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Abstract. Reinforcement Learning algorithms such as SARSA with an eligi-
bility trace, and Evolutionary Computation methods such asgenetic algorithms,
are competing approaches to solving Partially Observable Markov Decision Pro-
cesses (POMDPs) which occur in many fields of Artificial Intelligence. A pow-
erful form of evolutionary algorithm that has not previously been applied to
POMDPs is the cultural algorithm, in which evolving agents share knowledge
in a belief space that is used to guide their evolution. We describe a cultural algo-
rithm for POMDPs that hybridises SARSA with a noisy genetic algorithm, and
inherits the latter’s convergence properties. Its belief space is a common set of
state-action values that are updated during genetic exploration, and conversely
used to modify chromosomes. We use it to solve problems from stochastic in-
ventory control by finding memoryless policies for nondeterministic POMDPs.
Neither SARSA nor the genetic algorithm dominates the otheron these prob-
lems, but the cultural algorithm outperforms the genetic algorithm, and on highly
non-Markovian instances also outperforms SARSA.

1 Introduction

Reinforcement Learning and Evolutionary Computation are competing approaches to
solving Partially Observable Markov Decision Processes, which occur in many fields
of Artificial Intelligence. In this paper we describe a new hybrid of the two approaches,
and apply it to problems in stochastic inventory control. The remainder of this section
provides some necessary background information. Section 2describes our general ap-
proach, an instantiation, and convergence results. Section 3 describes and models the
problems. Section 4 presents experimental results. Section 5 concludes the paper.

1.1 POMDPs

Markov Decision Processes (MDPs) can model sequential decision-making in situa-
tions where outcomes are partly random and partly under the control of the agent. The
states of an MDP possess theMarkov property: if the current state of the MDP at timet
is known, transitions to a new state at timet + 1 are independent of all previous states.
MDPs can be solved in polynomial time (in the size of their state-space) by modelling



them as linear programs, though the order of the polynomialsis large enough to make
them difficult to solve in practice [14]. If the Markov property is removed then we obtain
a Partially Observable Markov Decision Process (POMDP) which in general is compu-
tationally intractable. This situation arises in many applications and can be caused by
partial knowledge: for example a robot must often navigate using only partial knowl-
edge of its environment. Machine maintenance and planning under uncertainty can also
be modelled as POMDPs.

Formally, a POMDP is a tuple〈S, A, T, R, O, Ω〉 whereS is a set of states,A
a set of actions,Ω a set of observations,R : S × A → ℜ a reward function,T :
S×A → Π(S) a transition function, andΠ(·) represents the set of discrete probability
distributions over a finite set. In each time periodt the environment is in some state
s ∈ S and the agent takes an actiona ∈ A, which causes a transition to states′ with
probabilityP (s′|s, a), yielding an immediate reward given byR and having an effect
on the environment given byT . The agent’s decision are based on its observations given
by O : S × A → Π(Ω).

When solving a POMDP the aim is to find apolicy: a strategy for selecting ac-
tions based on observations that maximises a function of therewards, for example the
total reward. A policy is a function that maps the agent’s observation history and its
current internal state to an action. A policy may also bedeterministicor probabilis-
tic: a deterministic policy consistently chooses the same action when faced with the
same information, while a probabilistic policy might not. Amemoryless(or reactive)
policy returns an action based solely on the current observation. The problem of find-
ing a memoryless policy for a POMDP is NP-complete and exact algorithms are very
inefficient [12] but there are good inexact methods, some of which we now describe.

1.2 Reinforcement learning methods

Temporal difference learning algorithms such as Q-Learning [32] and SARSA [25]
from Reinforcement Learning (RL) are a standard way of finding good policies. While
performing Monte Carlo-like simulations they compute astate-action valuefunction
Q : S×A → ℜ which estimates the expected total reward for taking a givenaction from
a given state. (Some RL algorithms compute instead astate valuefunctionV : S → ℜ.)

