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Combined detection and introgression of quantitative trait
loci underlying desirable traits

M. H. Yazdi,*1 A. K. Sonesson,† J. A. Woolliams,*‡ and T. H. E. Meuwissen*

*Department of Animal & Aquacultural Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway;
†AKVAFORSK, PO Box 5010, 1432 Ås, Norway; and ‡Roslin Institute, Roslin, Midlothian, EH25 9PS, UK

ABSTRACT: This study presents a new method that
combines QTL mapping and gene introgression. The
effectiveness of this method for simultaneous detection
and introgression of a desirable QTL from a donor line
into a recipient line was evaluated by simulation. For
evaluation, we used the fourth backcross generation of
2 inbred lines. The difference between the 2 lines for
the trait of interest was described entirely by 1 QTL,
with the donor line carrying the superior allele. Nine
scenarios, combinations of 3 heritabilities (h2 = 0.10,
0.05, or 0.01) and 3 population sizes (N = 100, 500, or
1,000) were considered in the simulation. Selection of
parents for the next backcross was based solely upon
the estimated probability of carrying the superior allele
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INTRODUCTION

To date, the most commonly used approach to intro-
gress genes from a donor line into a recipient line is
through an introgression program. In the most simple
introgression program, only phenotypic differences are
known between the 2 lines. For example, the donor line
is known to be very high-performing for 1 specific trait,
whereas the recipient line is poorly performing for this
trait, although the trait is desired for the recipient line.
In addition to the phenotypic information, develop-
ments in molecular marker technologies have created
a great opportunity for geneticists and breeders to uti-
lize the genetic marker information in QTL mapping
and gene introgression programs to accelerate the re-
duction of the remaining donor segment, which is a
critical issue in introgression schemes (Tanksley and
Rick, 1980; Stam and Zeven, 1981; Tanksley et al., 1981;
Soller and Beckmann, 1983; Wall et al., 2005).

1Corresponding author: hossein.yazdi@umb.no
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after a QTL analysis. Estimates of the QTL location
and allele substitution effect in most scenarios were
comparable to the true values. However (with either
small h2 or N) the QTL allele substitution effect was
underestimated, and location was also biased. The SE
of the estimates decreased with increasing N. The re-
tained donor chromosome segment and linkage drag
were close to the expected values from other published
work. In general, combined detection and introgression
of genes underlying desirable traits not only saves at
least 1 generation, but also it ensures that the desirable
QTL is introgressed where its function is simultane-
ously tested in a planned environment and recipient
genome structure.

Introgression of a detected QTL using genetic mark-
ers has been successful in practice (Jefferies et al., 2003;
Koudandé et al., 2005). In all of these studies, QTL
identification proceeded introgression, and the times-
cale of improvement was the time taken for QTL detec-
tion plus the time taken for introgression, limiting the
practicality of the approach.

One approach to shorten the time needed for intro-
gression is to combine the 2 steps, QTL identification
and introgression, into a single step. This would com-
bine the strengths of fine-mapping and backcrossing
and pave the way for introgression of desirable but
unknown QTL into recipient lines in animals and plants
simultaneously.

The objective of this study is to present a method that
performs QTL mapping and introgression of desirable
genes from a donor line into a recipient line simultane-
ously. The effectiveness of this method will be investi-
gated through simulation considering 2 inbred lines.

MATERIALS AND METHODS

Animal Care and Use Committee approval was not
obtained for this study because no animals were used.
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Base Populations

