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Two-dimensional structure in a generic model of triangular proteins and protein trimers

Philip J. Camp* and Peter D. Duncan
School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom

�Received 30 December 2005; published 10 April 2006�

Motivated by the diversity and complexity of two-dimensional �2D� crystals formed by triangular proteins
and protein trimers, we have investigated the structures and phase behavior of hard-disk trimers. In order to
mimic specific binding interactions, each trimer possesses an “attractive” disk which can interact with similar
disks on other trimers via an attractive square-well potential. At low density and low temperature, the fluid
phase mainly consists of tetramers, pentamers, or hexamers. Hexamers provide the structural motif for a
high-density, low-temperature periodic solid phase, but we also identify a metastable periodic structure based
on a tetramer motif. At high density there is a transition between orientationally ordered and disordered solid
phases. The connections between simulated structures and those of 2D protein crystals—as seen in electron
microscopy—are briefly discussed.

DOI: 10.1103/PhysRevE.73.046111 PACS number�s�: 64.60.�i, 64.70.Dv, 05.10.Ln

I. INTRODUCTION

Two-dimensional �2D� materials present some fascinating
challenges to condensed-matter theory, with even the most
simple 2D systems harboring surprises. One of the most fa-
mous problems involves the precise description of melting in
2D solids made up of hard, disklike particles with short-
range repulsive interactions �1–4�. Specifically, does the fluid
undergo a weak first-order transition to the solid, or is there
an intermediate hexatic phase linked by two continuous
phase transitions? Related avenues of research concern the
existence of exotic phases in systems made up of more com-
plex particles, such as �non�periodic solids of hard-disk
dimers �5,6�, pentamers and hexamers �7�, tetratic phases of
hard squares �8� and hard rectangles �9�, and orientationally
ordered solids of hard pentagons and heptagons �10�. The
effects of additional interactions on the phase behavior and
dynamics of 2D systems are also of interest, as evidenced by
recent studies on dipolar potentials in the context of mag-
netic colloids �11�. Such models provide an ideal testing
ground for condensed-matter theories, and in some cases
challenge our most fundamental understanding of the prop-
erties of matter.

Despite their simplicity, 2D models can provide reliable
descriptions of some real, and rather complex, experimental
situations. For example, in a number of recent studies, 2D
models have been employed to help interpret and understand
the clustering and crystallization of proteins at interfaces.
The conformations and interactions of proteins are central to
biological activity, and ideally one would like to investigate
these properties in vivo. Unfortunately, structural information
is most commonly obtained from x-ray diffraction studies on
crystals. There is a class of proteins, however, that can be
studied under conditions resembling those in vivo. Mem-
brane proteins constitute a large class of molecules found
within the lipid bilayers that constitute cell walls. They fulfill
a variety of roles, such as controlling the selective transport

of ions and molecules across cell membranes, or providing
binding sites for other molecules onto the membrane. The
structures of membrane proteins can be studied by deposition
onto a surface, alongside lipids, to form either low surface
coverage or 2D crystals; the hydrophobic lipids help to
mimic the interior of the membrane. Electron microscopy or
atomic-force microscopy can then be used to image directly
the clustering and packing of proteins at the solid-air inter-
face �12�. In many cases, the ordering of proteins can be
rationalized on the basis of their gross shapes �the way in
which those shapes would “tile the plane”� and the presence
of specific binding interactions between domains on different
molecules. For example, the surface structure of bacterior-
hodopsin �a transmembrane protein� is comprised of a close-
packed array of trimers, each made up of monomers that
resemble 120° sectors of a circle. Monte Carlo �MC� simu-
lations of hard sectors—with an additional attractive square-
well potential to mimic specific binding interactions—yield
insight on the self-assembly and subsequent crystallization
processes �13�. In another application, the ordering in 2D
crystals of annexin V—another “triangular” membrane
protein—was reproduced in simulations of a hard-disk model
decorated with an appropriate orientation-dependent poten-
tial to mimic the locations of the specific binding sites on the
protein �14,15�. Experimentally observed honeycomb and
triangular structures were captured by the molecular model.
These examples show that the basic physics of large scale
structural order in 2D protein crystals can be studied with
simple models, and without resorting to atomistically
detailed—and hence very expensive—computer simulations.