The SARSA algorithm is shown in Figure 1. Anepisodeis a sequence of states and
actions with a first and last state that occur naturally in theproblem. On taking an action
that leads to a new state, the value of the new state is “backedup” to the state just left
(see line 8) by a process calledbootstrapping. This propagates the effects of later actions
to earlier states and is a strength of RL algorithms. (The valueγ is adiscounting factor
often used for non-episodic tasks that is not relevant for our application below: we
setγ = 1.) A commonbehaviour policyis ǫ-greedy action selection: with probability
ǫ choose a random action, otherwise with probability1 − ǫ choose the action with
highestQ(s, a) value. After a number of episodes the state-action valuesQ(s, a) are
fixed and (if the algorithm converged correctly) describe anoptimum policy: from each
state choose the action with highestQ(s, a) value. The name SARSA derives from the
tuple(s, a, r, s′, a′).

RL algorithms have convergence proofs that rely on the Markov property but for
some non-Markovian applications they still perform well, especially when augmented



1 initialise the Q(s, a) arbitrarily
2 repeat for each episode
3 ( s← initial state
4 choose action a from s using a behaviour policy
5 repeat for each step of the episode
6 ( take action a and observe r, s′

7 choose action a′ from s′ using a behaviour policy
8 Q(s, a)← Q(s, a) + α [r + γQ(s′, a′)−Q(s, a)]
9 s← s′, a← a′

10 )
11 )

Fig. 1. The SARSA algorithm

with an eligibility trace [10, 16] that effectively hybridises them with a Monte Carlo
algorithm. We will use a well-known example of such an algorithm: SARSA(λ) [25].
When the parameterλ is 0 SARSA(λ) is equivalent to SARSA, when it is 1 it is equiva-
lent to a Monte Carlo algorithm, and with an intermediate value it is a hybrid and often
gives better results than either. Settingλ > 0 boosts bootstrapping by causing values
to be backed up to states before the previous one. (See [30] for a discussion of eligi-
bility traces, their implementation, and the relationshipwith Monte Carlo algorithms.)
There are other more complex RL algorithms (see [13] for example) and it is possible
to configure SARSA(λ) differently (for example by usingsoftmaxaction selection in-
stead ofǫ-greedy, and different values ofα for each state-action value [30]), but we take
SARSA(λ) as a representative of RL approaches to solving POMPDs. (Infact it usually
outperforms two versions of Q-learning with eligibility trace — see [30] page 184.)

1.3 Evolutionary computation methods

An alternative approach to POMDPs is the use of EvolutionaryComputation (EC) al-
gorithms such as Genetic Algorithms (GAs), which sometimesbeat RL algorithms on
highly non-Markovian problems [3, 19]. We shall use the mostobvious EC model of
POMDPs, called atable-based representation[19]: each chromosome represents a pol-
icy, each gene a state, and each allele (gene value) an action.

The GA we shall use is based on GENITOR [33] but without the refinements of
some versions, such as genetic control of the crossover probability. This is asteady-state
GA that, at each iteration, selects two parent chromosomes,breeds a single offspring,
evaluates it, and uses it to replace the least-fit member of the population. Steady-state
GAs are an alternative togenerationalGAs that generate an entire generation at each
iteration, which replaces the current generation. Maintaining the best chromosomes
found so far is anelitist strategy that pays off on many problems. Parent selection is
random because of the strong selection pressure imposed by replacing the least-fit mem-
ber. We use standarduniform crossover(each offspring gene receives an allele from the
corresponding gene in a randomly-chosen parent) applied with a crossover probability
pc: if it is not applied then a single parent is selected and mutated, and the resulting



chromosome replaces the least-fit member of the population.Mutation is applied to
a chromosome once with probabilitypm, twice with probabilityp2

m, three times with
probabilityp3

m, and so on. The population size isP and the initial population contains
random alleles.

Nondeterminism in the POMDP causes noise in the GA’s fitness function. To han-
dle this noise we adopt the common approach of averaging the fitness over a number
of samplesS. This technique has been used many times inNoisy Genetic Algorithms
(NGAs) [4, 6, 17, 18]. NGAs are usually generational and [1] show that elitist algo-
rithms (such as GENITOR) can systematically overvalue chromosomes, but such algo-
rithms have been successful when applied to noisy problems [29]. We choose GENI-
TOR for its simplicity.

