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Stochasticity is both exploited and controlled by cells. Although the intrinsic stochasticity inherent
in biochemistry is relatively well understood, cellular variation, or ‘noise’, is predominantly
generated by interactions of the system of interest with other stochastic systems in the cell or its
environment. Such extrinsic fluctuations are nonspecific, affecting many system components, and
have a substantial lifetime, comparable to the cell cycle (they are ‘colored’). Here, we extend the
standard stochastic simulation algorithm to include extrinsic fluctuations. We show that these
fluctuations affect mean protein numbers and intrinsic noise, can speed up typical network
response times, and can explain trends in high-throughput measurements of variation. If extrinsic
fluctuations in two components of the network are correlated, they may combine constructively
(amplifying each other) or destructively (attenuating each other). Consequently, we predict that
incoherent feedforward loops attenuate stochasticity, while coherent feedforwards amplify it. Our
results demonstrate that both the timescales of extrinsic fluctuations and their nonspecificity
substantially affect the function and performance of biochemical networks.
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Introduction

Biochemical networks are stochastic: fluctuations in numbers
of molecules are generated intrinsically by the dynamics of the
network and extrinsically by interactions of the network with
other stochastic systems (Elowitz et al, 2002; Swain et al,
2002). Stochastic effects in protein numbers can drive
developmental decisions (Arkin et al, 1998; Maamar et al,
2007; Nachman et al, 2007; Suel et al, 2007), be inherited for
several generations (Rosenfeld et al, 2005; Kaufmann et al,
2007), and have perhaps influenced the organization of the
genome (Swain, 2004; Becskei et al, 2005). Intrinsic fluctua-
tions are generated by intermolecular collisions affecting the
timing of individual reactions. Their strength is increased by
low copy numbers. The source of extrinsic fluctuations,
however, is mostly unknown (Kaern et al, 2005), although
cell cycle effects (Rosenfeld et al, 2005; Volfson et al, 2006) and
upstream networks (Volfson et al, 2006) contribute. Yet
extrinsic fluctuations dominate cellular variation in both
prokaryotes (Elowitz et al, 2002) and eukaryotes (Raser and
O’Shea, 2004). They are colored, having a lifetime that is not
negligible but comparable to the cell cycle (Rosenfeld et al,

2005), and they are nonspecific, potentially affecting equally
many molecules in the system (Pedraza and van Oudenaarden,
2005). They are thus difficult to model and their effects hard to
predict (Austin et al, 2006; Cox et al, 2006; Geva-Zatorsky et al,
2006; Scott et al, 2006; Sigal et al, 2006; Tanase-Nicola et al,
2006; Tsimring et al, 2006; Volfson et al, 2006; Maithreye and
Sinha, 2007).

Intrinsic and extrinsic stochasticity can be measured by
creating a copy of the network of interest in the same cellular
environment as the original network (Elowitz et al, 2002). We
can then define intrinsic and extrinsic variables, and their
fluctuations generate intrinsic and extrinsic stochasticity
(Swain et al, 2002). Intrinsic variables typically specify the
copy numbers of the molecular components of the network.
Their values differ for each copy of the network. Extrinsic
variables often describe molecules that affect equally each
copy of the network. Their values are therefore the same for
each copy. Considering gene expression, the number of
transcribing RNA polymerases is an intrinsic variable (it is
different for each copy of the network), whereas the number of
cytosolic RNA polymerases is an extrinsic variable (both
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copies of the network are exposed to the same cytosolic RNA
polymerases).

Stochasticity is quantified by measuring an intrinsic vari-
able, for example, the number of proteins, for both copies of
the network. Fluctuations of the intrinsic variable will have
intrinsic and extrinsic components: intrinsic variables are
themselves part of a stochastic system and that system
interacts with other stochastic systems. Throughout we will
use the term ‘noise’ to exclusively mean an empirical measure
of stochasticity, usually the coefficient of variation. Experi-
mentally, the relative number of proteins can be quantified in
living cells using fluorescent proteins (Elowitz et al, 2002;
Ozbudak et al, 2002; Blake et al, 2003; Raser and O’Shea,
2004). Denoting I1 as the intrinsic variable (the number of
proteins) for the first copy of the system and I2 the equivalent
for the second copy, then intrinsic noise is determined by a
measure of the difference between I1 and I2 because intrinsic
fluctuations cause variation in I1 to be uncorrelated with that
of I2. Extrinsic fluctuations, however, cause variation in I1 and
I2 to be correlated because they equally affect both copies of
the system. Extrinsic noise is a measure of this correlation and
is determined by the cross-correlation function of I1 and I2. The
squares of the intrinsic and the extrinsic noise sum to give the
square of the total noise of the intrinsic variable, which is
defined as its coefficient of variation (Swain et al, 2002).