Two inbred divergent lines (recipient and donor) were
simulated using Monte Carlo simulation. The genome
structure of individuals was diploid, with size 100 cM
in 1 chromosome (carrier chromosome). The genome
was assumed to have 1 QTL affecting the trait of inter-
est and 101 markers. The markers were positioned at
equal distances on the chromosome. Each locus, either
QTL or marker, was assumed to be biallelic, with addi-
tive gene effects for the QTL and no effects for the
markers. The 2 lines were fixed for the alternative al-
leles at each locus, which is consistent with the assump-
tion of inbred lines. The assumption of additivity for
the QTL is not essential but simplifies the description,
and this will be addressed in the discussion section.
The genotypes for the recipient and donor lines were
qq and QQ for the QTL and m1m1, ���, m101m101 and
M1M1, ���, M101M101 for the markers, respectively. In
this study, the QTL was placed at 76.5 cM from the
beginning of the chromosome. This position was chosen
because it was away from the center and ends of the
chromosome and not located at a marker position. Loca-
tion at the center was avoided, because this would be
the mean location of false positive QTL. The ends of
the chromosome were avoided, because it would result
in truncated likelihood peaks, which are unsatisfactory
for assessing the procedures proposed.

Selection and Mating

The introgression proceeded by crossing the inbred
lines to produce an F1 generation and then by recurrent
backcrossing of the selected individuals from the cross-
bred population to the recipient line, to produce genera-
tions BC1, BC2, BC3, and BC4. In this study, BC4 was
the end point, and the selected parents from BC4 were
used to report the results. All generations consisted of
N individuals, which varied across different scenarios.

In the F1 generation, all individuals had identical
markers and QTL genotypes. Hence, selection of par-
ents was random. In each subsequent generation, selec-
tion was based on the probability of the candidate being
heterozygous for the QTL, conditional on the markers
and the phenotypes observed in that generation. Indi-
viduals were selected if the probability of being hetero-
zygous exceeded a predetermined threshold value
(PSelection). As a consequence, a variable number of can-
didates were selected and given an opportunity to
breed. The calculation of this selection criterion will be
described in the section on QTL mapping. The selected
F1, BC1, BC2, and BC3 individuals were considered to
be nonrecurrent parents.

Mating took place at random to reproduce N offspring
(1/2 N males, 1/2 N females). Each offspring was pro-
duced by random sampling with replacement of 1 sire
and 1 dam from those selected individuals. In each
generation, crossing-over events were generated ac-
cording to the mapping function of Haldane (1919). The

chromosome string for an offspring began with either
the paternal or maternal chromosome sequence in the
parent with equal chance and crossed over to read from
the other string when a recombination occurred.

Genetic Models

The difference between the 2 lines for the trait of
interest was described entirely by the 1 QTL, with the
superiority of the donor line being 2α, where α = the
QTL allele substitution effect. In a backcross popula-
tion, where individuals are either Qq or qq with equal
frequency, the segregation of 1 QTL contributes an
amount α2/4 to the genetic variance, σ2

G = α2/4 when
the phenotypic difference between lines is 2α
(Wright, 1968).

Therefore, the phenotypic value for each individual
was simulated based on the following model

yi = � + biα + eij,

where yi = the phenotypic value of the ith individual
(i = 1, N); � = the population mean; bi = an indicator
variable equal to the number of favorable QTL alleles,
which will take values of 0 or 1 only; and eij = a random
normal variable, with mean 0.0 and σ2

e = 4.95. Values
of α used in the simulations are described in a later
section.

QTL Mapping

The single-interval mapping model (Lander and
Botstein, 1989) was applied for QTL mapping. In this
model, 1 marker interval at a time was used to construct
a putative QTL likelihood at the midpoint location of
the interval. By using all marker information, denoted
by Mi, and the phenotypic value yi of the recorded trait,
the likelihood function for a putative QTL in an interval
with midpoint xi in the backcross program was

L(�,α,σ2
e) = Π[φi(yi,�,σ2

e)π(qq|Mi)

+ φi(yi,� + α,σ2
e)π(Qq|Mi)],

where φi(yi,�,σ2
e) and φi(yi,� + α,σ2

e) = the density func-
tions for a normal distribution, with mean � and� + α

and variance σ2
e, and π(qq|Mi) and π(Qq|Mi) = the proba-

bility of the QTL genotypes conditional on marker geno-
types and position of the flanking markers.

