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SUMMARY

The axon initial segment (AIS) is critical for the initia-
tion and propagation of action potentials. Assembly
of the AIS requires interactions between scaffolding
molecules and voltage-gated sodium channels, but
the molecular mechanisms that stabilize the AIS are
poorly understood. The neuronal isoform of Neuro-
fascin, Nfasc186, clusters voltage-gated sodium
channels at nodes of Ranvier in myelinated nerves:
here, we investigate its role in AIS assembly and
stabilization. Inactivation of the Nfasc gene in cere-
bellar Purkinje cells of adult mice causes rapid loss
of Nfasc186 from the AIS but not from nodes of Ranv-
ier. This causes AIS disintegration, impairment of
motor learning and the abolition of the spontaneous
tonic discharge typical of Purkinje cells. Neverthe-
less, action potentials with a modified waveform
can still be evoked and basic motor abilities remain
intact. We propose that Nfasc186 optimizes commu-
nication between mature neurons by anchoring the
key elements of the adult AIS complex.

INTRODUCTION

Initiation of action potentials is fundamental to signaling in verte-

brate nervous systems. In mammalian neurons, the site of initia-

tion of the action potential is believed to be the axon initial

segment (AIS), a specialized region located between the axon

hillock and the myelin sheath in myelinated axons (Palay et al.,

1968). Hence, the properties of the AIS are likely to determine

how a neuron responds to excitatory and inhibitory synaptic

inputs. Recent experiments suggest that the composition and

topographical organization of the initial segment are dynamically

and precisely organized (Colbert and Pan, 2002; Fleidervish

et al., 2010; Grubb and Burrone, 2010a; Hu et al., 2009; Kole

et al., 2008; Kuba et al., 2010). The relatively low threshold for

initiation of action potentials at the AIS is believed to rely on

the high density and specialized gating properties of voltage-
gated sodium channels (Nav). Clustering of these sodium chan-

nels during development depends on the correct targeting of

AnkyrinG to the AIS (Hedstrom et al., 2008; Zhou et al., 1998).

However, the molecular mechanisms that maintain an appro-

priate configuration of the AIS in adult neurons in vivo are poorly

understood.

In addition to Nav channels and AnkyrinG, the AIS contains

a high density of proteins also found in nodes of Ranvier. These

include voltage-gated potassium channels (Kv) (Clark et al.,

2009), the scaffolding protein bIV-Spectrin and the cell-adhesion

molecules Neurofascin186 (Nfasc186) and neuron-glia related

cell-adhesion molecule (NrCAM) (Rasband, 2010). In contrast

to nodes of Ranvier, assembly of these molecules at the axon

initial segment does not require glial derived cues (Dzhashiashvili

et al., 2007; Rasband, 2010). Moreover, although once consid-

ered a stable neuronal compartment, recent studies have shown

that the AIS can change its position in an activity-dependent

manner (Grubb and Burrone, 2010a, 2010b; Kuba et al., 2010).

It has also become increasingly clear that the molecular compo-

sition of the AIS varies between different cell-types (Lorincz and

Nusser, 2008) and within its distal and proximal compartments

(Hu et al., 2009; Van Wart et al., 2007). This heterogeneity may

contribute to the specificity with which neurons initiate and

shape action potentials (Nusser, 2009).

Despite its probable importance, our understanding of the

molecular mechanisms of assembly, maintenance and plasticity

of the AIS is still limited. AnkyrinG has been proposed as the

master organizer of the AIS (Dzhashiashvili et al., 2007; Sobotzik

et al., 2009). During development this scaffold protein appears to

be targeted to the domain earlier than other proteins (Jenkins

and Bennett, 2001), where it is believed to bind conservedmotifs

in Nav channels (Garrido et al., 2003; Lemaillet et al., 2003; Pan

et al., 2006), sodium channel b1 subunits in a phosphotyro-

sine-dependent manner (Malhotra et al., 2002), Kv channels

(Pan et al., 2006; Rasmussen et al., 2007), Neurofascin and

NrCAM (Boiko et al., 2007; Davis and Bennett, 1994; Garver

et al., 1997; Zhang and Bennett, 1998), and bIV-Spectrin (Yang

et al., 2007). Further support for this view comes from the failure

of the Purkinje cell AIS to assemble in mice that lack cerebellar

AnkyrinG during development (Jenkins and Bennett, 2001;

Zhou et al., 1998). Knockdown studies also show that AnkyrinG

is required for assembly and maintenance of the AIS molecular
Neuron 69, 945–956, March 10, 2011 ª2011 Elsevier Inc. 945
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complex in cultured hippocampal neurons (Hedstrom et al.,

2007, 2008). Deletion of the Ankyrin-interactor bIV-Spectrin

leads to redistribution of AIS proteins but does not abolish the

AIS (Lacas-Gervais et al., 2004; Yang et al., 2004). Knocking

down Nav channels also disrupts the AIS molecular complex in

cultured spinal motor neurons (Xu and Shrager, 2005), but not

in other types of neuron (Hedstrom et al., 2007).

It is not known if distinct molecular mechanisms are required

for stable maintenance of the AIS in vivo following maturation

of the nervous system by comparison with those involved in

assembly of the AIS during development. Indeed, the role of

both Neurofascin and NrCAM at the AIS is still unclear. In

contrast to its pioneer role in node of Ranvier formation in the

PNS and CNS (Dzhashiashvili et al., 2007; Eshed et al., 2005;

Feinberg et al., 2010; Koticha et al., 2006; Sherman et al.,

2005; Zonta et al., 2008), Nfasc186 appears to be dependent

upon AnkyrinG binding for its localization to the AIS through

a FIGQY motif in its cytoplasmic domain (Davis and Bennett,

1994; Dzhashiashvili et al., 2007; Lemaillet et al., 2003). Further,

RNAi knockdown of NrCAM and Nfasc186 has suggested that

they are not required for the assembly of the AIS in cultured

hippocampal neurons, but rather that Nfasc186 has a role in tar-

geting the extracellular matrix (ECM) protein Brevican (Hedstrom

et al., 2007). GABAergic innervation by basket cell axons to the

Purkinje cell AIS, known as pinceau synapses, also appears to

be directed by Nfasc186, through a mechanism that in turn

depends on AnkyrinG (Ango et al., 2004).