Here, we consider the effects of extrinsic fluctuations on
biochemical networks. Extrinsic fluctuations typically cause
fluctuations in the parameters of a network (Paulsson, 2004).
For example, Figure 1A shows a model of gene expression that
includes promoter activation, transcription, translation, and
degradation (Kepler and Elston, 2001; Raser and O’Shea, 2004;
Golding et al, 2005; Kaern et al, 2005). In this model, v1 is the
rate of translation. It is a function of the number of free
ribosomes, an extrinsic variable, and will fluctuate as the
number of free ribosomes changes. Extrinsic fluctuations have
an average lifetime that is not zero (they are ‘colored’)
(Rosenfeld et al, 2005). We will show that this extrinsic
timescale can profoundly affect the system’s dynamics and
stochastic properties. It can determine the lifetime of protein
fluctuations and change mean protein numbers. Extrinsic
fluctuations being nonspecific can act simultaneously on
many parameters of the network. This nonspecificity can
cause fluctuations to combine constructively or destructively,
dramatically altering the network’s output. For our simula-
tions, we designed a novel extension of the standard algorithm
for simulating intrinsic fluctuations (Gillespie, 1976) that
includes discontinuous, time-varying parameters and there-
fore can also simulate extrinsic fluctuations with any desired
properties (Materials and methods).

Results

Extrinsic fluctuations alter mean protein numbers
and intrinsic noise

Extrinsic fluctuations can substantially change the distribution
of protein numbers. Figure 1B shows the steady-state
distribution of protein numbers for the model of Figure 1A
with no extrinsic fluctuations. It is slightly asymmetric and
is expected to approximate a gamma distribution (Friedman

et al, 2006). Figure 1C shows the corresponding joint
probability distribution of I1 and I2. Although the system is
generally described by a probability distribution that includes
all the intrinsic variables for the first copy of the network, all
the intrinsic variables for the second copy, and all the extrinsic
variables, a projection of this distribution onto I1 and I2 is
sufficient for calculating noise (Elowitz et al, 2002). With no
extrinsic fluctuations, the distribution spreads parallel to the I1
and I2 axes (Figure 1C): I1 and I2 are independent and have no
correlation (Zext¼0). With colored extrinsic fluctuations, the
mode and mean of the distribution of protein numbers can
change, its variance increases, and there can be a longer tail at
high numbers (Figure 1D). Correspondingly, the probability
distribution for I1 and I2 spreads along the line I1¼I2: I1 and I2
are now correlated through fluctuations in the extrinsic
variable (here, the rate k0: Figure 1D inset). Larger extrinsic
fluctuations would cause the distribution to spread along and
tighten around the line I1¼I2. Larger intrinsic fluctuations
would cause the distribution to expand away from the line.

Changing the properties of extrinsic fluctuations—their
source, magnitude, and typical lifetime (t)—can alter mean
protein numbers and measurements of the intrinsic noise. The
effect of extrinsic fluctuations is determined by both their
coefficient of variation and their lifetime. Extrinsic fluctuations
with lifetimes shorter than a cell cycle could be generated by
negative feedback or fast protein degradation; those longer than
the cell cycle could be generated by positive feedback (Cox et al,
2006). As the coefficient of variation of any parameter in
Figure 1A increases, the extrinsic noise measured in protein
numbers increases (Figure 2A). Similarly, as the lifetime of
extrinsic fluctuations increases, the extrinsic noise increases:
extrinsic fluctuations that are fast compared to intrinsic
fluctuations are averaged away and contribute little to the
extrinsic noise (Figure 2B). If the extrinsic fluctuations occur in
a parameter that determines the lifetime of fluctuations in
protein numbers, such as the protein degradation rate, then the
extrinsic timescale mixes with the intrinsic timescales and the
mean (and the mode) of the protein distribution can shift
(Figure 2C and D). Although this change in mean protein
numbers implies that extrinsic fluctuations can change mea-
surements of intrinsic noise, the change we observe is more
than expected (Figure 2E and F): for example, if the translation
rate, v1, fluctuates, the mean protein number changes little, but
there is over a two-fold increase in intrinsic noise.