The probability of the QTL genotype, π(qq|Mi) or
π(Qq|Mi), was calculated based on the marker genotype
of the individual and its nonrecurrent parent at flank-
ing markers in each interval. Nonrecurrent parents
were assumed to be heterozygous irrespective of the
marker genotypes given that they were selected as het-
erozygous parents. If a marker locus of the nonrecur-
rent parent was homozygous (noninformative), then the
interval was expanded until the next heterozygous lo-
cus. For example, if the genotypes at 4 marker loci of
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Table 1. Estimates of the parameters1 from fourth backcross generation, where the probability of selected animals to
be heterozygous at QTL location was Pri(Qq|yi,Mi) ≥ 0.75

Population Donor Linkage Obligate Efficiency Selected
α2 size3 Location4 α̂5 σ2

e genome, cM drag, cM drag, cM of selection individuals, n

1.4832 100 76.3 ± 0.5 1.3547 ± 0.0238 4.96 ± 0.04 44.67 ± 0.52 40.76 ± 0.54 3.91 ± 0.18 0.88 ± 0.01 50 ± 0
500 77.1 ± 0.1 1.4792 ± 0.0114 4.95 ± 0.01 44.28 ± 0.24 39.83 ± 0.25 2.49 ± 0.05 0.98 ± 0.00 248 ± 1

1,000 77.0 ± 0.1 1.4789 ± 0.0075 4.94 ± 0.01 44.47 ± 0.18 39.7 ± 0.18 2.33 ± 0.05 0.99 ± 0.00 496 ± 2
1.0208 100 77.6 ± 0.8 0.9554 ± 0.0299 4.92 ± 0.03 44.17 ± 0.54 41.31 ± 0.62 3.94 ± 0.17 0.81 ± 0.02 49 ± 1

500 76.9 ± 0.1 1.0155 ± 0.0106 4.98 ± 0.02 44.45 ± 0.23 40.21 ± 0.23 2.58 ± 0.05 0.96 ± 0.01 247 ± 1
1,000 77.1 ± 0.1 1.0082 ± 0.0076 4.94 ± 0.01 44.54 ± 0.15 39.92 ± 0.15 2.57 ± 0.05 0.98 ± 0.00 495 ± 2

0.4472 100 65.2 ± 2.6 0.4642 ± 0.0347 4.84 ± 0.03 44.52 ± 0.58 42.25 ± 0.75 6.48 ± 1.42 0.58 ± 0.02 48 ± 1
500 75.0 ± 1.3 0.4175 ± 0.0109 4.92 ± 0.01 44.72 ± 0.35 42.75 ± 0.44 2.54 ± 0.06 0.78 ± 0.02 244 ± 2

1,000 76.3 ± 0.6 0.4253 ± 0.0076 4.96 ± 0.01 44.40 ± 0.19 41.43 ± 0.28 2.39 ± 0.05 0.86 ± 0.01 495 ± 2

1Mean ± SE.
2True QTL allele substitution effect.
3Population size (N) per generation.
4Estimated QTL location, where the true QTL location was 76.5 cM.
5Estimated QTL allele substitution effect.

a nonrecurrent parent were (���,M11m11m12m12m13
m13M14m14, ���), then the left (M11m11) and right
(M14m14) marker loci were taken as flanking markers
for this expanded interval for the bracket between
markers 11 and 14, which are located at 10 and 13 cM,
respectively. The probability of putative QTL locations
at 10.5, 11.5, and 12.5 cM was calculated with the cor-
responding recombination fraction of θ1 and θ2 for mark-
ers 11 and 14, respectively. For calculation of the proba-
bility of putative QTL, an approach for outbreeding
populations was used to make extension to outbreeding
populations possible. There are other possible geno-
types of flanking markers associated with chromosome
ends, and these are dealt with as described by Lander
and Botstein (1989).

The likelihood function was maximized for each inter-
val using the expectation-maximization algorithm,
which deals with the missing genotypes (Lander and
Botstein, 1989). This iterative algorithm combines both
genetic marker information and phenotypic value for
the calculation of the QTL genotype probabilities for
each individual and maximizes the likelihood for each
interval based on the estimated parameters. The inter-
val with the greatest maximized likelihood value was
taken as the estimated location of the QTL, and α̂ for
this interval was taken as the estimate of the QTL
allele substitution effect. For the estimation of the QTL
location and effect from the second backcross genera-
tion onward, the accumulated information from the pre-
vious backcross generations was used by including the
families from the previous generations. It was assumed
that the selected parents were indeed carriers of the
QTL, although there was a possibility that noncarrier
parents had been mistakenly selected.