We have used an in vivo approach to ask if Nfasc186 has an

active role in AIS structure and function. Our study shows that

Nfasc186 is not required for the assembly of the AIS during

development, although it is required to target NrCAM. In con-

trast, using an inducible conditional strategy to ablate Neurofas-

cin biosynthesis in adult neurons, we show that loss of Nfasc186

causes breakdown of the AIS complex and impairment of normal

action potential initiation in Purkinje cells. Surprisingly, Nfasc186

is much more stable in the nodal complex, and nodes of Ranvier

are much less susceptible to disintegration. This has allowed us

to study the functional consequences of AIS disruption in the

presence of intact nodes of Ranvier in vivo. Our results show

that AIS disruption due to loss of Nfasc186 prevents sponta-

neous action potential firing by cerebellar Purkinje cells, modifies

the waveform of evoked action potentials, and leads to an

impairment in motor performance. Our data suggest that the

molecular mechanisms for stabilization of the AIS in adult

neurons in vivo are distinct from the mechanisms used for

assembly of the AIS in developing neurons. We propose

a dynamic model for maintenance of the mature AIS, whereby

Nfasc186 is constitutively required for anchoring of new protein

components to the AIS complex.

RESULTS

AIS Assembly without Neurofascin In Vivo
To test whether proteins known to be constituents of the initial

segment complex could cluster appropriately in the absence of

the Neurofascins (the neuronal isoform Nfasc186 and the glial

isoform Nfasc155), we examined the cerebella of wild-type and

Neurofascin null mice at P6. NrCAM was the only component of
946 Neuron 69, 945–956, March 10, 2011 ª2011 Elsevier Inc.
the AIS complex found to be affected in mutant Purkinje

cells (Figure 1A), and the number of Purkinje cells positive for

NrCAM was reduced from 93.0% ± 1.3% to 7.4% ± 0.1%

(mean values ± SEM, n = 3, 40 cells per animal, p < 0.0001,

unpaired Student’s t test). In order to establish if the presence

of NrCAM at the AIS was dependent on the neuronal isoform of

Neurofascin, Nfasc186, we generated transgenic mice express-

ing FLAG-tagged Nfasc186 on a Neurofascin null background.

The transgenic Nfasc186 was targeted appropriately and

rescued NrCAM at the AIS (Figure 1B). Interestingly, although

the stable targeting of NrCAM to the AIS was dependent on

Nfasc186, the converse was not true (see Figure S1 available on-

line); neitherwasNrCAM required for the long-term stability of the

AIS (Figure S1). We concluded that although Nfasc186 is not

required for in vivo assembly of voltage-gated sodium channels

at the AIS, it recruits NrCAM to the AIS complex.

Nfasc186 Stabilizes the AIS
Since the Neurofascins are not required for the clustering of

sodium channels or the majority of their associated proteins in

the AIS complex, we asked if instead they have a role inmaintain-

ing the complex. Since Neurofascin null mice die at P7 (Sherman

et al., 2005), it is not possible to study the long-term stability of

their initial segments in vivo. Hence, we first examined organo-

typic slice cultures derived from Neurofascin null cerebella.

Such cultures are known to maintain viability for months (Kessler

et al., 2008). In the absence of the Neurofascins clustering of

components of the AIS was complete after 9 days in vitro

(DIV). The exception was NrCAM, as found in vivo (Figures 1A

and 2). Further culture for up to 15 days resulted in the dispersal

of sodium channels, AnkyrinG and bIV-Spectrin, whereas the

wild-type AIS remained intact (Figure 2). This suggests that the

Neurofascins are required for AIS stability, at least in vitro.

To determine if the neuronal isoform of Neurofascin,

Nfasc186, is also required for AIS stability in vivo, we used an

inducible conditional knockout approach to inactivate the Nfasc

gene specifically in adult neurons. To achieve this we generated

mice carrying a floxed allele of Neurofascin (see Experimental

Procedures) and a transgenic line in which the CreERT2 cassette

was driven by the Thy1.2 promoter (TCE) (Caroni, 1997; Feil

et al., 1997). Using a reporter line, we showed that these TCE

mice expressed tamoxifen-inducible Cre robustly in cerebellar

Purkinje cells (Figure S2).

To inactivate the Nfasc gene efficiently using tamoxifen induc-

tion of Cre activity, we generated TCE transgenic mice with one

floxed and one null allele of the gene (TCE/Nfascfl/�). Western

blot analysis of hindbrain homogenates from TCE/Nfascfl/�

mice 6weeks after tamoxifen treatment showed that recombina-

tion resulted in a reduction in the level of Nfasc186, whereas the

glial isoform (Nfasc155) was unaffected (Figure 3A). Although we

focused our analysis on brains 6 weeks posttamoxifen to ensure

complete loss of Nfasc186 at AIS and AIS disruption, the

disappearance of Nfasc186 at the AIS was clear at 3 weeks

after tamoxifen-induced recombination, a time when the other

components of the complex were still present (Figure 3B).

Although there was some reduction in the length of NrCAM

staining at 3 weeks, it was not lost completely until 4 weeks post-

tamoxifen. Between 3 and 4weeks posttamoxifen, the kinetics of



Figure 1. Nfasc Is Not Required for AIS Assembly

(A) Immunofluorescence analysis of Calbindin-positive Purkinje cells in sagittal cryostat sections of cerebella from P6 wild-type littermates and Nfasc�/� mice

shows no difference in the localization of voltage-gated sodium (Nav) channels, AnkyrinG, and bIV-Spectrin at the AIS. However, NrCAM fails to localize at

the AIS in the mutant (arrowheads point to AIS location). Scale bar, 10 mm.

(B) Immunofluorescence of Calbindin-positive Purkinje cells in sagittal cryostat sections from P6 Nfasc+/+/Nfasc186 and Nfasc�/�/Nfasc186 mice shows that

Nfasc186Flag is correctly targeted to the AIS and that its expression on a Nfasc null background can restore NrCAM to the AIS. Scale bar, 10 mm.

See also Figure S1.
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AnkyrinG, bIV-Spectrin, and NrCAM loss in vivo were rapid and

coincident with the disappearance of sodium channel immunos-

taining at the AIS, which was complete by 4 weeks, thus

precluding an informative evaluation of the sequence in which

these components are lost (data not shown). Nfasc186 was

efficiently eliminated at the AIS of Purkinje cells 6 weeks

posttamoxifen (Figure 3C), since the number of Purkinje cells

immunopositive for Nfasc186 was reduced from 99.2% ± 0.8%

to 2.5% ± 2.5% (mean values ± SEM, n = 3, 40 cells per animal,

p < 0.0001, unpaired Student’s t test). Furthermore, and consis-

tentwith the results of the cerebellar slice culture experimentwith

Neurofascin null mice (Figure 2), loss of Nfasc186 from the AIS

abolished the immunofluorescence signal for sodium channels,

AnkyrinG, bIV-Spectrin, and NrCAM (Figure 3C). No demyelin-

ation was observed and the levels of myelin proteins, as

assessed bywestern blotting, were unchanged (data not shown).