To understand how extrinsic fluctuations affect intrinsic
noise, consider only the measured intrinsic variables and one
extrinsic variable, E say. The system can then be described by
the probability distribution P(I1,I2,E). Changing the properties
of the extrinsic variable will alter extrinsic fluctuations and the
shape of this three-dimensional distribution. Colored extrinsic
fluctuations imply that P(I1,I2,E)¼P(I1|I2,E)P(I2|E)P(E) only,
and not P(I1,I2,E)¼P(I1|E)P(I2|E)P(E), because the current
value of I2 contains predictive information on the history of
E over the timescale associated with I2 (typically a protein
lifetime). Extrinsic and intrinsic variables are strongly co-
dependent. Changing the shape of P(I1,I2,E) by altering
extrinsic fluctuations can potentially change its projection
onto the I1 and I2 planes (Figure 1C and E). The intrinsic noise,
which is determined by the I1 and I2 projection, can therefore
vary with extrinsic fluctuations.
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Mathematically, extrinsic fluctuations affect the dynamics as
multiplicative noise and the system of Figure 1A becomes
nonlinear. We verified the results of Figure 2 using both a
Langevin approach (van Kampen, 1990; Swain, 2004), which is
suitable for many fluctuating variables but is a linear approx-
imation, and the unified colored noise approximation (Jung and
Hanggi, 1987), which is nonlinear but suitable for only one
fluctuating variable. Both the shifting of the mean protein
number and the changes in intrinsic noise are nonlinear effects
of colored extrinsic fluctuations and are not reproduced by
Langevin theory (Figure 2 and Supplementary information).

Our approach also provides a general technique for
stochastic sensitivity analysis because we apply fluctuations
to parameters of the system (Stelling et al, 2004). We can
therefore determine, for example, the robustness of the
concentration of the network output or any other network
property to changes in parameter values. Sensitive parameters
generate both a high intrinsic and a high extrinsic noise (a high
total noise) in the property under investigation. Within our
model, we predict that protein levels are most sensitive to
fluctuations in the transcription and translation rates, v0 and v1

(Figure 2A and E).
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Figure 1 Extrinsic fluctuations change substantially the probability distribution for protein numbers during gene expression. (A) A model of gene expression with two
states of the promoter, one active, and able to initiate transcription, and the other inactive. We have shown the binding of RNA polymerase (purple pentagon) driving the
transition from inactive to active, but the transition may occur through the binding of transcription factors or changes in the structure of chromatin (Blake et al, 2003; Raser
and O’Shea, 2004; Golding et al, 2005). Once active, the promoter can initiate transcription on average every 1/v0 seconds and synthesize mRNA which in turn is
translated into protein on average every 1/v1 seconds. Both protein and mRNA undergo first-order degradation. We use parameters appropriate for Escherichia coli
(Golding et al, 2005): k0¼0.005 s�1, k1¼0.03 s�1, v0¼0.07 s�1, d0¼0.005 s�1, v1¼0.2 s�1, and d1¼0.0004 s�1. The longest intrinsic timescale is then 2500 s, the
promoter is active approximately 15% of the time, and the mean steady-state number of proteins is 1000. (B) A histogram of protein numbers generated by stochastic
simulation of (A). Only intrinsic fluctuations are included. The distribution is slightly skewed with the mode close to the mean, which is shown by the green line. (C) A
contour plot of the joint protein probability distribution generated by a two-color experiment for which we simulate two identical copies of the system. (D) A histogram of
protein numbers generated from intrinsic fluctuations and a fluctuating extrinsic variable: k0, the probability per unit time of the promoter transitioning from the inactive to
the active state. The inset shows typical variation of k0. Extrinsic fluctuations are generated by a log-normal stochastic process with an autocorrelation time of
approximately 103 s: the mean of k0 is unchanged and it has a coefficient of variation of 1. The measured extrinsic noise in protein levels is then approximately 0.4.
(E) The corresponding joint probability distribution for I1 and I2 in a two-color simulation.
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Extrinsic fluctuations can help describe trends in
high-throughput measurements