There are a large number of proteins which are either
inherently triangular in shape, or otherwise form trimeric
structures �16–22�. For example, rotavirus inner capsid pro-
tein V6 forms trimers resembling equilateral triangles, which
pack in 2D crystals �space group p6� �16�. Specific frag-
ments of prion proteins found in vivo form trimeric units that
crystallize into a 2D structure �space group p3� �21�. Finally,
we highlight an example in which a membrane fusion protein
�from the Semliki forest virus� is seen to form pentagons of
trimers, with the center of the pentagon raised slightly out of
the plane �20�. Some semblance of local fivefold coordina-*Email address: philip.camp@ed.ac.uk
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tion can also been seen in TetA—a roughly triangular trans-
porter protein—at moderate surface coverages �18�.

Motivated by the diversity of 2D crystal structures exhib-
ited by trimeric protein units, and also by the observation of
fivefold coordination �20�, we have investigated the structure
and phase behavior of model trimeric molecules made up of
hard disks. In order to mimic specific binding interactions,
such as those that might give rise to local fivefold coordina-
tion, we focus on an equilateral triangle of three hard disks at
contact, in which one disk can interact with the correspond-
ing disks on other molecules via a short-range attractive
square-well potential. As we will show below, this raises the
possibility of generating orientational order within simple
close-packed structures, and also offers the opportunity of
forming clusters at low surface coverages. Using MC simu-
lations, we map out the phase diagram of the model system,
and characterize the structures of the low-density clustered
fluid and high-density solids which are formed at low tem-
perature. The remainder of the article is organized as follows.
In Sec. II we describe the molecular model, and summarize
the simulation methods. The results are presented in Sec. III,
and Sec. IV concludes the paper.

II. MODEL AND METHODS

The molecular model consists of three hard disks, each of
diameter �, fused at mutual contact to form an equilateral
triangle. Two of the disks on each molecule are purely repul-
sive, and interact with all other disks in the system through
the potential

u�r� = �� , r � � ,

0, r � � ,
� �1�

where r is the separation between the centers of two disks.
The third disk on each molecule carries a central attractive
interaction site; these “attractive” disks interact with each
other via the potential

u�r� = �� , r � � ,

− � , � � r � �� ,

0, r � �� ,
� �2�

where �	1 controls the range of the attraction. This poten-
tial crudely mimics an effective attraction between vertices
of the molecular triangles, which might arise through specific
interactions �e.g., hydrogen bonding, disulfide bridges, effec-
tive solvophobic interactions�.

The parameter � will clearly have a crucial role to play in
the thermodynamics of the system. If �
1 then one should
anticipate a conventional phase diagram containing a vapor-
liquid transition, and a fluid-solid transition. The orientation
of a trimer can be defined by a vector n joining the geometri-
cal center of the trimer with the center of the attractive disk.
It is unlikely that there would be any periodic orientational
ordering of n in the solid phase; if two trimers can interact
favorably irrespective of the mutual orientation, then on en-
tropy grounds the orientations will be disordered. In the op-
posite extreme, ��1, the molecules will feel the orientation
dependence of the net trimer-trimer potential, and ultimately

we might expect the vapor-liquid transition to disappear from
the equilibrium phase diagram. Indeed, in a pure square-well
hard-sphere fluid, condensation becomes metastable with re-
spect to freezing when ��1.25 �23�. In the present case, an
interaction range ��	3 guarantees that attractive sites must
face each other directly in order to interact; when �		3 it is
possible for an attractive disk to be within interaction range
of a trimer even if it approaches from “behind.” With these
comments in mind, we have chosen to study a system with
�=1.25. The ratio of �� to the �angle-averaged� diameter of
the trimer is smaller than that in a pure square-well hard-
sphere system with the same value of �, and assuming some
sort of correspondence between two- and three-dimensional
systems, we do not anticipate there being a vapor-liquid tran-
sition in the equilibrium phase diagram. On the other hand,
because the trimers have to attain quite specific mutual ori-
entations in order to interact favorably �since ��	3�, we
should expect to see some sort of nontrivial structure in fluid
and solid phases at low temperatures.

