined ensemble estimates, and the top plot is the
mean over the four error models.
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in each ensemble PDF of where the trend probabilities are
particularly low, but does not cause narrowing of the com-
bined PDF in regions where multiple ensembles give similar
probabilities. The “All ensembles” row in Figure 11 shows
this combined probability for each error model.
[52] On the assumption that all of the four error models

are equally plausible, it is possible to make a final PDF as a
weighted mean of the four error model PDFs (“All error
models” graph in Figure 11). The virtue of this approach is
that the final PDF makes use of all the ensemble members,
and it is possible to see how plausible changes to the system
would influence the final PDF. The precision of the PDFs is
limited by the small number of members in each ensemble,
but in most cases this is not a severe problem. It is clear
from Figure 11 that the tails of some ensemble PDFs are

undersampled, but it is also clear that adding more ensemble
members would be most unlikely to have a large effect on
the final PDF. This is true for the tropical lower troposphere
trends shown in Figure 11, and for most other regions and
heights, but the limited number of ensemble members does
become a problem for some stratospheric series (at 50 hPa)
where the ensemble PDFs, as estimated from the limited
number of ensemble members, overlap insufficiently to
allow estimation of a combined PDF. In these cases, no
estimate has been made for the combined PDF.
[53] This approach is relatively simple, and illustrates how

the uncertainties over choice of error model, process for
making the adjustments, and limited ensemble sizes, all
contribute to the total uncertainty. But the weighting (prior
probability) of the error models is necessarily arbitrary, as
are the details of the process for combining ensembles;
alternative statistical methods are possible, and would give
PDFs that differ in their details. So while these results are
likely to be a reasonable indicator of the total uncertainty,
the ranges quoted should be treated as approximations rather
than precise results.

5. A Reassessment of the Observational Trend
Estimates

[54] The PDFs derived in section 4 are now used to provide
an analysis of the likely real‐world trend behavior. Consis-
tency with preexisting estimates is also assessed (akin to
Mears et al. [2011]). Over the period 1979–2003, the con-
ditional probability scaled observational estimates of tropical
lower tropospheric (LT) temperature trends marginally agree
with model amplification behavior [Santer et al., 2005]
(Figure 12, left). In addition, the 5–95% range comfortably
includes both MSU derived estimates for this layer [Christy
et al., 2003; Mears and Wentz, 2009b]. The estimated trend
of the middle troposphere layer (TMT) is cool biased relative
to the available MSU estimates, as is the trend of the lower
stratosphere (TLS). Over the full period of record the TLT
equivalent measure is in very good agreement with the model
expectations (Figure 12, right). Furthermore, the TMT esti-
mate now yields a strong probability of warming of this layer
and TLS exhibits less stratospheric cooling.
[55] Tropical TLT trend estimates are relatively robust to

choices of inclusion/exclusion of error models and/or en-
sembles in the conditional probability calculation for both the
satellite era (Table 2 and Figures 10 and 11) and full period
(Table 3) trends. This provides a degree of confidence in the
chosen approach and in the results. Any sensitivity is driven
almost entirely by the inclusion/exclusion of ensembles rather

Figure 12. MSU equivalent tropical trend estimates for the
satellite era (1979–2003) and the full period (1958–2003).
Whiskers show 5–95% range and box interquartile range
with median denoted by a vertical bar. Also shown are Had-
CRUT3 surface trends (asterisks) and model expectations
for TLT (red) calculated by multiplying this surface value
by the model amplification factor from the model runs used
by Santer et al. [2005]. Use of either of the two additional
commonly cited surface data sets would make relatively
small changes [Santer et al., 2005]. It is this amplification
factor and not the absolute trend that is strongly constrained
in climate models [Santer et al., 2005]. Also shown in
Figure 12 (left) are estimates from UAH (pluses), RSS
(diamonds) and UMd (triangle) for the same period.

Table 2. Sensitivity of MSU TLT Equivalent Trends (K/decade) in the Tropics, 20°N–20°S, to Choices of Input to the Conditional
Probability Assessment Over 1979–2003a

All Not Current Understanding Not Many Small Breaks Not Removal of Signal Not Few Large Breaks