The selection criterion for parents of the next genera-
tion was the probability that the individual was a car-
rier of the donor Q allele at the estimated QTL location.
This was calculated conditional on the phenotype and
markers and assumed the maximum likelihood esti-
mates for α, �, and σ2:

Pri(Qq | yi,Mi) =

φ(yi;�̂ + α̂, σ̂2
e_max) × π(Qq | Mi)

φ(yi;�̂ + α̂, σ̂2
e_max) × π(Qq | Mi) + φ(yi;�̂ + σ̂2

e_max) × π(qq | Mi)
.

Individuals that were heterozygous at the estimated
QTL location with probability Pri(Qq|yi,Mi) ≥ PSelection

were selected. The values used in simulations are given
in the next section.

Simulations, Parameters, and Summary Statistics

In this study, different values of N, σ2
G, and Pselection

were considered. The number of candidates in each gen-
eration (N) was 100, 500, and 1,000. The genetic vari-
ance of the QTL (σ2

G) was 0.05, 0.26, or 0.55, correspond-
ing to values of α = 0.4472, 1.0208, and 1.4832 and
to heritabilities 0.01, 0.05, and 0.10, respectively. The
selection criterion Pselection was 0.75, 0.95, or 0.99.
Schemes were simulated with all combinations of these
parameters with each combination replicated 100
times.

For each replicate, the donor genome contribution,
linkage, and obligate drags at backcross generations
were calculated from direct examination of the marker
sequence along the genome of individuals with respect
to the estimated QTL location. Figure 1 illustrates these
terms in the context of our backcross design, although
examples are not from our empirical results. Efficiency
of selection was calculated as the ratio of the number
of selected individuals who were heterozygous at the
true QTL location to the total number of selected indi-
viduals. The donor genome contribution is the fraction
of the genome that derives from the donor genome and
includes all segments of the donor genome regardless
of QTL position (multiple segments result from multiple
recombinations occurring in the same individuals); the
linkage drag is the average length of the intact segment
of the donor genome flanking the QTL; and the obligate
drag is the minimum segment length of the donor ge-
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Figure 1. Diagram showing the donor genome contribution, linkage, and obligate drags from the carrier chromosomes
of a group of 5 individuals. The diagram is illustrative only and does not represent real data.

nome to the left and to the right of the QTL, which
represents that part of the donor genome that cannot
be removed from an intercross formed from the final
generation.

RESULTS

In Table 1, results are presented for 9 different sce-
narios, which are combinations of 3 QTL allele substitu-
tion effects (α = 0.4472, 1.0208, or 1.4832) and 3 popula-
tion sizes (N = 100, 500, or 1,000) from the BC4, in
which the selection of parents in BC1, BC2, and BC3
was based on Pselection = 0.75. The estimate of the QTL
location was unbiased when the QTL allele substitution
effect was α = 1.4832,, and the SE of the estimate de-
creased with increasing population size. There was a
trend toward increasing bias with smaller QTL as the
population size decreased. Closer examination of these
results suggests that the data were insufficient for map-
ping this small QTL effect for N = 100. The efficiency
of selection of 0.58 (Table 1) is only marginally better
than random selection (0.5 would be expected by

chance). This explains the downward bias in QTL loca-
tion, because failure of detecting the true QTL would
result in a randomly positioned QTL across the whole
chromosome and the average location of false positive
QTL over many replicates would be at 50 cM location
(center). Thus, the 65.2 cM (Table 1) might be viewed
as intermediate between the true finding QTL and false
positive QTL over many replicates. The apparent preci-
sion of α we considered to be by chance. In general, the
SE for location were inversely associated with popula-
tion size.