Together, these in vitro and in vivo data suggest a distinct role

for Nfasc186 in maintaining the mature configuration of the AIS.

Thus, whereas assembly of the AIS appears to involve AnkyrinG

acting as a master coordinator (Dzhashiashvili et al., 2007;
Sobotzik et al., 2009) and does not require Nfasc186, mainte-

nance of the AIS, including AnkyrinG localization, appears to

require Nfasc186. Because Nfasc186 is also believed to be

important for the establishment of inhibitory synaptic input

from basket cells onto Purkinje cells (Ango et al., 2004) and

because an intact AIS is thought to be required for initiation of

spike output from Purkinje cells (Khaliq and Raman, 2006), we

next asked if loss of the AIS following deletion of Nfasc186

affects these key functional attributes of the AIS.

Disruption of Pinceau Synapses following Deletion
of Nfasc186
Pinceau synapses are formed by basket cell terminals which

provide GABAergic input to Purkinje cells at the AIS. Previous

studies have implicated Nfasc186 and AnkyrinG in ensuring

appropriate targeting of these synaptic inputs to the Purkinje

cell AIS (Ango et al., 2004; Huang, 2006). Therefore, we were

interested to determine if an intact AIS is required tomaintain pin-

ceau synapses. Figure 4 shows that it took considerably longer

for these structures to disassemble than the AIS. Thus, 6 weeks
Neuron 69, 945–956, March 10, 2011 ª2011 Elsevier Inc. 947



Figure 2. Nfasc Is Required to Maintain the

AIS Complex In Vitro

Immunofluorescence of Calbindin-positive

Purkinje cells in organotypic cerebellar slices

from newborn Nfasc�/� and wild-type littermates.

At 9 days in vitro (DIV), AIS proteins with the

exception of NrCAM are correctly localized in

wild-type slices. However, by 15 DIV Nav, Ankyr-

inG, and bIV-spectrin are no longer localized to

the AIS in mutant slices (arrowheads point to AIS

location). Scale bar, 10 mm.
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after tamoxifen, when the AIS is severely disrupted, the adjacent

pinceau synapses remain, whereas 16weeks after tamoxifen the

pinceau synapses are absent or substantially reduced in size. All

were affected. Therefore, once pinceau synapses are assembled

around the AIS, neither Nfasc186 nor its colocalized proteins in

the AIS appear to be directly responsible for their maintenance.

Prolonged Stability of Nfasc186 at Nodes of Ranvier
Since we have previously found that Nfasc186 has a role in the

assembly of nodes of Ranvier in vivo (Sherman et al., 2005; Zonta

et al., 2008), we wondered if the inducible deletion of Nfasc186

from mature animals would also affect nodes of Ranvier. We

found that CNS nodes of Ranvier remained intact at a time

when the Purkinje cell AIS was disrupted (Figures 5A and 5B).

Nfasc186 was lost from nodes of Ranvier between 6 and

16 weeks after tamoxifen-induced recombination (from 97% ±

2.1% to 19% ± 1.4%; mean values ± SEM, n = 3, 40 nodes

per animal) (Figure 5B). The fact that Nfasc186 persisted at

nodes of Ranvier in myelinated CNS axons even 6 weeks after

tamoxifen treatment may have contributed to the resistance of

nodes to disruption (Figure 5B). Nevertheless, from 6 weeks to

16 weeks sodium channels flanked by the paranodal axoglial

junction marker Caspr persisted at CNS nodes of Ranvier even

in the absence of Nfasc186 (from 98% ± 0.8% to 90% ± 1.3%;

mean values ± SEM, n = 3, 40 nodes per animal) (Bhat et al.,

2001; Sherman et al., 2005; Zonta et al., 2008; Figure 5B).

Mature Expression of Nfasc186 Is Required
for Normal Motor Behavior and Action Potential
Firing by Cerebellar Purkinje Cells
To address the functional consequences of disassembling the

AIS, we evaluated motor behavior and Purkinje cell action
948 Neuron 69, 945–956, March 10, 2011 ª2011 Elsevier Inc.
potential firing at 6 weeks posttamoxifen.

We chose this time point as the AIS is dis-

rupted, but pinceau synapses and nodes

of Ranvier remain intact.

Mutants had an altered gait (Movie S1),

and testing their motor coordination and

balance using a rotarod revealed signifi-

cant deficits in mutant animals compared

to controls (Figure 5C). Clearly this cannot

be attributed solely to disruption of Pur-

kinje cell AIS function since many other

neuronal cell types including spinal motor

neurons are affected (data not shown).
Nevertheless, it was perhaps surprising to observe the relative

mild nature of the phenotype in animals behaving in their normal

activities. This prompted us to ask how essential the intactness

of the initial segment was for electrophysiological function.

Purkinje cells in awake animals typically maintain spontaneous

action potential firing indefinitely (Armstrong et al., 1979; Scho-

newille et al., 2006; Thach, 1968); hence, in previous work

in vitro we selected for analysis Purkinje cells that generate

stable and continuous action potential firing (Nolan et al.,

2003). In this study, we find that 37%–50% of Purkinje cells

from control Nfascfl/� (TAM) and TCE/Nfascfl/� (Oil) mice main-

tained spontaneous action potential firing for > 10 min (Figures

6A, 6B, and 6D). The properties of these spontaneous action

potentials did not differ between the two control groups and

were similar to spontaneous action potentials recorded previ-

ously (Häusser and Clark, 1997; Nolan et al., 2003), indicating

that tamoxifen and the expression of Cre do not on their own

affect spike firing (Figure S3). In contrast to the control groups,

none of the Purkinje cells in which the initial segment was disas-

sembled were able to maintain spontaneous action potential

firing for > 10 min (c2
(2, n = 82) = 14.98, p < 0.005) (Figures 6C

and 6D). Instead, these neurons maintained a modal resting

potential of�43.0 ± 1.8 mV (n = 19) (Figure 6). Using less restric-

tive criteria, in which we simply compared the number of cells

that could generate spontaneous action potentials at any point

during a recording, we found that a majority of Purkinje cells

from Nfascfl/� (TAM) (73.08%, 19/26), and TCE/Nfascfl/� (Oil)

groups (68.75%, 22/32) fired action potentials spontaneously,

whereas spontaneous action potential firing was rarely observed

in Purkinje cells obtained from TCE/Nfascfl/� (TAM) mice (8.33%,

2/24). Nevertheless, Purkinje cells from all TCE/Nfascfl/� (TAM)

mice were able to generate action potentials in response to



Figure 3. Nfasc186 Is Required to Maintain the AIS In Vivo

(A) Western blotting using a pan-anti-Neurofascin antibody (NFC1) of hindbrain homogenates (20 mg per lane) from TCE/Nfascfl/� mice 6 weeks after tamoxifen

(TAM) treatment showed that the levels of the Nfasc186 neuronal isoform are significantly reduced whereas the Nfasc155 glial isoform is unaffected. Controls

comprised Nfascfl/� and TCE/Nfascfl/� mice treated with tamoxifen and sunflower oil (carrier solution) respectively. Tubulin was the loading control.