We can use these properties of extrinsic fluctuations to explain
high-throughput measurements of stochasticity. Total noise in
protein numbers scales with the inverse square root of mean
protein number (Bar-Even et al, 2006; Newman et al, 2006).
This relationship is fundamentally a property of intrinsic
fluctuations (Bar-Even et al, 2006), but still holds with
substantial extrinsic fluctuations because extrinsic fluctua-
tions can change mean protein numbers and intrinsic noise
(Figure 3A). To test this proposal, we simulated many models
with different parameter sets, each generated from the scheme
of Figure 1A by log-normal sampling (Materials and methods).
Our results imply that the high-throughout measurements are
consistent with other studies, which shows extrinsic noise to
be dominant (Elowitz et al, 2002; Raser and O’Shea, 2004).

Extrinsic fluctuations can cause correlations between the
lifetime of protein fluctuations and the extrinsic noise in
protein levels, if they have the dominant timescale of the
system. The lifetime of protein fluctuations will then be
determined by the lifetime of the extrinsic fluctuations. With
the same set of simulations, we measure a significant
correlation between the timescale of protein fluctuations and
total noise (Figure 3B). It arises because many of the models
we simulate have extrinsic noise greater than intrinsic noise.
The correlation is also evident in Figure 2B. Indeed, time series
studies in human cells have shown that the total noise to be

correlated with the autocorrelation time of protein levels (Sigal
et al, 2006).

Extrinsic fluctuations can affect the performance
of genetic networks

We next considered the effect of extrinsic fluctuations on one
of the simplest regulatory networks: a negatively auto-
regulated loop. Experiments suggest that stochasticity is
attenuated by negative auto-regulation, at least for a plas-
mid-borne system (Becskei and Serrano, 2000). Negative
feedback reduces fluctuations by increasing expression when
protein numbers are low and decreasing expression when
protein numbers are high. Increasing the strength of the
feedback increases its potential to reduce stochasticity (Thattai
and van Oudenaarden, 2001; Simpson et al, 2003; Swain,
2004), but decreases the copy numbers of mRNAs and
proteins. The corresponding rise in intrinsic fluctuations may
surpass any attenuation (Figure 4A and B) (Tan et al, 2007).
Extrinsic noise is mostly independent of protein numbers. It
will therefore decrease with the addition of negative feedback.
Consequently, the total noise of a constitutive system to which
auto-negative feedback is added can either increase if intrinsic
fluctuations dominate (Figure 4A) or decrease if extrinsic
fluctuations dominate (Figure 4B). Consistently, experiments
show a range of auto-repression strength for which noise
minimization is optimal, although this observation was
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attributed to plasmid variation (Dublanche et al, 2006). Our
results suggest extrinsic fluctuations in any parameter of the
system could create the same effect. We also predict that
negative feedback is more likely to evolve as an attenuator of
stochasticity in systems dominated by extrinsic fluctuations
(Paulsson, 2004; Hooshangi and Weiss, 2006). Alternatively,

intrinsic fluctuations could be reduced by an additional
positive feedback loop to maintain high protein copy numbers
despite the negative feedback needed to attenuate extrinsic
fluctuations. For example, positive and negative feedbacks
occur in the GAL regulon in budding yeast and have been
shown to reduce measurements of noise (Ramsey et al, 2006).