The estimate of the QTL allele substitution effect
(α̂) was unbiased when the population size and allele
substitution effect were 500 and 1.0208, respectively,
or more, but for the smallest population size of 100,
there was a trend to slight underestimation of the sub-
stitution effect. The precision of the QTL allele substitu-
tion effect increased as the population size increased.

Estimates of the residual variance were close to the
true value (σ2

e = 4.95) in most cases and ranged from
4.84 to 4.98. Standard errors of the estimated residual
variance were very small and ranged from 0.01 to 0.04
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Table 2. Estimates of the parameters1 from fourth backcross generation, where the probability of selected animals to
be heterozygous at QTL location was Pri(Qq|yi,Mi) ≥ 0.95

Population Donor Linkage Obligate Efficiency Selected
α2 size3 Location4 α̂5 σ2

e genome, cM drag, cM drag, cM of selection individuals, n

1.4832 100 77.4 ± 0.4 1.4467 ± 0.0252 4.96 ± 0.04 45.84 ± 0.49 41.39 ± 0.52 3.95 ± 0.16 0.93 ± 0.01 49 ± 1
500 77.0 ± 0.1 1.4850 ± 0.0112 4.96 ± 0.02 44.85 ± 0.21 39.98 ± 0.21 2.79 ± 0.05 0.99 ± 0.00 247 ± 1

1,000 77.0 ± 0.0 1.4733 ± 0.0068 4.96 ± 0.01 44.62 ± 0.17 39.79 ± 0.16 2.69 ± 0.05 0.99 ± 0.00 496 ± 2
1.0208 100 76.7 ± 0.8 1.0034 ± 0.0250 4.96 ± 0.04 47.20 ± 0.69 42.57 ± 0.70 4.20 ± 0.22 0.86 ± 0.02 47 ± 1

500 77.0 ± 0.2 1.0219 ± 0.0094 4.94 ± 0.01 44.81 ± 0.28 40.28 ± 0.28 2.64 ± 0.05 0.96 ± 0.00 246 ± 1
1,000 77.1 ± 0.1 1.0136 ± 0.0070 4.95 ± 0.01 44.71 ± 0.16 39.87 ± 0.16 2.58 ± 0.05 0.98 ± 0.00 495 ± 1

0.4472 100 65.0 ± 2.8 0.3657 ± 0.0425 4.86 ± 0.03 49.27 ± 0.83 43.64 ± 0.86 8.76 ± 2.03 0.68 ± 0.03 44 ± 1
500 75.0 ± 1.3 0.4413 ± 0.0118 4.94 ± 0.01 46.99 ± 0.50 42.68 ± 0.48 2.73 ± 0.11 0.86 ± 0.01 233 ± 4

1,000 76.5 ± 0.4 0.4322 ± 0.0079 4.96 ± 0.01 45.63 ± 0.28 41.51 ± 0.30 2.40 ± 0.05 0.91 ± 0.01 488 ± 2

1Mean ± SE.
2True QTL allele substitution effect.
3Population size (N) per generation.
4Estimated QTL location, where the true QTL location was 76.5 cM.
5Estimated QTL allele substitution effect.

across all scenarios. The genome contribution of the
donor line after 4 backcross generations ranged from
44.17 to 44.72 cM across the different QTL allele substi-
tution effects and population sizes. It should be noted
that there was no background selection in this study.
Linkage drag ranged from 39.70 to 42.75 cM across all
scenarios. With the small QTL allele substitution effect
(α = 0.4472), the linkage drag across the different popu-
lation sizes was greater than the corresponding value
with the large QTL allele substitution effect (α =
1.4832). The obligate drag ranged from 2.33 to 6.48 cM.
The SE of the obligate drag was similar across the
different QTL allele substitution effects except for the
scenario with small allele substitution effect (α =
0.4472) and small population size of 100. The efficiency
of selection varied across different scenarios. The effi-
ciency increased with increasing population sizes and
the QTL allele substitution effect. The number of se-
lected individuals was usually a little less than 50% as
expected due to uncertainty about the QTL segregation.
The distribution of the calculated Pselection values was
U-shaped, either close to 0 or 1. Therefore, truncation
values of Pselection = 0.75 or 0.95 had little effect on the
numbers of selected parents. The exception to this was
when N was small, where the U-shaped distribution of
Pselection was less extreme, so, when Pselection increased,
the number of selected parents decreased slightly.