All −0.01–0.19 −0.02–0.18 −0.01–0.20 −0.03–0.19 −0.01–0.19
Not Seasonal −0.02–0.18 −0.02–0.18 −0.02–0.18 −0.02–0.18 −0.02–0.18
Not Monthly −0.01–0.20 −0.01–0.20 −0.01–0.20 −0.01–0.20 −0.01–0.20
Not Pentad −0.03–0.19 −0.03–0.19 −0.03–0.19 −0.03–0.19 −0.03–0.19
Not T09 −0.01–0.19 −0.01–0.19 −0.01–0.19 −0.01–0.19 −0.01–0.19
Not IUK 0.00–0.25 0.00–0.25 0.00–0.25 0.00–0.25 0.00–0.25

aColumns denote choices of error models and rows choices of ensembles for exclusion.
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than error models. In particular the two ensembles that
considered higher frequency data appear to differ somewhat
from those that considered seasonal resolution data. At least
for radiosondes under the HadAT framework, it is more
important to adequately assess methodological uncertainty
by creating multiple systematic experiments than it is to
benchmark against a larger suite of test cases.
[56] Satellite measures are broad vertical integrals that can

hide interesting features. A consideration of data on indi-
vidual levels (Figure 13) shows that the uncertainty estimates
from the present analysis do not overlap with model expecta-
tions (under a deliberately conservative assessment; see
section 6) for the satellite era at any level beyond 300 hPa
and only marginally at any level beneath this. Uncertainties
are sufficiently large, however, that the estimates are con-
sistent with a local upper tropospheric maximum or an
isothermal profile or even a cooling with height through the
troposphere. The uncertainty estimates are consistent with
all existing data sets up to 400 hPa. Above this several data
sets, particularly RAOBCORE, are in disagreement with the
conditional probability estimates which are consistently cool
biased relative to these preexisting data sets. In contrast to

the satellite era, the full period trends are consistent with
model expectations up to 150 hPa, the tropical tropopause
region. They are also much more consistent with the suite of
preexisting radiosonde‐based estimates throughout the trop-
ical column. There is stronger support for the existence of an
upper‐tropospheric maximum as ubiquitously predicted by
climate models over this period although the uncertainty
estimates are too large to definitively conclude this. Previ-
ously published estimates also exhibit good agreement with
model expectations throughout the column.
[57] Finally, brief analysis of global, tropical and extra-

tropical hemispheric trend estimates for the full period of
record and the presatellite and postsatellite eras was under-
taken (Figure 14). In the presatellite era the global tropo-
sphere exhibited very little, if any, warming. This was due to
a combination of significant Northern Hemispheric tropo-
spheric cooling at all levels up to 250 hPa, and weaker
Tropical and Southern Hemispheric warming that was not
statistically distinguishable from zero trend at most levels.
During the satellite era the global troposphere warmed. In
contrast to the earlier period this was primarily due to sig-
nificant Northern Hemisphere warming while the Southern

Table 3. Sensitivity of MSU TLT Equivalent Trends (K/decade) in the Tropics, 20°N–20°S, to Choices of Input to the Conditional
Probability Assessment for the Full Period of the Radiosonde Record Considered, 1958–2003

All Not Current Understanding Not Many Small Breaks Not Removal of Signal Not Few Large Breaks

All 0.05–0.23 0.05–0.23 0.05–0.24 0.02–0.22 0.05–0.23
Not Seasonal 0.05–0.23 0.05–0.23 0.05–0.23 0.05–0.23 0.05–0.23
Not Monthly 0.05–0.24 0.05–0.24 0.05–0.24 0.05–0.24 0.05–0.24
Not Pentad 0.02–0.22 0.02–0.22 0.02–0.22 0.02–0.22 0.02–0.22
Not T09 0.05–0.23 0.05–0.23 0.05–0.23 0.05–0.23 0.05–0.23
Not IUK 0.05–0.24 0.05–0.24 0.05–0.24 0.05–0.24 0.05–0.24

Figure 13. Same as Figure 12 but for individual pressure levels. No model expectation is appended for
50 hPa which is purely stratospheric. A number of other radiosonde estimates are also shown: RICH
(pluses), RAOBCORE1.4 (diamonds), HadAT2 (triangles), and IUK (squares).
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Hemisphere exhibited essentially no trend and the tropics
slight warming. Full period trends are more similar to sat-
ellite era trends than presatellite era trends in the tropics,
Northern Hemispheric extratropics and for the globe. In the
Southern Hemisphere the converse is true. In all the periods
and regions there is stratospheric cooling which appears to
have accelerated over the satellite era.
[58] The estimates for the full period are not, as could be

naively assumed, a linear combination of the two subperiods
trends at any level. The true climate evolution could equally
be explained by a number of other models including step
like changes or slope plus steps [Seidel and Lanzante, 2004]
in both the troposphere and the stratosphere. In part this
could be because many anthropogenic and in particular
natural forcings are nonlinear, cyclical, or episodic, but also
within the troposphere it reflects the role of natural climate
variability. Trends from the other data sets considered in
Figure 13 support these general findings (not shown for
clarity in Figure 14).