A B
100

10–1

102 103

Mean number of proteins
104 0.2 0.4 0.8 1 2 40.6

d1τ

η2 to
t

100

10–1

η2 to
t

Figure 3 Correlations between the total noise in protein numbers and mean protein numbers and the total noise in protein numbers and the timescale of the extrinsic
fluctuations. We randomly generated 10 000 sets of parameters for the model of gene expression in Figure 1A. We added extrinsic fluctuations to one randomly chosen
parameter of the model (Materials and methods). Overall, the mean ratio of extrinsic noise measured in protein numbers to intrinsic noise is about 2. (A) The square of
the total noise and the mean protein number have a negative correlation of approximately 0.4 for the entire data set (red points and yellow crosses). For parameters
where the measured intrinsic noise is at least 40% of the total noise (yellow crosses), the magnitude of this correlation increases to approximately 0.6, which is
comparable to that observed experimentally (Newman et al, 2006). There is also a correlation of approximately 0.4 between the intrinsic and the extrinsic noise. (B) The
square of the total noise and the timescale of the extrinsic fluctuations measured in the units of protein lifetime (td1) have a correlation coefficient of approximately 0.3 for
the entire data set (red points and green crosses). For parameter sets with extrinsic noise at least 75% of the total noise (green crosses), this correlation increases to 0.6,
which is comparable to that observed experimentally (Sigal et al, 2006).

A B

C D

1

0.8

τ = 1000 s
Intrinsic
Extrinsic
Total

η

0.6

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

0.4

3
×10–4 ×10–3

2

1

Extrinsic = 0
Extrinsic ≠ 0

0
0 2000 4000 6000

t r (s) t r (s)
8000 0 1000 2000 3000 4000 500010000

1

0.8

η

0.6

0.4

1

0.8

0.6

0.4

0.2

0

Repression strength, 1/Kd (m M–1)
102 103 104

Repression strength, 1/Kd (m M–1)
102 103 104

τ = 10 000 s

Figure 4 Extrinsic fluctuations can enhance the effects of negative auto-regulation on stochasticity and response times. Proteins are repressors and can bind to the
inactive promoter state in Figure 1A with a dissociation constant Kd. We let v0 have extrinsic fluctuations with a coefficient of variation of 1. The intrinsic noise increases
and the extrinsic noise decreases as the strength of the feedback increases. The steady-state number of proteins drops from 1000 with no feedback to 300 when the
feedback is maximum. (A) For extrinsic fluctuations with t¼103 s, the total noise mostly increases with feedback strength. (B) For extrinsic fluctuations with t¼104 s, the
total noise mostly decreases with feedback strength. In both cases, there is an optimum Kd for which the intrinsic and extrinsic noise are equal, and the total noise is
minimum. (C) The response time distribution for constitutive expression: measuring from the initiation of transcription, tr is the time taken to first reach 63% of the mean
steady-state number of proteins. Extrinsic fluctuations (t¼104 s) decrease the mode of the distribution from 1800 to 1300 s, while the mean increases from 2900 to
4700 s. (D) The response time distribution for an auto-negative system (KdC60 nM). Extrinsic fluctuations (t¼104 s) decrease the mode from 300 to 200 s. The mean
increases from 1300 to 1900 s. Negative feedback reduces the mean tr by a factor of C2 and the mode tr by a factor of C6.
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Negative auto-regulation also reduces response times
(Savageau, 1974; Rosenfeld et al, 2002). The mean time for
an auto-negative system to reach 63%, or 1�e�1, of its steady-
state number of proteins from the initiation of transcription, tr,
is reduced by at least a factor of two by negative feedback
(Figure 4C and D). This reduction occurs because negative
feedback decreases the timescales of the system and so shifts
the power spectrum of a constitutively expressed gene to higher
frequencies (Simpson et al, 2003; Austin et al, 2006).
Intuitively, negative feedback initially allows expression at a
rate higher than the steady-state rate of expression while the
first repressors are synthesized (Rosenfeld et al, 2002).
Stochastic fluctuations can cause significant variation in timing
(Amir et al, 2007), and we observe that the probability
distribution of tr is asymmetric and the asymmetry is enhanced
by extrinsic fluctuations (Figure 4C and D). An extrinsic
fluctuation can either aid or inhibit gene expression, and its
substantial lifetime ensures that such effects contribute
significantly to tr. Despite increasing the mean response time,
extrinsic fluctuations enable cells to typically respond faster,
irrespective of negative feedback, because the most probable tr
decreases (Figure 4C and D). Yet a population of cells can better
‘hedge its bets’ because a greater number will rarely respond:
the distribution has a longer tail for high response times.