1.4 Hybrid methods

Several approaches can be seen as hybrids of EC and RL.Learning Classifier Systems
[8] use EC to adapt their representation of the RL problem. They apply RL via the EC
fitness function.Population-Based Reinforcement Learning[11] uses RL techniques to
improve chromosomes, as in a memetic algorithm. The paper isan outline only, and
no details are given on how RL values are used, nor are experimental results provided.
GAQ-Learning[15] uses Q-Learning once only in a preprocessing phase, to generate
Q(s, a) values. A memetic algorithm is then executed using theQ(s, a) values to eval-
uate the chromosomes.Q-Decomposition[26] combines several RL agents, each with
its own rewards, state-action values and RL algorithm. An arbitrator combines their
recommendations, maximising the sum of the rewards for eachaction. It is designed
for distributed tasks that are not necessarily POMPDs. Global convergence is guaran-
teed if the RL algorithm is SARSA but not if it is Q-Learning. In [9] a GA and RL are
combined to solve a robot navigation problem. The greedy policy is applied for some
time (until the robot encounters difficulty); next the GA population is evaluated, and
the fittest chromosome used to update the state-action values by performing several RL
iterations; next a new population is generated in a standardway, except that the state-
action values are used probabilistically to alter chromosomes; then the process repeats.
Several other techniques are used, some specific to roboticsapplications, but here we
consider only the RL-EC hybrid aspects.

2 A cultural approach to POMDPs

A powerful form of EC is thecultural algorithm (CA) [21], in which agents share
knowledge in abelief spaceto form a consensus. (Thebelief spaceof a CA is distinct
from thebelief spaceof a POMDP, which we do not refer to in this paper.) These hybrids
of EC and Machine Learning have been shown to converge more quickly than EC alone
on several applications. CAs were developed as a complementto the purely genetic
bias of EC. They are based on concepts used in sociology and archaeology to model
cultural evolution. By pooling knowledge gained by individuals in a body of cultural
knowledge, or belief space, convergence rates can sometimes be improved. A CA has
anacceptance functionthat determines which individuals in the population are allowed



to adjustthe belief space. The beliefs are conversely used toinfluencethe evolution of
the population. See [22] for a survey of CA applications, techniques and belief spaces.
They have been applied to constrained optimisation [5], multiobjective optimisation [2],
scheduling [24] and robot soccer [23], but to the best of our knowledge they have not
been applied to POMDPs, nor have they utilised RL.

2.1 Cultural reinforcement learning

We propose a new cultural hybrid of reinforcement learning and evolutionary computa-
tion for solving POMDPs calledCUltural Reinforcement Learning(CURL). The CURL
approach is straightforward and can be applied to differentRL and EC algorithms. A
single set of RL state-action valuesQ(s, a) is initialised as in the RL algorithm, and the
population is initialised as in the EC algorithm. The EC algorithm is then executed as
usual, except that each new chromosome is altered by, and used to alter, theQ(s, a),
which constitute the CA belief space. On generating a new chromosome we replace,
with some probabilitypl, each allele by the corresponding greedy action given by the
modifiedQ(s, a) values. Settingpl = 0 prevents any learning, and CURL reduces to the
EC algorithm, whilepl = 1 always updates a gene to the correspondingQ(s, a) value,
and CURL reduces to SARSA(λ) without exploration. We then treat the modified chro-
mosome as usual by the EC algorithm: typically, fitness evaluation and placement into
the population. During fitness evaluation theQ(s, a) are updated by bootstrapping as
usual in the RL algorithm, but the policy followed is that specified by the modified chro-
mosome. Thus in CURL, as in several other CAs [22],all chromosomes are allowed to
adjust the belief space. There is noǫ parameter in CURL because exploratory moves
are provided by EC.

We may use a steady-state or generational GA, or other form ofEC algorithm, and
we may use one of the Q-Learning or Q(λ) algorithms to update theQ(s, a), but in this
paper we use the GENITOR-based NGA and SARSA(λ). The resulting algorithm is
outlined in Figure 2, in whichSARSA(λ,α,O) denotes a SARSA(λ) episode with a
given value of theα parameter, following the policy specified by chromosomeO while
updating theQ(s, a) as usual. As in NGA the population in randomly initialised and
fitness is evaluated usingS samples. Note that for a deterministic POMDP only one
sample is needed to obtain the fitness of a chromosome, so we can setS = 1 to obtain
a CURL hybrid of SARSA(λ) and GENITOR.