Systems of N=120 trimers were studied using MC simu-
lations either in the isothermal-isobaric �NpT� ensemble or
the canonical �NAT� ensemble �24�. The simulation cell was
rectangular with dimensions Lx and Ly, and area A=LxLy.
Each MC cycle consisted of one translational trial move and
one rotational trial move for each of N randomly selected
molecules. Displacement parameters were adjusted to give

50% acceptance rates. To help equilibrate dense phases,
we included trial moves in which a randomly selected trimer
was rotated by ±120°. In NpT simulations of solid phases, Lx
and Ly were varied independently; in NpT simulations of
fluid phases, the simulation cell was constrained to be
square. For most thermodynamic state points typical equili-
bration runs consisted of 
105 MC cycles, but some points
�close to phase transitions� required 
106 MC cycles. Pro-
duction runs were typically
105 MC cycles. We define the
following dimensionless units in terms of the square-well
depth, �, and the hard-disk diameter, �: number density �*

=N�2 /A; temperature T*=kBT /�; pressure p*= p�2 /kBT.

III. RESULTS

The phase diagram of the model trimers in the density-
temperature ��*-T*� plane is sketched in Fig. 1. Before de-
tailing the determination of the phase boundaries, the char-
acteristics of the different phases will be described. There are
four distinct regions in the phase diagram. At low density
and high temperature, a normal fluid phase is in evidence
�fluid I�. A typical simulation configuration is shown in Fig.
2�a�. There is neither translational nor long-range orienta-
tional order in the system.

At high density and high temperature, the stable solid
phase �solid I� possesses an orientationally disordered struc-
ture �in the sense that n is disordered� with the trimers close-
packed to form alternating rows displaced by � /2. Figure
2�b� shows both the lack of orientational order, and the reg-
istry between alternating rows. Notice the black bonds show-
ing how the disks are connected within the trimers; we call
this an “AB” structure to denote the alternating alignment of
the rows. The close-packed rows resemble those formed by
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VP6 �16�, although the registry between the rows is different.
At the end of this section, we will briefly discuss the possi-
bility of solids with other close-packed structures.

At low temperature and low density we find a highly as-
sociated fluid �fluid II�, in which the attractive disks aggre-
gate to form distinct clusters. A typical configuration is
shown in Fig. 2�c�, which exhibits a broad distribution of

cluster sizes. To identify clusters, we employ the obvious
criterion that two trimers with attractive disks within inter-
action range belong to the same cluster. With this definition
in mind, Fig. 2�c� shows that, in general, the attractive disks
within the clusters form close-packed motifs, rather than
loose arrangements of disks on the circumference of a ring.
For clusters of three trimers there is no distinction, whereas
for four or more trimers the close-packed arrangement is
more favorable; in a ring, each disk would have two nearest
neighbors, whereas close-packed motifs can accommodate
more than two direct contacts. In Fig. 3 we show the prob-
ability distribution function of clusters containing n mol-
ecules, at different pressures along an isotherm with T*

=0.3. As the pressure and density increase, the distributions
show peaks at progressively higher values of n. At the high-
est fluid-density shown—�*=0.280, Fig. 3�e�—the most
probable cluster size is n=5. We had hoped that these clus-
ters would adopt a pentagonal structure, but instead the at-
tractive disks form “Olympic rings” motifs, such as those
shown in Fig. 2�c�. The maximum disk-disk separation in a
perfect pentagon of disks at contact is 	2�1−cos 108° ��
�1.62�, which is longer than the range of the potential stud-
ied in this work. Hence, to minimize the energy, the cluster
will contract to form a close-packed structure. Perhaps pen-
tagonal clusters would be formed in a system with 1.62��
�	3? �The upper limit means that there can be no other
disks between two interacting attractive disks.� We did some
test runs in the fluid phase with �=1.7, but no pentagonal
clusters were observed. If anything, fewer distinct clusters
were in evidence as compared to �=1.25, presumably be-
cause it is less crucial that the trimers attain a specific mutual
orientation in order to interact.