Extrinsic fluctuations can combine destructively
and constructively

Extrinsic fluctuations are nonspecific: they can act simulta-
neously on many parameters of a network (Pedraza and van
Oudenaarden, 2005). Nonspecific extrinsic fluctuations could
arise, for example, from changes in the cell’s growth rate or its
environment. We added extrinsic fluctuations to all pairs of
parameters in the model of Figure 1A. These fluctuations were
either uncorrelated, and generated by individual sources
of stochasticity, or identical, and generated by the same
stochasticity source (Figure 5A and B). For uncorrelated
extrinsic fluctuations, the extrinsic fluctuations in each
parameter combine constructively: the square of the extrinsic
noise is approximately the sum of the squares of the extrinsic
noises generated when each parameter fluctuates alone
(Figure 5A). For identical or, more generally, correlated
extrinsic fluctuations, the extrinsic fluctuations in each
parameter also combine constructively if both parameters
affect protein numbers similarly (protein numbers are
proportional or inversely proportional to both parameters).
Extrinsic fluctuations can be destructive, however, if both
parameters have opposing effects on protein numbers (protein
numbers are proportional to one parameter and inversely
proportional to the other). Fluctuations in the two extrinsic
variables then have little effect on measurements of the
extrinsic noise because a fluctuation in the variable that acts to
increase protein numbers is counteracted by the same, or a
similar, fluctuation in the variable that acts to decrease protein
numbers (Figure 5B). A network architecture that channels
extrinsic fluctuations into two parameters with opposing
effects on protein numbers can therefore attenuate stochasti-
city, and one that channels extrinsic fluctuations into two
parameters with similar effects on protein numbers can be a

stochasticity amplifier. We confirmed these results using a
Langevin calculation (Supplementary information).

Constructive and destructive extrinsic fluctuations occur in
feedforward loops, one of the most common motifs in genetic
networks (Milo et al, 2002). Figure 5C and D illustrates two
feedforwards, where gene Z is activated by genes X and Y, and
gene Y is either activated by gene X (coherent feedforward) or
repressed by gene X (incoherent feedforward) (Mangan and
Alon, 2003). Extrinsic fluctuations in X proteins generate
fluctuations in Y proteins because X regulates Y. Feedforwards
channel these correlated fluctuations in X and Y into the levels
of Z proteins because both X and Y regulate Z. Fluctuations can
combine constructively or destructively at Z. If the timescale of
the extrinsic fluctuations is less than intrinsic timescales,
however, extrinsic fluctuations are averaged away and such
effects are no longer seen (Ghosh et al, 2005; Hayot and
Jayaprakash, 2005). In the coherent feedforward loop, the
extrinsic fluctuations combine constructively because X and Y
affect gene expression of Z similarly (Figure 5C). In the
incoherent feedforward loop, X and Y have opposing affects on
gene expression and their extrinsic fluctuations combine
destructively (Figure 5D). As well as being sign-sensitive
delays and accelerators (Mangan and Alon, 2003), feed-
forward loops may therefore also have been selected to
amplify or attenuate extrinsic fluctuations in their input, X.

Discussion

Here, we have extended the standard stochastic simulation
algorithm for simulating intrinsic fluctuations in biochemical
networks (Gillespie, 1976) to include extrinsic fluctuations
(Materials and methods). Although extrinsic fluctuations have
been modeled previously (Austin et al, 2006; Cox et al, 2006;
Geva-Zatorsky et al, 2006; Scott et al, 2006; Sigal et al, 2006;
Tanase-Nicola et al, 2006; Tsimring et al, 2006; Volfson et al,
2006; Maithreye and Sinha, 2007), our approach is more
general: we can simulate extrinsic fluctuations with any
desired properties; we can vary many parameters with
correlated or uncorrelated fluctuations; and we are able to
average over intrinsic fluctuations by repeating simulations
with the same trajectory of extrinsic variation. In the
Supplementary information, we show that time-varying
extrinsic fluctuations lead to a generalization of the original
interpretations of intrinsic and extrinsic noise (Swain et al,
2002).