2.2 Convergence

For POMDPS, unlike MDPs, suboptimal policies can form localoptima in policy space
[20]. This motivates the use of global search techniques such as EC, which are less
likely to become trapped in local optima, and a hybrid such asCURL uses EC to di-
rectly explore policy space. CURL also uses bootstrapping to perform small changes
to the policy by hill-climbing on theQ(s, a) values. Hill-climbing has often been com-
bined with GAs to formmemetic algorithmswith faster convergence than a pure GA,
and this was a motivation for CURL’s design. However, if bootstrapping is used then
optimal policies are not necessarily stable: that is, an optimal policy might not attract
the algorithm [20]. Thus a hybrid might not be able to find an optimal policy even if it



CURL(S,P,pc,pm,α,λ,pl):
( create population of size P

evaluate population using S samples
initialise the Q(s, a)
while not(termination condition)
( generate an offspring O using pc, pm

update O using pl and the Q(s, a)
call SARSA(λ,α,O) S times to estimate O fitness

and bootstrap the Q(s, a)
replace least-fit chromosome by O

)
output fittest chromosome

)

Fig. 2. CURL instantiation

escapes all local optima. The possible instability of optimal policies does not necessar-
ily render such hybrids useless, because there might be optimal or near-optimal policies
thatare stable, but convergence is a very desirable property.

Fortunately, it is easy to show that ifpl < 1 and the underlying EC algorithm is
convergent then so is CURL: ifpl < 1 then there is a non-zero probability that no allele
is modified by theQ(s, a), in which case CURL behaves exactly like the EC algorithm.
This is not true of all hybrids (for example [9]). The GA used in the CURL instantiation
is convergent (to within some accuracy depending on the number of samples used),
because every gene in a new chromosome can potentially be mutated to an arbitrary
allele. Therefore the CURL instantiation is convergent.

2.3 Note

Ideally, we should now evaluate CURL on standard POMDPs fromthe literature, but
we shall postpone this for future work. The work in this paperis motivated by the
need to solve large, complex inventory control problems that do not succumb to more
traditional methods. In fact we know of no method in the inventory control literature
that can optimally solve our problem in a reasonable time (atleast, the constrained
form of the problem: see below). We shall therefore test CURLon POMDPs from
stochastic inventory control. We believe that the problem we tackle has not previously
been considered as a POMDP, but we shall show that it is one.

3 POMDPs from stochastic inventory control

The problem is as follows. We have a planning horizon ofN periods and a demand for
each periodt ∈ {1, . . . , N}, which is a random variable with a given probability density
function; we assume that these distributions are normal. Demands occur instantaneously
at the beginning of each time period and arenon-stationary(can vary from period to
period), and demands in different periods are independent.A fixed delivery costa is



Rn−1 Rn

Qn Di+...+Dj

Bij

Sn

Fig. 3. The(R,S) policy

incurred for each order (even for an order quantity of zero),a linear holding costh is
incurred for each product unit carried in stock from one period to the next, and a linear
stockout costs is incurred for each period in which the net inventory is negative (it is
not possible to sell back excess items to the vendor at the endof a period). The aim is
to find a replenishment plan that minimizes the expected total cost over the planning
horizon. Different inventory control policies can be adopted to cope with this and other
problems. A policy states the rules used to decide when orders are to be placed and how
to compute the replenishment lot-size for each order.