(B) Immunofluorescence of Calbindin positive Purkinje cells in cryostat sections of cerebella fromNfascfl/� and TCE/Nfascfl/�mice 3 weeks after tamoxifen (TAM)

treatment shows that although Nfasc186 is lost, other components of the AIS, including sodium channels, are still present. Controls comprised Nfascfl/� and

TCE/Nfascfl/� mice treated with tamoxifen and sunflower oil (carrier solution) respectively.

(C) Immunofluorescence of Calbindin positive Purkinje cells in cryostat sections of cerebella fromNfascfl/� and TCE/Nfascfl/�mice 6 weeks after tamoxifen (TAM)

treatment shows that Nfasc186 is required to maintain the integrity of the AIS complex (arrowheads point to AIS location). Controls as for (B).

See also Figure S2.
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positive current steps (Figure 7C), indicating that an intact initial

segment is not required for evoked action potential firing.

We next asked if disassembly of the initial segment alters the

properties of evoked action potentials. For these experiments,

the membrane potential was adjusted to �60 mV by injection

of a negative holding current and action potentials were evoked

by superimposed positive current steps (Figures 7A–7E). The

current required to drive spike firing at a frequency of 52–58 Hz

was significantly greater in TCE/Nfascfl/� (TAM) mice compared

with either control group (Figure 7F). Comparison of the wave-

form of action potentials evoked at this frequency revealed that

deletion of Nfasc186 leads to a reduced maximum rate of rise

(Figure 7G) and peak amplitude (Figure 7H) and increased half-

width (Figure 7I), but no difference in the peak membrane poten-

tial of the afterhyperpolarization (AHP) (Figure 7J) although there

was an increase in the delay until the peak of the AHP (Figure 7K).

There was no significant difference between groups in the
frequency of spikes chosen for analysis (F2,18 = 0.94, p = 0.41)

or in the input resistance of Purkinje cells estimated from their

response to negative current steps (F2,17 = 1.93, p = 0.18). There

was also no significant difference in the voltage threshold for

spike firing (F2,18 = 1.42, p = 0.27), although because of cell-to-

cell variability in the voltage threshold, detection of expected

differences might require substantially larger data sets. The

differences in action potential properties that we find between

groups are consistent with initiation of action potentials in control

neurons taking place at the AIS (Khaliq and Raman, 2006; Palmer

et al., 2010). Slower and smaller action potentials observed

following disassembly of the AIS suggest that action potentials

can also initiate from more distal locations, presumably the first

node of Ranvier (Clark et al., 2005).

Together, these results validate themolecular disintegration of

the axon initial segment and underline the essential nature of

Nfasc186 to AIS function and stability. They support the idea
Neuron 69, 945–956, March 10, 2011 ª2011 Elsevier Inc. 949



Figure 4. Pinceau Synapses with Purkinje Cells Are Unstable
without an Intact AIS

Immunofluorescence of Purkinje cells in vibratome sections of cerebella from

Nfascfl/� and TCE/Nfascfl/� mice 6 and 16 weeks after tamoxifen (TAM). In the

absence of an intact AIS pinceau synapses labeled with antibodies against

Kv1.1 are still intact at 6 weeks posttamoxifen. However, by 16 weeks they

are either disrupted or absent (arrowheads point to AIS location). Scale bar,

10 mm.
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that spontaneous action potential firing by cerebellar Purkinje

cells relies on an intactmolecular configuration of the AIS. Never-

theless, they suggest that an intact initial segment is not neces-

sary for action potential firing, but that it is a critical determinant

of the threshold and waveform of action potentials generated by

cerebellar Purkinje cells.

DISCUSSION

The selective loss of the neuronal isoform of Neurofascin,

Nfasc186, at the AIS together with the preservation of intact

nodes of Ranvier and pinceau synapses has allowed us to

address two major questions. First, is Nfasc186 necessary for

the assembly or stabilization of the AIS, and second, what is

the role of the initial segment in mature neurons? We show that

while not required for AIS assembly, Nfasc186 is essential for

AIS stabilization. Ablation of Nfasc186 leads to disintegration

of the AIS complex and the loss of key components including

voltage-gated sodium channels. Furthermore, perturbing the

molecular composition of the AIS leads to the longer-term loss

of pinceau synapses, but localization of these synapses does

not appear to require an intact AIS in the short-term. Purkinje

cells with a disrupted AIS, but intact nodes of Ranvier are no

longer able to fire spontaneous spikes. Nevertheless, following

stimulation they are able to generate evoked action potentials,

albeit with significantly altered characteristics. Together, these
950 Neuron 69, 945–956, March 10, 2011 ª2011 Elsevier Inc.
data suggest that in the mature nervous system Nfasc186 main-

tains normal action potential initiation by stabilizing the AIS. We

suggest a model for stabilization of the mature AIS that follows

a molecular logic distinct from its assembly, but with similarities

to the assembly and stabilization of nodes of Ranvier. Thus,

whereas distinct mechanisms are required for the cell-autono-

mous formation of the AIS compared with the clustering of nodal

proteins dependent on axo-glial interaction, once the AIS is

formed the important role for Nfasc186 at the nodes is recapitu-

lated in the AIS complex (Sherman et al., 2005; Zonta et al.,

2008). The fact that sodium channels persist at nodes after

Nfasc186 has been eliminated likely reflects the known impor-

tance of the paranodal axoglial junction in clustering the nodal

complex in the CNS (Zonta et al., 2008).