Both the magnitude and the timescales of fluctuations are
necessary to predict the effects of one stochastic system
interacting with another. The mixing of the timescales of the
two systems through their interaction can lead to so-called
deviant effects (Samoilov and Arkin, 2006), such as a shifting
of the mean and asymmetries in the distribution of protein
numbers. Extrinsic fluctuations can even decrease the intrinsic
noise measured in protein levels. We predict that deviant
effects will be common in biochemical networks because these
networks typically have substantial extrinsic fluctuations and
the timescale of these fluctuations can be the longest timescale
in the system. Indeed, such effects are present in high-
throughput measurements of cellular variation (Bar-Even et al,
2006; Newman et al, 2006; Sigal et al, 2006).
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We can use our simulation method to investigate the
source of extrinsic fluctuations. Interpreting our results as a
stochastic sensitivity analysis, we predict that variation in
transcription and translation rates to be the most significant
sources. Such variation could arise from fluctuations in the
numbers of free ribosomes or RNA polymerases or in the
numbers of ribonucleotides, tRNAs, or amino acids. Being
based on the parameter set of Figure 1A, this prediction is
model specific, but we expect it to hold for other genes in
Escherichia coli.

Extrinsic fluctuations can create stochasticity in the output
of a network of a magnitude that is substantially different from
the magnitude of the extrinsic fluctuations themselves. If
correlated, fluctuations in two parameters of a network can
combine constructively to create extrinsic noise in the protein
output that is many times the extrinsic noise measured for
each parameter fluctuating independently. A different network
architecture, however, can cause correlated extrinsic fluctua-
tions to almost entirely negate each other. Both effects are
likely to be present in cells. We predict that constructive and
destructive extrinsic fluctuations are present in feedforward
loops in genetic networks, and Tanase-Nicola et al (2006)

predict destructive fluctuations in ultra-sensitive protein
signaling cascades.

Extrinsic fluctuations, through their timescales and non-
specificity, are thus an important component of the intra-
cellular environment. To function in this environment,
biochemical networks are likely to have evolved to control
or exploit these fluctuations. Our stochastic simulation
algorithm and mathematical analysis should therefore help
to quantitatively understand endogenous networks and to
design effective synthetic ones.

Materials and methods
To simulate extrinsic fluctuations, we extend Gillespie’s first reaction
algorithm (Gillespie, 1976) to include discontinuous, time-dependent
reaction rates. In the first reaction algorithm, a putative time for each
potential reaction in the system is calculated, and the reaction whose
putative time is first is implemented. Simulation time is then
incremented by this reaction time. Each putative reaction time is
calculated from the propensity of the reaction: the probability of the
reaction per unit time multiplied by all ways of selecting the reactants
(Gillespie, 1976). The propensity, a(t), is a function of time if the
probability of the reaction per unit time is not constant.
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Figure 5 Nonspecific effects of extrinsic fluctuations: fluctuations can combine constructively or destructively when applied to two parameters in Figure 1A. Let ZðiÞ
ext be

the extrinsic noise measured when the parameter i fluctuates, and let Zði;jÞ
ext be the extrinsic noise measured when parameters i and j fluctuate. (A) The relative extrinsic

noise, ðZði;jÞ
ext Þ

2=½ðZðiÞ
extÞ

2 þ ðZðjÞ
extÞ

2� , when uncorrelated extrinsic fluctuations are applied to a pair of parameters. The scale bar shows the magnitude of the relative

extrinsic noise: ðZði;jÞ
ext Þ

2 ’ ðZðiÞ
extÞ

2 þ ðZðjÞ
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2 . (B) The relative extrinsic noise when correlated extrinsic fluctuations are applied to a pair of parameters:
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ext Þ