Upon compression of the low-temperature fluid we often
encountered metastable structures, such as that shown in Fig.
2�d�. This clearly shows a predominance of n=6 clusters,
with the attractive disks close packed to form a parallelo-
gram motif, but the clusters are not yet fully packed into a
solid structure. This process is completed upon further com-

FIG. 1. Phase diagram of the model trimer system in the
density-temperature ��*-T*� plane: �solid points and solid lines� ap-
proximate fluid-solid phase boundaries, assumed to be first order;
�open points and dashed lines� boundaries between high-
temperature unclustered states and low-temperature clustered states,
as evidenced by maxima in the heat capacity along isobars; �dot-
dashed line� close-packed density, �cp

* =2/3	3�0.3849.

FIG. 2. �Color online� Configuration snapshots from NpT simu-
lations: �a� normal fluid phase �fluid I� at T*=2, p*=2.5, �*

=0.259; �b� orientationally disordered AB solid phase �solid I� at
T*=2, p*=12, �*=0.345; �c� clustered fluid phase �fluid II� at T*

=0.25, p*=0.75, �*=0.222; �d� metastable state at T*=0.25, p*

=2.6, �*=0.290; �e� orientationally ordered AB solid phase �solid
II� at T*=0.25, p*=12, �*=0.349; �f� metastable orientationally or-
dered AA solid at T*=0.25, p*=20, �*=0.356. In each case the
attractive disks are colored dark gray �red online�, the repulsive
disks are colored light gray, and all disks are drawn with diameter
1�.

FIG. 3. Cluster distributions for systems along the isotherm T*

=0.3: �a� p*=0.5, �*=0.188; �b� p*=1, �*=0.230; �c� p*=1.5, �*

=0.252; �d� p*=2, �*=0.265; �e� p*=2.5, �*=0.280; �f� p*=6, �*

=0.329. In �a�–�e� the system is fluid, whilst in �f� the system is
solid �II�.
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pression, to form a p2 periodic solid �solid II�, a defective
example of which is shown in Fig. 2�e�. In simulations of the
high-density solid II phase, the initial configuration consisted
of the appropriate AB structure, but with n for each molecule
chosen randomly from the three molecular arms; the orien-
tational structure shown in Fig. 2�e� develops spontaneously.
The cluster distribution for such a solid at temperature T*

=0.3 and density �*=0.329 is shown in Fig. 3�f�. The pri-
mary peak is at n=6, but the presence of defects—such as
those shown in Fig. 2�e�—gives rise to smaller “clusters” of
attractive disks.

The fluid-solid phase boundaries were located by moni-
toring the equation of state p��� along selected isotherms in
NpT simulations. For each isotherm, two sets of simulations
were performed: a compression branch, starting from a low-
density fluid configuration; and an expansion branch, starting
from the perfect solid structure corresponding to that found
in the compression branch at high pressure. Portions of two
representative examples �T*=0.3 and T*=1� are shown in
Fig. 4. Of course, the fluid equations of state extend to much
lower densities, but these exhibit entirely conventional be-
havior and hence are not shown; in particular, there is no
sign of a “van der Waals” loop which would indicate a
vapor-liquid phase transition. The main features of interest
are the apparent discontinuities in the density at what are
assumed to be first-order phase transitions �we will not open
up the can of worms associated with the precise nature of
two-dimensional melting and freezing �1–4��. In Fig. 4 we
indicate distinct fluid and solid branches in the equations of
state, a number of putative metastable states �as discussed
above�, and approximate tie-lines connecting the fluid and
solid coexistence densities, obtained as follows. The fluid
branch was fitted with a virial expansion containing terms up