Nfasc186 Has Distinct Roles in Assembly
and Maintenance of the AIS
There is convincing evidence that AnkyrinG has a key develop-

mental role in AIS assembly during the clustering of key compo-

nents of the initial segment, namely voltage-gated sodium

channels, Nfasc186, bIV-Spectrin, and NrCAM (Dzhashiashvili

et al., 2007; Jenkins and Bennett, 2001; Zhou et al., 1998).

Furthermore, studies of cultured hippocampal neurons have

indicated that AIS assembly is independent of Nfasc186 and

that Nfasc186 is recruited to this domain via its interactions

with AnkyrinG (Dzhashiashvili et al., 2007). In long-term cultures

of such neurons loss of AnkyrinG led to the derangement of

preformed initial segments (Hedstrom et al., 2008). And there

is evidence both in vitro and in vivo that loss of AnkyrinG from

the AIS can induce a concomitant loss of neuronal polarity (Hed-

strom et al., 2008; Rasband, 2010; Sobotzik et al., 2009). Our

data confirm the view that Nfasc186 is not critical for AIS

assembly during development. In contrast, we show that in adult

animals Nfac186 is absolutely required for the maintenance of

the integrity of this domain. The other L1 family member at the

AIS, NrCAM, is recruited through its interaction with Nfasc186

but is required neither for the clustering nor the stabilization of

sodium channels at the AIS.

How might Nfasc186 become indispensable for AIS structure

and function after the other molecular components of the

complex have been assembled? During development Nfasc186

is presumed to be recruited to the AIS through its interactions

with AnkyrinG, but the latter can also interact with sodium chan-

nels, NrCAM, and bIV-spectrin (Davis and Bennett, 1994; Dzha-

shiashvili et al., 2007; Garrido et al., 2003; Jenkins and Bennett,

2001; Komada and Soriano, 2002). However, a key feature of

Nfasc186, by comparison with AnkyrinG, is that it is potentially

able to act as a linker between proteins located inside the

neuron, such as AnkyrinG itself, and extracellular proteins such

as Brevican (Rasband, 2010). Although NrCAM could, in prin-

ciple, have a similar role, it seems to function primarily as an

ancilliary interactor of Nfasc186. Further, once recruited to the

AIS Nfasc186 can also interact with the beta subunits of sodium

channels (Ratcliffe et al., 2001). The ability of Nfasc186 to link key

extracellular and membrane components may be critical to its

role in stabilization of the AIS in adult neurons.

Based on these data, we propose a model for stabilization of

themature AIS complex in which Nfasc186 has a function similar



Figure 5. Conditional Deletion of Nfasc186

Disrupts the AIS but Leaves Nodes Intact

(A) Immunofluorescence of parasagittal vibratome

sections of cerebella from Nfascfl/� and TCE/

Nfascfl/� mice 6 weeks after tamoxifen showing

Calbindin positive Purkinje cells and their axons.

An antibody versus the myelin marker, myelin

basic protein (MBP in blue), was used to identify

the position of the first node of Ranvier (insets).

The AIS (arrowheads) and nodes were labeled

using an AnkyrinG antibody. AnkyrinG is localized

at the AIS of Nfascfl/� Purkinje cells but not in TCE/

Nfascfl/- cerebella. Nevertheless nodes in both

mice (insets) are still AnkyrinG positive. Scale

bar, 20 mm.

(B) Immunofluorescence analysis of cerebellar

white matter tracts from TCE/Nfascfl/�mouse after

tamoxifen treatment shows that both Nfasc186

and voltage-gated sodium channels (Nav) are

initially clustered at nodes of Ranvier at 6 weeks

posttamoxifen but that Nfasc186 is severely

depleted by 16 weeks. Nevertheless, the localiza-

tion of Nav, AnkyrinG, and bIV-spectrin at the

nodes is preserved. Nodes were located by immu-

nostaining for the paranodal marker Caspr. Scale

bar, 2 mm.

(C) Three groups of mice (10 mice per group) were

tested 6 weeks after tamoxifen. The means ± SEM

for time spent on the rotarod across six trials are

shown for Nfascfl/� mouse treated with tamoxifen

(blue), TCE/Nfascfl/� mice treated with sunflower

oil (red), and TCE/Nfascfl/� mice treated with

tamoxifen (black). There was no significant differ-

ence in performance between the two control

groups (Nfascfl/� mouse treated with tamoxifen

versus TCE/Nfascfl/� mice treated with sunflower

oil; p > 0.05). However, the differences observed

between each of the control groups and the TCE/

Nfascfl/�mouse treatedwith tamoxifenwere highly

significant (p < 0.001).

See also Movie S1. Error bars indicated standard

error of the mean.
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to its role at the node of Ranvier. According to this model, in the

mature AIS Nfasc186 acts as an anchor for recruitment of new

proteins to replenish molecules removed for degradation.

Whereas initial localization and assembly of the AIS relies on

AnkyrinG, our stabilization model predicts that interactions of

the extracellular domain of Nfasc186 with components of the

extracellular matrix, for example proteins such as Brevican (Ras-

band, 2010), or directly with cells that surround the AIS, maintain

the localization of the AIS complex. The intracellular domain of

Nfasc186-NrCAM is then used to anchor AnkyrinG and other

components of the AIS complex through interactions similar to

those used to assemble nodes of Ranvier (Rasband, 2010; Sher-

man and Brophy, 2005). Hence, according to this model, loss of

Nfasc186will lead to instability of sodium channels and concom-

itant delocalization of their associated AnkyrinG andNrCAM.Our

model does not rule out the possibility that AnkryinG is also

required for maintenance of the AIS by stabilizing Nfasc186,

similar to its role at nodes of Ranvier (Dzhashiashvili et al.,

2007). From the current study, it was not possible to differentiate
the sequence of AIS component disassembly following

Nfasc186 loss. Similarly, two different studies on the AIS of

cultured neurons have found that the simultaneous accumula-

tion of Nav channels, AnkyrinG, bIV-Spectrin, NrCAM, and

Neurofascin did not permit a differential analysis of the assembly

of individual AIS components (Boiko et al., 2007; Hedstrom

et al., 2008).

An intriguing consequence of inactivating the Nfasc gene in

adult neurons was the longer persistence of Nfasc186 at nodes

of Ranvier in contrast to the AIS. This suggests that Nfasc186

has a shorter half-life at the AIS compared to nodes. According

to the model we propose above, this difference would be ex-

pected if themajor difference between themature AIS and nodes

of Ranvier is the rate of turnover of their constituent molecules.