2 
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2 . Note the different scale bar. (C) The total noise measured in a coherent feedforward loop versus the

timescale of extrinsic fluctuations in the number of X proteins. The feedforward amplifies stochasticity: extrinsic fluctuations in X combine constructively with those in Y. (D) The
total noise in an incoherent feedforward loop versus the timescale of extrinsic fluctuations in the number of X proteins. The feedforward attenuates stochasticity: extrinsic
fluctuations in X combine destructively with those in Y. In (C, D), results for the feedforward loop are shown with blue squares and results for the equivalent ‘open’ loop are
shown with red circles. In the open loop, X0 has the same mean copy number as X, but uncorrelated extrinsic fluctuations. The coefficient of variation of the extrinsic fluctuations
in X or X0 is 1. The two protein inputs X and Y regulate the gene Z through an AND gate. Other types of feedforward or regulation give similar results.
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For a time-varying propensity, we can show (Supplementary
information) that the putative reaction time, t, obeysZ t

0

dt aðtÞ ¼ logð1=rÞ ð1Þ

where r is a uniform random number between 0 and 1. Equation (1) is
general, but it may be difficult to analytically find t for a complex a(t).
Consequently, we approximate a(t) by a series of step functions or a
piecewise-linear function. If we sample a(t) every Dt seconds and use
the more accurate piecewise linear approximation, then a(t)Ba0þ a1t
for t within a Dt interval. Here, a0 and a1 are constants defined by the
Taylor series of a(t) and will change discontinuously from one Dt
interval to the next. We can use equation (1) to exactly implement
discontinuous changes in a propensity (Supplementary information).
Briefly, if the next predicted reaction would bring the simulation time
into the next Dt interval, we do not implement this reaction, but
instead change the time-dependent propensity to the new functional
form valid for the new Dt interval. We set the simulation time to the
start of the new Dt interval and re-calculate the putative reaction times
for all the reactions.

To calculate the putative reaction time within each Dt interval when
a(t)¼a0þa1t, we again use equation (1) which implies

t ¼ a0

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2a1

a2
0

logðrÞ � 1

s !
ð2Þ

where t obeys 0ptpDt. If a1o0 and r4e
a2

0
2a1 , then the reaction cannot

occur (t¼N).
By generating a time series for a source of extrinsic fluctuations

before running our algorithm, we can then use this time series to
change reaction rates appropriately to simulate extrinsic fluctuations.
We use the Ornstein–Uhlenbeck process to generate the time series
(Fox et al, 1988; Gillespie, 1992). This process, e(t), has a positive
autocorrelation time and is normally distributed. Consequently, when
added to a parameter k so that k-kþ e(t), k can become negative.
Exponentiating e(t), however, and letting k-kee(t)//ee(t)S generates a
log-normal stochastic process for k. Such a process is suitable for
modeling fluctuations in extrinsic variables (Rosenfeld et al, 2005): k
has a fixed mean, a finite auto-correlation time, and is always positive.

When measuring extrinsic and intrinsic noise, we simulate two
copies of the model of Figure 1A. We define

Z2
int ¼

hðI1 � I2Þ2i
2hIi2

; Z2
ext ¼

hI1I2i � hIi2

hI1i2
ð3Þ

where I1 is the number of proteins for the first copy and I2 the number
of proteins for the second copy. We use /I1S¼/I2S¼/IS because
both copies have the same mean. We simulate with the Gibson and
Bruck (2000) version of the Gillespie method using the Facile network
complier and its stochastic simulator EasyStoch (Siso-Nadal et al,
2007). Both are freely available at www.cnd.mcgill.ca/~swain. All
reactions and kinetic rates are included in the Supplementary
information. Averages are time averages taken over many times the
longest timescale of the system.

For Figure 3, we generated parameter sets for our model of gene
expression from log-normal distributions with means given by the
parameter values in Figure 1A and a standard deviation in log-space of
20% of the mean. We choose k0, however, by sampling the probability
of the promoter being in the active state from a log-normal distribution
with a mean given by the parameters in Figure 1A and with a standard
deviation of 70% of this mean in log-space. We let extrinsic
fluctuations act on a randomly chosen parameter in each model. We
chose the coefficient of variation of these fluctuations from a normal
distribution with a mean of 1 and a standard deviation of 0.1. For each
model, we sample t from a log-normal distribution with a mean of
2500 s, the mean protein lifetime, and with a standard deviation of
50% of this mean in log-space.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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