In Table 2, results are shown from BC4, when
Pselection = 0.95 in BC1, BC2, and BC3. These results are
consistent with the results presented in Table 1 for
Pselection = 0.75, except that the efficiency of selection
was greater, ranging from 0.68 to 0.99. Results for
Pselection = 0.99 are not shown, because they were similar
to the results Pselection = 0.95 (Table 2). However, the
estimate of the QTL location was biased at very small
QTL allele substitution effects (α = 0.4472) regardless
of Pselection.

The size of the total donor genome and linkage drag
that remained over the generations when the QTL al-
lele substitution effect was α = 1.4832 is illustrated in

Figure 2. The total donor genome was ∼79 cM in the
BC1 and decreased to ∼45 cM in BC4. The linkage drag
also decreased from ∼74 in BC1 to ∼40 cM in BC4. Hence,
as expected, the trend was decreasing across genera-
tions. Results of these parameters from the other sce-
narios were very similar to these results.

DISCUSSION

This study presents a new method that combines QTL
mapping and gene introgression. The main advantage
with this scheme is the reduced time needed compared
with a conventional introgression scheme, in which
QTL mapping precedes the introgression step. In a con-
ventional scheme, the QTL mapping and estimation of
QTL effects use information from a F2 generation. This
assumes there was a QTL, whereas in practice, an exit
strategy is needed if no significant QTL was found.
Thereafter, the QTL is introgressed through a back-
cross design (i.e., the introgression starts the earliest
in the third generation and is consequently 1 generation
delayed if the F1 animals are still available and 2 gener-
ations delayed if they need to be recreated). Hence,
there is a reduction in time of 1 to 2 generations before
the introgression starts. This is important from an eco-
nomic point of view especially for species with long
generation intervals and expensive cost of rearing. The
presented method also improves upon the advanced
backcross QTL analysis method of Tanksley and Nelson
(1996), which relies on phenotypic selection to maintain
the donor QTL allele within the backcross generations
(BC1, BC2, BC3, etc.), whereas the current method uses
the markers to achieve this. The latter results in in-
creased power, because the donor QTL allele was not
lost by the current method despite low heritabilities,
whereas there is a considerable probability of the donor
QTL allele being lost by advanced backcross QTL analy-
sis. It may be argued that despite the loss of power in
the advanced backcross QTL analysis method, there
are cost benefits from only phenotyping in intermediate
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Figure 2. Trend of the estimated donor genome contri-
bution and linkage drag across different backcross gener-
ations when α = 1.4832 (corresponding to h2 = 0.10) and
N = 1,000.

generations. However, introgression schemes typically
aim to improve traits such as disease resistance, which
are difficult to measure and sometimes destructive,
making phenotyping expensive.

To investigate the efficiency of retaining the donor
favorable QTL allele across several backcross genera-
tions, results of BC4 were presented. The estimates of
QTL location and effect were comparable with the true
values in most cases considered in this study, particu-
larly with the larger α and increased N. Only with
the small QTL allele substitution effect of α = 0.4472,
corresponding to the heritability of h2 = 0.01, and small
N were there indications of inadequate power with in-
sufficient data to provide reliable estimates of QTL lo-
cation.