This is consistent with the emerging view that plasticity of the

AIS may play a role in modulating the electrical properties of

neurons (Grubb and Burrone, 2010a, 2010b). The enhanced

sensitivity of the AIS to hypoperfusion-induced hypoxia (Schafer

et al., 2009) may also reflect the fact that the AIS is inherently less
Neuron 69, 945–956, March 10, 2011 ª2011 Elsevier Inc. 951



Figure 6. Disassembly of the AIS Disrupts

Spontaneous Action Potential Firing by Pur-

kinje Cells

(A and B) Examples of spontaneous action poten-

tials generated by Purkinje cells from control

Nfascfl/� (TAM) and Nfascfl/� (Oil) mice.

(C) Example of resting membrane potential of a

Purkinje cells from a TCE/Nfascfl/� (TAM) mouse.

(D) Percentage of Purkinje cells able to maintain

spontaneous firing for >10 min in the Nfascfl/�

(TAM), Nfascfl/� (Oil), and TCE/Nfascfl/� (TAM)

mice (n = 32, 26, 24 Purkinje cells, respectively;

4–5 mice per group; c2
(2,n = 82) = 14.98, p < 0.005).

See also Figure S3.
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stable than related structures, such as nodes. The fundamental

role we propose for Nfasc186 in anchoring new proteins may

represent an important target in regulating normal AIS function.

The formation of pinceau synapses between basket cell axons

and the AIS of Purkinje cells in the cerebellum has been shown to

be disrupted either in the absence of AnkyrinG or by using a

dominant-negative form of Nfasc186 (Ango et al., 2004). Here,

we have shown that the intact AIS is also essential for mainte-

nance of pinceau synapses. However, the persistence of

apparently intact pinceau synapses for some time after AIS

disruption indicates a role for other proteins in contributing to

the stabilization of these structures. The perineuronal nets

formed by the extracellular matrix are possible candidates (Celio

et al., 1998; Rasband, 2010).

Maintenance of the AIS by Nfasc186 Is Critical
for Normal Action Potential Initiation
Profound differences in action potential firing by Purkinje cells

following deletion of Nfasc186 are consistent with our anatom-

ical observation of AIS disintegration. Previous studies on the

role of the AIS have relied on pharmacological manipulation of

AIS function (Khaliq and Raman, 2006; Palmer et al., 2010).

These have led to the view that action potentials initiate from

the AIS; however, the advantages for neuronal function

conferred by spatially restricting initiation of the action potentials

are not well understood. Our data suggest that disruption of the

AIS prevents generation of spontaneous spikes by Purkinje cells

and that it modifies the waveform of evoked action potentials.

These data support the idea that the AIS plays a critical role in

spike initiation in mammalian neurons. However, while our

results do not rule out changes that might in part enable Purkinje

cells to adapt to disruption of their AIS, they nevertheless

suggest that an intact AIS is not necessary for generation of
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somatic action potentials, but rather that

it promotes normal function by modifying

action potential initiation. In Purkinje cells,

this may be important for generation of

spontaneous action potentials at rela-

tively high frequencies, whereas in other

neuron types it may contribute to estab-

lishing rules for somatodendritic integra-

tion of synaptic inputs (Mainen et al.,

1995; Stuart and Sakmann, 1994). This
modulatory function is consistent with the absence of an AIS in

invertebrate neurons, which nonetheless rely on generation of

action potentials (Rasband, 2010).

Action potentials generated by Purkinje cells are the sole

output from the cerebellar cortex and synaptic input to Purkinje

cells modifies the frequency of intrinsically generated sponta-

neous action potentials (Häusser and Clark, 1997; Raman and

Bean, 1997). Pharmacological block of Nav channels at the

initial segment abolishes spontaneous firing of action potentials

by cerebellar Purkinje cells and attenuates evoked action

potentials (Khaliq and Raman, 2006). However, other studies

have implicated both the AIS and the first node as critical in

action potential generation in Purkinje cells (Clark et al., 2005;

Palmer et al., 2010). The absence of spontaneous action poten-

tials following disturbance of the AIS is consistent with the

notion that spontaneous action potentials initiate from the AIS

(Fleidervish et al., 2010; Khaliq and Raman, 2006; Palmer

et al., 2010). In contrast, the ability to evoke action potentials

in the absence of an AIS suggests that at least in principle the

AIS is not required for action potential initiation, although in

physiological conditions the lower threshold conferred by the

AIS is likely to cause it to be the main site of spike initiation in

Purkinje cells (Fleidervish et al., 2010; Khaliq and Raman,

2006; Palmer et al., 2010).

The susceptibility of the initial segment to disruption that we

have demonstrated here has implications for human disease.

Neurofascin has been identified as a prime target in the autoim-

mune attack of axons associated with multiple sclerosis (Mathey

et al., 2007). And the results presented here predict that this

autoimmune response will selectively destabilize the AIS.

Further, it has been shown in a stroke model that AIS are much

more susceptible to hypoxia-induced proteolytic degradation

than nodes of Ranvier (Schafer et al., 2009). Hence, irrespective



Figure 7. An Intact AIS Is Not Necessary for Action Potential Firing but Affects Action Potential Properties

(A–C) Examples of membrane potential responses to positive current steps recorded from Purkinje cells from Nfascfl/� (TAM) (A), TCE/Nfascfl/� (Oil) (B), and

TCE/Nfascfl/� (TAM) mice (C). The membrane potential was adjusted to�60 mV by injection of a negative holding current. Highlighted traces illustrate responses

for which action potentials frequencies are in the 52–58 Hz range chosen for analysis. The frequency of these action potentials did not differ between groups

(Nfascfl/� (TAM)52 ± 3.66, TCE/Nfascfl/� Oil 57.78 ± 3.30, TCE/Nfascfl/� (TAM) 58.09 ± 2.8 Hz, F2,18 = 0.94, p > 0.05).

(D) Expanded and superimposed waveforms of the second spikes in the highlighted traces in (A)–(C).

(E) Expanded spikes from the region indicated by the box in (D).

(F) The current required to drive action potentials at a frequency of 52–58 Hz was greater in TCE/Nfascfl/� (TAM) mice (n = 7) compared with eitherNfascfl/� (TAM)

(n = 8) or TCE/Nfascfl/� (Oil) (n = 6) (3 mice per group; F2,18 = 22.84, p < 0.0001).

(G) The maximum rate of rise of the action potential was decreased in TCE/Nfascfl/� (TAM) mice compared with both Nfascfl/� (TAM) or TCE/Nfascfl/� (Oil)

(F2,18 = 39.75, p < 0.0001).