6. Discussion

[59] We have outlined a possible approach for better
estimating the true behavior of atmospheric temperature
over the satellite and radiosonde eras, and for quantifying
the inevitable uncertainty in such estimates. Implementation
and testing of this approach has yielded a number of useful
lessons. First, data set construction must be automated to
allow replicability and the fast construction of estimates.
Second, it must be modularized so as to allow systematic
variation of as many internal methodological choices and
external input choices as is feasible. Third, ensembles of

data set realizations are required. To make sense of these
ensembles, realistic error models are required that mimic
likely real‐world sampling and atmospheric behavior, and
also contain plausible information regarding nonclimatic
data issues. Error models should be as distinct as possible, to
avoid biasing results to particular preconceived notions on
real‐world error structure. They provide an important and
unique opportunity to understand system performance and
limitations through random and systematic experimentation.
Finally, estimates of trends in homogenized real‐world data
need to be interpreted in light of the results of applying the
same homogenization criteria to data generated by the error
models.
[60] The analysis concentrated on 1979 to 2003 for

traceability to earlier analyses, and focused on the tropical
troposphere because of continued contention as to whether
the observations since the start of MSU satellite observa-
tions are in agreement with the strongly constrained climate
model amplification behavior [Douglass et al., 2008; Santer
et al., 2005, 2008; Klotzbach et al., 2009]. Several of the
sets of ensembles that were produced by experimentation
with the system yielded comparable behavior across all the
four error models against which they were being bench-
marked. The results from these ensembles were combined
under a conditional probability framework to produce a final
two‐tailed 90% C.I. estimate of real‐world tropical lower
tropospheric trends of −0.01K/decade to 0.19K/decade.
This result is robust to reasonable inclusion/exclusion of
ensembles and/or error models from the conditional prob-
ability calculation. For individual pressure levels the
uncertainties are larger and the overall agreement with
model expectations at some levels is poor, with statistically

Figure 14. Analysis of trend estimates returned from the conditional probability estimation, by region
(Globe, Northern Hemisphere (NH) extratropics (20°N–70°N), tropics, Southern Hemisphere (SH) extra-
tropics (20°S–70°S)) and period (black, 1958–2003; orange, 1979–2003; and green, 1958–1978) for
radiosonde levels.
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significant disagreements occurring at several levels, par-
ticularly in the upper troposphere, over the satellite era.
Trends over the full period of radiosonde records are in
statistical agreement with model expectations throughout
the tropical troposphere.
[61] The potential residual disparity between the recon-

structed tropical tropospheric trends and model expectations
over the satellite era could have several explanations. These
potential explanations, which are not mutually exclusive, are
briefly discussed below.
[62] Residual discrepancies may simply reflect residual

biases in the HadAT data, as other data sets have been
shown to be closer to model expectations in this region
[Thorne, 2008, Figure 13]. Indeed, for the current uncer-
tainty analysis to be comprehensive and unbiased would
require rejection of several existing satellite and radiosonde
data sets as plausible, at least for some layers/levels
(Figure 13). Several of these data sets (such as RICH) are
much closer to the model based expectations. Although data
sets that lie outside the estimates produced here may well be
biased, this cannot be definitively asserted from the present
analysis. The most likely reasons that the current analysis
may not capture the full uncertainty range are (1) that the
four error models do not between them adequately capture
the error characteristics present in the real world or (2) that
the ensemble sizes considered are insufficient. The most
obvious potential issue with the error models is that they
all assume that nonclimatic influences are all step like
changes. Although step‐like changes are likely to be the
dominant breakpoint type, the presence of more trend‐like
breakpoints, such as seen at the surface [Menne et al.,

2009], cannot be ruled out. Figures 10 and 11 show that
in many cases the ensembles are not providing a mean-
ingful constraint. While larger ensemble sizes would be
useful, additional (and structurally distinct) error models
are probably more important.
[63] Another relatively uncontroversial explanation would

be that end‐point effects are substantial for the satellite era.
Thorne et al. [2007] showed that choice of 1979 as a start
date was a distinct outlier for all 21 year amplification
estimates in both satellite and radiosonde records including
all similar length periods in the full radiosonde record. So a
1979 start date may precondition any assessment toward
finding a disparity between the observations and model
expectations.
[64] The tropical tropospheric trends are likely primarily