to �5, i.e., p /kBT=�+�n=2
5 Bn�n, while the solid branch was

found to be fitted rather well by a simple van der Waals
equation �25� of the form p /kT=a� / �1−b��−c�2, which
contains a free-volume term arising from repulsive interac-
tions, and a mean-field term arising from the attractions. The
coexistence densities were then estimated by extrapolating
the fitted branches of the equation of state to a pressure half
way between those in the highest-density stable fluid and the
lowest-density stable solid; the metastable states were iden-
tified as those that did not fit onto either branch and/or for
which the simulation configuration was clearly neither pure
solid nor pure fluid, e.g., Fig. 2�d�. Obviously this approach
provides only very rough locations for the phase boundaries
shown in Fig. 1, but some general trends are nonetheless
apparent. At very low temperatures, the coexistence densities
decrease as the system is cooled, and the transition appears
to be getting weaker. At high temperatures �T*�1� the fluid
coexistence density ��*�0.30� is very similar to the density
at which the pure hard-disk fluid undergoes its transition,
either to a hexatic or a solid �disk density �*=0.899 �4�,
“trimer” density �*=0.300�. The apparent trimer solid coex-
istence density ��*�0.32� is significantly larger than the
melting density of hard disks �disk density �*�0.914 �4�,
trimer density �*�0.305�.

The final piece of the equilibrium phase diagram concerns
the crossover from high-temperature orientationally disor-
dered states to low-temperature states that possess structural
motifs arising from the clustering of the attractive disks. To
delineate the boundary between these two regimes, we cal-
culated the heat capacity appropriate to the statistical me-
chanical ensemble being sampled. In general we used NpT
simulations to measure Cp= ��H /�T�p—where H=U+ pA is
the enthalpy �minus the kinetic contribution�—as a function
of temperature along an isobar. Since clustering must be ac-
companied by a drop in the configurational energy, and en-
thalpy, a peak in Cp would seem to be an obvious signal of a
crossover from unclustered to clustered states. In simulations
we evaluated the usual fluctuation formula, Cp= �H2�
− H�2� /kBT2, and, as a check, differentiated an �n ,n� Padé
approximant fitted to the enthalpy as a function of T;

H =
a0 + a1T + a2T2 + ¯ + anTn

1 + b1T + b2T2 + ¯ + bnTn . �3�

These two approaches yielded consistent results, and the
peak in Cp was easy to locate accurately. In general the peak
height is less pronounced at high densities, mainly due to the
fact that even in the high-temperature phase there must be
some attractive disks within interaction range due to the con-
finement. Thus, the most difficult situation obtains at close
packing of the trimers, �cp

* =2/3	3. In this case we studied a
perfect close-packed AB solid, and carried out NAT MC
simulations with ±120° rotations only. We show results for
the configurational energy, U, and the excess constant-area
heat capacity, CA= ��U /�T�A, in Fig. 5. A �5,5� Padé fit pro-
vides a reliable description of the energy, and the corre-
sponding results for CA are consistent with those obtained via
the fluctuation formula.

FIG. 4. Equations of state along isotherms with T*=0.3 �solid
symbols, solid lines�, and T*=1 �open symbols, dashed lines�:
�circles� state points from NpT simulations of AB solid phase;
�squares� state points from NpT simulations of AA solid phase �T*

=1 only�; �diamonds� state points from NpT simulations of p3 solid
phase shown in Fig. 6 �T*=1 only�; �crosses� putative metastable
state points; �triangles� approximate coexistence densities; �lines�
fits to the fluid and solid branches �see text�. The statistical errors in
the NpT simulation points are smaller than the symbols.
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In Fig. 1 we show the positions of the maxima in Cp—and
CA at �cp

* =2/3	3—along with separate cubic fits to the
points in the fluid and solid regions of the phase diagram. It
appears that the two branches would meet up somewhere in
the fluid-solid coexistence region. We stress that the bound-
aries indicated do not represent thermodynamic phase tran-
sitions; rather, they separate different regimes of trimer asso-
ciation.

Finally, we briefly consider the possibility of the trimer
system adopting other solid structures, such as the p2 AA
structure shown in Fig. 2�f�, in which the close-packed �hori-
zontal� rows are matched with the neighboring rows. In this
case, the low-temperature, orientationally ordered solid ex-
hibits rhombic cluster-motifs containing only four attractive
disks. Out of those four disks, two are interacting with two
other disks, and two are interacting with three other disks.
Hence, the minimum configurational energy for an AA solid
is − 5

4� per trimer. In the AB structure, there are six attractive
disks per parallelogram motif, of which two have two neigh-
bors, two have three neighbors, and two have four neighbors,
giving a minimum energy of − 3

2� per trimer. Hence, on en-
ergetic grounds, we should expect the AB structure to be
thermodynamically favored. Even at high temperature, the
AA structure appears to be less stable with respect to the AB
structure. As an example, in Fig. 4, we show an AA solid
branch of the equation of state at T*=1, alongside the AB
solid branch. For a given pressure, the AB solid has the
higher density which makes this state at least mechanically
stable with respect to AA. Indeed, we only ever observed the
fluid spontaneously freezing into an AB structure. Although
we have not performed free-energy calculations, it would be
very surprising if an entropic effect could compensate for the
relative energetic and mechanical stability of the AB phase
with respect to the AA phase.