(H) The peak action potential depolarization was reduced in TCE/Nfascfl/- (TAM) mice compared with both Nfascfl/� (TAM) or TCE/Nfascfl/� (Oil) (F2,18 = 39.86,

p < 0.0001).

(I) The half-width of the action potential was increased in TCE/Nfascfl/� (TAM) mice compared with both Nfascfl/� (TAM) or TCE/Nfascfl/� (Oil) (F2,18 = 8.34,

p = 0.003).

(J) There was no difference between groups in the peak of the afterhyperpolarization (F2,18 = 0.35, p = 0.71).

(K) The delay until the peak of the afterhyperpolarization was increased in TCE/Nfascfl/� (TAM) mice compared with both Nfascfl/� (TAM) or TCE/Nfascfl/� (Oil)

(F2,18 = 15.28, p < 0.0001).

*p < 0.05 versusNfascfl/� (TAM) and TCE/Nfascfl/� (Oil), Fisher’s PLSD. In the box plots, the horizontal bar is themedian, the boxes indicate the 25th–75th percen-

tile range, and the vertical lines indicate the 10th–90th percentile range.
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of the initial insult, the vulnerability of the AIS to attack is likely to

undermine neuronal function.

In summary, we find that following assembly of the AIS,

Nfasc186 appears to act as an anchor that maintains the appro-

priate localization of critical components including AnkryinG and
sodium channels. Modified action potential firing following dele-

tion of Nfasc186 is consistent with these anatomical observa-

tions, while also supporting the view that, although an intact

AIS is not necessary for action potential initiation, it modulates

action potential firing. Together our results suggest that distinct
Neuron 69, 945–956, March 10, 2011 ª2011 Elsevier Inc. 953
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molecular mechanisms are used for the developmental

assembly and the adult maintenance of the AIS. This may be crit-

ical for flexible regulation of computations that transform

synaptic input into patterns of spike output suitable for the

control of downstream neurons.

EXPERIMENTAL PROCEDURES

Animals

All animal work conformed to UK legislation (Scientific Procedures) Act 1986,

and to the University of Edinburgh Ethical Review Committee policy. The

generation of Nfasc�/� mice has been described (Sherman et al., 2005).

Nfascfloxmice were generated following the same strategy, but with an alterna-

tive excision where only the PGKneo-HSVtk cassette was removed and where

the preserved exon 4 was flanked by two loxP sites. Transgenic mice express-

ing a full-length cDNA encoding Nfasc186 or a cDNA encoding the inducible

Cre recombinase CreERT2 under the control of the Thy1.2 promoter (Caroni,

1997) were generated by pronuclear injection as described (Sherman and Bro-

phy, 2000). For the Thy1Nfasc186 construct, a FLAG tag sequence was first

inserted at the 30 of the coding region. The cDNA was then cloned into the

XhoI site of the pTSC21k vector (Lüthi et al., 1997) and was released using

NotI. After backcrossing to a C57BL/6 background, one of the lines was

interbred with Nfasc+/� mice to generate Nfasc�/�/Nfasc186 mice. The Thy1-

CreERT2 transgene comprised cDNA encoding CreERT2 excised from the

pCreERT2 vector (Feil et al., 1997; Imai et al., 2001) using EcoRI after which

it was blunt ended, cloned into the XhoI site of the pTSC21k vector, and

released using NotI. After backcrossing to a C57BL/6 background, the Thy1-

CreERT2 (TCE) line was interbred with the Rosa26-YFP (Srinivas et al., 2001)

reporter line or successively interbred with Nfasc+/� and Nfascfl/fl mice to

generate Nfasc�/fl/Thy1CreERT2 mice.

Induction of Recombination with Tamoxifen

Tamoxifen (Sigma) was dissolved in sunflower oil/ethanol (10:1 ratio) at

10 mg/ml. Recombination was induced by intraperitoneal injection of

0.18 mg/g body weight/day into 3-week-old animals for 5 consecutive days.

Control Nfasc�/fl/Thy1CreERT2 were treated with the carrier solution

(sunflower oil/ethanol 10:1). This injection protocol was repeated 10 days later.

Mice were sacrificed 6 or 16 weeks after the second treatment.

Organotypic Cerebellar Slices

Brains from newborn Nfasc�/� and control mice were dissected into ice-cold

Hank’s Balanced Salt Solution (HBSS; Sigma) to remove meninges and fore-

brain. Parasagittal cerebellar slices (250 mm) were cut using a McIlwain tissue

chopper and separated in culturemedium composed of 50%Minimum Essen-

tial Medium Eagle (MEM, Sigma), 25% Earle’s Balanced Salt Solution (Sigma),

25% heat-inactivated horse serum (Sigma), glucose (6.5 mg/ml), L-glutamine

(2 mM), penicillin-streptavidin solution (100 mg/ml) (Sigma), and Amphotericin

B solution (Sigma). The slices were transferred to the membrane of 30 mm

culture inserts (Millicell, Millipore) with prewarmed medium and were main-

tained in a 37% incubator with 5% CO2 enriched humidified atmosphere.

Culture medium without Amphotericin B was replaced on the day after slice

preparation and changed every 2 days.

Antibodies, Microscopy, and Western Blots

For immunostaining of organotypic cerebellar preparation, the slices cultured

9 DIV or 15 DIV were fixed by immersion in 4% paraformaldehyde in 0.1 M

sodium phosphate buffer (pH 7.4) for 1 hr at room temperature, followed by

washes in PBS. Pieces of membrane containing single or multiple slices

were cut out and immunostaining was performed in 6-well tissue culture

plates.

Immunostaining of 10–12 mm cerebellum sections was performed after

transcardial perfusion with 4% paraformaldehyde, 0.1 M sodium phosphate

buffer (pH 7.4) as described previously (Tait et al., 2000). For vibratome

sections, the brains were postfixed with 4% paraformaldehyde, 0.1 M sodium

phosphate buffer (pH 7.4) overnight before being washed in several changes of

0.1 M phosphate buffer and cut in 50 mm parasagittal sections using an
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Intracell 1000 vibratome. Goat anti-Kv1.1 (1:100, Santa-Cruz); mouse anti-