driven by SSTs in the warmest convecting regions of tropical
oceans rather than by combined land surface air temperatures
and SSTs [Santer et al., 2008]. Land has been warming faster
than oceans in the satellite era globally and in the tropics
[Brohan et al., 2006] so the assessment in section 5 is
deliberately conservative by choosing use of a combined land
and SST data set to constrain model expectations by if this is
the case. To assess the potential implications of our surface
constraint choice and uncertainty therein, recourse is made to
the recently upgraded Hadley Centre SST records [Kennedy
et al., 2011a, 2011b]. Rather than being a single estimate
this consists of an equiprobable solution set of 100 members
and spans similar uncertainty in SSTs, but using a distinct
approach from that undertaken here. This allows an assess-
ment of sensitivity to the uncertainty in SST trends in addition
to the choice of SST or combined SST and land records

Figure 15. Same as Figure 12 but for TLT only and assessing sensitivity to choice of surface constraint.
Figures 12 and 13 used HadCRUT3 (red symbol and whisker), which has only a single estimate. The blue
diamonds and symbol denote 5th, 95th, and median estimators from HadSST3 [Kennedy et al., 2011a,
2011b], and the three blue whiskers above denote the scaled model response estimates of the observed
TLT response that correspond to each. The black whisker is the conditional probability estimate from the
present analysis and the two black symbols existing MSU data set estimates (pluses, UAH; diamonds,
RSS).
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(Figure 15). Use of an SST constraint and uncertainty in the
SST trend could easily account for the apparent discrepancy
in the satellite era while maintaining consistency in the full
radiosonde era if the tropical mean lapse rate is indeed set by
the tropical mean SSTs.
[65] The vertical structure of trends over the satellite era,

with a relative minimum at around 500 hPa exists in most, if
not all, existing radiosonde records and should not be hastily
discounted. The 500 hPa level is near the triple point of
water and the break between shallow and deep convection in
the tropics. There may have been systematic changes related
to exchange of heat near the freezing level or the relative
frequency of deep vis‐à‐vis shallow convection that would
impart a vertically differentiated temperature trend structure.
Diagnosis would require analysis of humidity, cloud and
radiation data records that are in poorer shape than the
temperature record in this region. There could also be a
hitherto neglected or poorly diagnosed climate forcing that
can impart this structure. Most logically this would be an
aerosol forcing that strongly absorbed radiation substantially
in the midtroposphere (and hence warmed it) early in the
satellite era and has since rapidly diminished. This would
impart a vertically differentiated structure akin to that seen
in multiple radiosonde records within the tropics.
[66] Finally, all models may be missing some funda-

mental climate process such as a nonlinear response to
forcing. As discussed by Santer et al. [2005, 2008] it is not
clear what this could be or why models and observations
agree on short timescales but potentially differ on long
time scales, given the same fundamental physical pro-
cesses. There may be natural processes that modulate
behavior on decadal timescales that are not captured by
any climate models. But with highly uncertain observations
it remains most likely that residual observational biases
underlie the disagreements with the models. However, if
the models lack a basic process, then it urgently needs to
be understood and incorporated.
[67] Clearly, these explanations are not mutually exclu-

sive. Equally clearly, the present analysis cannot conclu-
sively inform on these explanations and further research is
warranted to elucidate satellite era trends. But it should be
stressed that the good agreement between model expecta-
tions and our observed analysis over the full 45 year
radiosonde record all the way up to the tropical tropopause
provides a strong degree of confidence in overall climate
model behavior in the tropical troposphere on the longest
time scales. This is also seen in the other radiosonde data
sets and therefore likely to be real.

7. Conclusions

[68] A comprehensive analysis of the uncertainty in his-
torical radiosonde records has yielded trend uncertainties of
the same order of magnitude as the trends themselves. It is
highly unlikely that these uncertainties can be unambigu-
ously reduced, at least using the neighbor‐based HadAT
approach or variants thereof. It remains unclear whether
observed tropical tropospheric behavior is consistent with
basic theory and the tightly constrained expectations of
current climate models. Over the full period of radiosonde
record, the estimates produced herein are in statistical
agreement with model expectations all the way up to the

tropical tropopause. Over the shorter satellite era, a dis-
crepancy remains, particularly in the upper troposphere.
Potential explanations range from the relatively uncontro-
versial involving residual observational errors (either at the
surface or aloft), or statistical end‐point effects, to more far‐
reaching reasons involving physical processes or forcings
missing from some (known to be the case) or all climate
models. The present analysis cannot provide definitive
conclusions in this regard. However, the high degree of
agreement over the 45 year radiosonde record provides a
strong degree of confidence in overall climate model
behavior in the tropics on the longest time scales.
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