The research emphasis on minimizing generations of
backcrossing to reach specific tolerance levels for the
fraction of donor genome is because the timescale for
introgression tends to be long. Yet, before the backcross-
ing, there is the need to identify the QTL for introgres-
sion, which also takes several generations. The use of
fore- and background selection (Hospital and Charcos-
set, 1997) or a dense marker map to get a short distance
between the QTL and the marker (Hospital, 2001) accel-
erate the reduction of remaining donor segment. As
expected, the proportional donor contribution to the
backcross population decreases as the number of gener-
ation increases. The retained donor chromosome seg-
ment was close to the expected length (44.09 and 39.06
cM for total donor genome contribution and linkage
drag, respectively) calculated from Eq. 1, 3, 4, and 5 of
Wall et al. (2005). Hospital (2001) concluded that the
most important factor for reducing the donor contribu-
tion is distances between the flanking markers and the
introgressed gene, and the best way is to use flanking
markers that are as close as possible to the QTL. In
this study, we used a dense marker map. It is also
expected that the donor contribution is more reduced
when both foreground and background combined selec-
tion is carried out (Visscher et al. 1996; Hospital, 2001).

However, Han et al. (1997) stated that background se-
lection should be applied cautiously on carrier chromo-
somes when the QTL location is not accurate, otherwise
the QTL could be lost. In this study, there was no back-
ground selection, and the QTL was not lost in any gener-
ation or replicate, probably due to large numbers of
selected parents who carried the QTL.

The method of single-interval mapping was used for
gene mapping. This method is used for evaluating the
association of 1 QTL with a marker interval, which
ignores the effects of other segregating QTL in the map-
ping populations. Because there was no other QTL in
this study, the estimates were unbiased, which are veri-
fied when there were sufficient genotyped individual
records. Using a dense genome map for simultaneous
detection and introgression of a desirable QTL or gene
was found to be most instructive if the effect of QTL
allele substitution and population size were 1.0208 and
500 individuals, respectively, in each generation.

Calculation of the probability of heterozygosity at the
estimated QTL location for selection, Pri(Qq|yi,Mi), was
based on the phenotypic and marker information of
individuals. Results in Tables 1 and 2 suggest that there
is a discrepancy between the Pri(Qq|yi,Mi) estimate and
the efficiency of selection. This discrepancy probably
originates from the inaccuracy of the estimate of QTL
location and the assumption made in obtaining it, for
example, that all parents were heterozygous. As the
estimate of QTL location became more accurate, the
efficiency of selection was closer to unity.

In this study, we focused on a simple case of only 1
QTL in the whole genome with additive effects as the
only source of genetic variation affecting the trait of
interest. The model was chosen to provide a proof of
principle. If the combined detection and introgression
was ineffective in this case, then it would be unlikely
to be extended to outbred populations with additional
polygenic variation. The inclusion of dominance effect
in the model requires no further work when the effect
of the QTL shows dominance, the difference between
heterozygous (Qq) and homozygous (qq) individuals is
a − d instead of a, where a and d = the genotypic values
of homozygote (qq) and heterozygote (Qq), respectively.
Extension to additional polygenic variation and multi-
ple QTL would require further investigation.

There is evidence of gene × environment interaction,
as well as gene × genetic background interaction, on
quantitative traits in the literature (Beavis, 1994;
Beavis and Keim, 1995; Valdar et al., 2006). Dudley
(1993) reported inconsistency in means of marker geno-
types among mapping populations and environments.
Lecomte et al. (2004) described effects of epistatic inter-
actions between QTL regions and genetic background
for fruit quality traits in the half-diallel cross design
among 3 tomato lines. When combined approaches of
QTL mapping and gene introgression are used, the ef-
fects of gene × recipient genome interaction will be im-
plicitly taken into consideration in the analysis, be-
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cause the QTL effects are estimated in the presence of
the recipient genome.

In general, the combined detection and introgression
of genes underlying desirable traits may have several
advantages over separate programs of QTL mapping
and gene introgression. This scheme ensures that the
desirable QTL is introgressed where its function is si-
multaneously tested in a planned environment and ex-
pected recipient genome structure. Hence, it may be
preferred, in particular, for species with long generation
intervals, expensive cost of rearing, and traits that are
difficult to measure. Also, this method saves at least 1
generation of time and related expenses compared with
separate QTL mapping and introgression. In this study,
we considered inbred lines with 1 QTL, which is mostly
applicable in plant species and some animal species
that we could have inbred lines, such as mice. However,
further research is needed where there are multiple
QTL and outbreeding populations.
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