Calbindin (1:1000, Sigma); mouse anti-AnkyrinG IgG2a, clone N106/36 (1:50,

Neuromab); rabbit anti-Calbindin (1:5000, Swant); and rabbit anti-GFP

(1:500, Invitrogen) were used at the indicated dilutions. Rabbit anti-Nav

(1:200) was generated after immunization with the synthetic peptide

TEEQKKYYNAMKKLGSKKPK with an N-terminal cysteine conjugated to

KLH. The peptide sequence corresponds to the intracellular III-IV loop of

Nav channels and is identical in all known vertebrate Nav channels (Catterall,

1995). All other primary and secondary antibodies have been described

(Sherman et al., 2005; Tait et al., 2000; Zonta et al., 2008). Cerebellar slices

used for electrophysiology were subsequently stained by floating immunohis-

tochemistry with rabbit MNF2 (1:100) (Tait et al., 2000) specific for Nfasc186

and mouse anti-calbindin (1:500) in 10% fish gelatin, Triton 0.5% in PBS) incu-

bated overnight followed by Cy3-conjugated donkey anti-rabbit (1:600) and

goat AlexaFluor 647-conjugated anti-mouse IgG1 (1:200). For confocal

microscopy, we used a Leica TCL-SL confocal microscope with either

a 203 or a 633 objective, 1.4 NA, and Leica proprietary software. The acquired

stacks were assembled using the maximum projection tool. All figures were

prepared using Adobe Photoshop CS4 extended version 11. Western blotting

was performed as described (Sherman et al., 2005) on hindbrain lysates (20 mg

protein per lane). The blot shown in Figure 3A was replicated in three different

preparations.
Rotarod

Mice (10 per group, equal number of males and females) were tested 6 weeks

after tamoxifen treatment by two trials per day for 3 consecutive days using

a Ugo Basile rotarod with an accelerating rotation speed from 4 to 40 rota-

tions/min in 300 s. Each trial comprised three experiments separated by

15 min of rest. The latency to fall for each of the three experiments was re-

corded and subsequently averaged. Statistical analysis was by two-way

ANOVA and t tests with GraphPad Prism 5.0c software.
Electrophysiology

Whole-cell patch-clamp recordings were made from Purkinje cells in parasa-

gittal brain slices obtained from 12- to 14-week-old mice as previously

described (Nolan et al., 2003). Briefly, slices of thickness 200 mm containing

the cerebellar vermis were sectioned using a Vibratome 3000. For sectioning,

brains were submerged under cold (4�C–6�C) oxygenated modified artificial

cerebrospinal fluid (ACSF) of the following composition (mM): NaCl 86,

NaH2PO4 1.2, KCl 2.5, NaHCO3 25, CaCl2 0.5, MgCl2 7, glucose 25, sucrose

75. Slices were then maintained in oxygenated standard ACSF (mM): NaCl

124, NaH2PO4 1.2, KCl 2.5, NaHCO3 25, CaCl2 2, MgCl2 1, glucose 20. Imme-

diately following sectioning slices were maintained at 37�C ± 1�C for 10–

20 min and subsequently at room temperature for a minimum of 40 min. For

recording, slices were visualized under a microscope with infrared illumination

while being maintained in oxygenated standard ACSF at 37�C ± 1�C.
Recording electrodes were filled with intracellular solution of the following

composition (mM): Kgluconate 130, KCl 10, HEPES 10, MgCl2 2, EGTA 0.1,

Na2ATP 2, Na2GTP 0.3, NaPhosphocreatine 10, and biocytin 2.7. The elec-

trode resistance in the bath containing standard ACSF was 3–5 MU.

Current-clamp recordings were made with a Multiclamp 700A amplifier

(Molecular Devices), sampled at 50 KHz and filtered at 10 KHz. Appropriate

bridge and electrode capacitance compensation were applied. Cells with

series resistance >25 MU were excluded. An experimentally measured liquid

junction potential of +8.1 mV (bath potential relative to the patch-pipette) for

the standard ACSF was not corrected for.

Data were analyzed using custom written routines in IGOR pro (Wavemet-

rics). Statistical analysis was performed in Statview using Student’s t test,

chi-square test, or one-way ANOVA followed by Fisher’s PLSD post hoc

when allowed. Level of significance was set at <0.05.
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Figure S1, related to Figure 1. Ablation of NrCAM Affects neither the Assembly nor 

Stability of the AIS 

Immunofluorescence of Calbindin-positive Purkinje cells from cerebella cryostat sections 

in NrCAM-null mice and wild-type littermates at post-natal day 6 (P6) showing that 

NrCAM is not required to target either Nfasc186 or other components of the AIS 

including Nav channels and the cytoskeletal proteins AnkyrinG and βIV Spectrin. These 

proteins are still maintained at the AIS in NrCAM-null mice at P180 (arrowheads point to 

AIS). Scale bar, 10 μm  



 

Figure S2, related to Figure 3. Characterisation of the TCE Transgenic Mouse 

(A) Schematic diagram of the Thy1CreERT2 (TCE) transgene, wild-type Nfasc gene, 

targeting vector and floxed allele after Cre-mediated excision of the PGKneo-HSVtk 

cassette. The CreERT2 cassette was inserted downstream of the Thy1.2 promoter for the 

expression of tamoxifen-inducible Cre specifically in neurons. The floxed allele of the 



Nfasc gene contains two loxP sites flanking exon IV. Cre recombination of the floxed 

Nfasc allele leads to the deletion of exon IV resulting in a transcript with an in-frame stop 

codon in exon V leading to the known loss of Neurofascin protein expression (Sherman 

et al., 2005). N, NcoI; E, EheI; B, BamHI 

(B) Immunofluorescence analysis of Cre activity in the cerebellum. Mice carrying the 

TCE transgene were mated with the Rosa26YFP reporter line to determine the expression 

and activity pattern of CreERT2 in the cerebellum. Analysis of YFP expression in 

TCE/Rosa26YFP mice 6 weeks after tamoxifen treatment shows strong expression of 

YFP in Purkinje cells (stained for Calbindin). Scale Bars : 100 μm (low power) and 50 

μm (high power). 



 



Figure S3, related to Figure 6. Properties of Spontaneous Action Potentials in 

Purkinje Cells do Not Differ Between the Two Control Groups 

(A-F) There was no difference between Nfascfl/-(TAM) (n=8) and TCE/Nfascfl/-(Oil) 

(n=10) mice in the mean frequency (A), the mean interspike interval (B), the threshold 

(C), the 10%-90% rise time (D), the peak depolarization (E) and the half-width of 

spontaneous action potentials (F) (t16<1.6, P>0.1).  

(G-H) There was also no difference in the modal membrane potential (G) and the peak of 

the afterhyperpolarization (H) (t16<1.6, P>0.1).  

In the box plots, the horizontal bar is the median, the boxes indicate the 25–75 percentile 

range, and the vertical lines indicate the 10–90 percentile range. 
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