Another possible close-packed structure is illustrated in
Fig. 6�a�, without any indication of the attractive disks. This
structure resembles that adopted by 2D crystals of TetA �18�,
although we never saw this packing structure emerge spon-
taneously from our simulations. As far as our model is con-

cerned, the absence of this structure at low temperature is
easy to understand. In Figs. 6�b� and 6�c� we illustrate mirror
images of the most obvious periodic arrangement of the at-
tractive disks �space group p3�. The energy per trimer is only
−1�, and so this is not competitive with the AB structure that
is seen to emerge spontaneously in our simulations. In Fig. 4
we include some equation-of-state data for the p3 structure at
T*=1, which show that this structure is marginally less me-
chanically stable than the AB structure. Nonetheless, free-
energy calculations would be of interest, particularly at high
temperatures where entropy is everything.

IV. DISCUSSION

In this article we have described the structure and phase
behavior of a generic model of trimeric molecules, largely
motivated by recent experimental 2D microscopy studies of
clustering and crystallization in triangular proteins and pro-
tein trimers. The molecular model consists of a triangle of
hard disks, with one of the disks participating in attractive
square-well interactions with similar disks on other trimers.
The range of the square-well potential, ��, was 1.25 times
the disk diameter. This system crudely mimics the general
shape and specific interactions of a wide range of proteins.
The model system exhibits fluid and solid phases which, at
low temperatures, possess interesting structural motifs aris-
ing from the clustering of the “attractive” disks.

In the fluid, a distribution of clusters is in evidence, in-
cluding tetramers, pentamers, and hexamers �of trimers�. In
the pentamers and hexamers, the attractive disks close-pack
to form Olympic rings and parallelogram shapes, respec-
tively. We had hoped to find more open pentagonal clusters
of trimers, such as those reported in Ref. �20�. To investigate
the formation of such clusters further, it might be interesting
to study a system of hard isosceles triangles with the unique
angle equal to 72°, and a short-range attraction operating
between the corresponding vertices.

In the low-temperature solid, the basic structural motif
consists of clusters of six molecules, with the attractive disks
close-packed to form a parallelogram. A metastable solid
possessing a motif made up of four molecules was also iden-
tified. The fundamental difference between the two situations
is the registry between neighboring close-packed rows of tri-

FIG. 5. Configurational energy U �left� and excess heat capacity
CA �right� as functions of reduced temperature T* at the close-
packed density �*=2/3	3�0.3849: �circles� simulation results;
�lines� results derived from a Padé �5,5� fit �see text�.

FIG. 6. �Color online� Illustrations of an alternative close-
packed structure: �a� without an assignment of attractive disks; �b�
and �c� mirror images of a possible structural motif for a periodic
arrangement of attractive disks. The attractive disks are colored
dark gray �red online�, the repulsive disks are colored light gray,
and all disks are drawn with diameter 1�.
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mers �AB versus AA�. Even at high temperatures, the orien-
tationally disordered AB solid is at least mechanically stable
with respect to the AA solid. We identified a third structure
based on hexagonal close packing, but this structure is not
competitive either, at least in terms of energy. It would be
worth performing free-energy calculations to study these is-
sues further.

Finally, it is worth commenting that a diverse range of 2D
structures can be generated from very simple molecular mod-
els. Fully atomistic calculations of 2D protein structures are

expensive, and, it could be argued, yield little insight on the
fundamental physics behind clustering and crystallization. As
has been shown in a variety of cases, including the present
study, the process of developing and studying simple models
of complex systems can yield some surprising results.
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