3.1 Replenishment cycle policy

One possibility is thereplenishment cycle policy(R, S). Under the non-stationary de-
mand assumption this policy takes the form(Rn, Sn) whereRn denotes the length of
thenth replenishment cycle andSn the order-up-to-level for replenishment. In this pol-
icy a strategy is adopted under which the actual order quantity for replenishment cycle
n is determined only after the demand in former periods has been realized. The order
quantity is computed as the amount of stock required to raisethe closing inventory level
of replenishment cyclen − 1 up to levelSn. To provide a solution we must populate
both the setsRn andSn for n = {1, . . . , N}. The(R, S) policy yields plans of higher
cost than the optimum, but it reduces planning instability [7] and is particularly appeal-
ing when items are ordered from the same supplier or require resource sharing [27].
Figure 3 illustrates the(R, S) policy.Rn denotes the set of periods covered by thenth
replenishment cycle;Sn is the order-up-to-level for this cycle;Qn is the expected order
quantity;Di + . . . + Dj is the expected demand;Bij is the buffer stock required to
guarantee service levelα.

Though both RL and EC have been applied to a variety of inventory control prob-
lems, some of them POMDPs [31], neither seems to have been applied to this important
problem. There are more efficient algorithms which are guaranteed to yield optimal
policies (under reasonable simplifying assumptions) so RLand EC would not be ap-
plied to precisely this problem in practice. However, if we complicate the problem in



simple but realistic ways, for example by adding order capacity constraints or dropping
the assumption of independent demands, then these efficientalgorithms become unus-
able. In contrast, RL and EC algorithms can be used almost without modification. Thus
the problem is useful as a representative of a family of more complex problems.

Note that the inventory control termpolicy refers to theformof plan that we search
for (such as the(R, S) policy), whereas a POMDP policy is aconcreteplan (such as
the(R, S) policy with given(Rn, Sn) values). We use the term in both senses but the
meaning should be clear from the context.

3.2 POMDP model

The replenishment cycle policy can be modelled as a POMDP as follows. Define astate
to be the periodn, anaction to be either the choice of an order-up-to level or the lack
of an order (denoted here by a special action N), and arewardrn to be minus the total
cost incurred in periodn. The rewards areundiscounted(do not decay with time), the
problem isepisodic(has well-defined start and end states), the POMDP isnondetermin-
istic (the rewards are randomised), and its solution is a policy that isdeterministicand
memoryless(actions are taken solely on the basis of the agent’s currentobservations).
This problem is non-Markovian but has an underlying MDP. Suppose we include the
current stock level (suitably discretised or approximated) in the state. We then have
the Markov property: the current stock level and period is all the information we need
to make an optimal decision. But the(R, S) policy does not make optimal decisions:
instead it fixes order-up-to levels independently of the stock level.

The problem is slightly unusual as a POMDP for two reasons. Firstly, all actions
from a staten lead to the same staten + 1 (though they have different expected re-
wards): different actions usually lead to different states. Secondly, many applications
are non-Markovian because of limited available information, but here wechooseto
make it non-Markovian by discarding information for an application-specific reason: to
reduce planning instability. Neither feature invalidatesthe POMDP view of the prob-
lem, and we believe that instances of the problem make ideal benchmarks for RL and
EC methods: they are easy to describe and implement, hard to solve optimally, have
practical importance, and it turns out that neither type of algorithm dominates the other.

There exist techniques for improving the performance of RL algorithms on POMDPs,
in particular the use of forms of memory such as a belief stateor a recurrent neural net-
work. But such methods are inapplicable to our problem because the policy would not
then be memoryless, and would therefore not yield a replenishment cycle policy. The
same argument applies to stochastic policies, which can be arbitrarily more efficient
than deterministic policies [28]: for our inventory problem we require a deterministic
policy. Thus some powerful RL techniques are inapplicable to our problem.

4 Experiments

We compare SARSA(λ), the NGA and CURL on five benchmark problems. The in-
stances are shown in Table 1 together with their optimal policies. Each policy is speci-
fied by its planning horizon lengthR and its order-up-to-levelS, and the expected cost



of the policy per period is also shown, which can be multiplied by the number of periods
to obtain the expected total cost of the policy. For example instance (3) has the optimal
policy [159, N, N, 159, N, N, 159, . . .]. However, the policy is only optimal if the total
number of periods is a multiple ofR, and we choose 120 periods as a common multi-
ple of R ∈ {1, 2, 3, 4, 5}. This number is also chosen for hardness: none of the three
algorithms find optimal policies within108 simulations (a Mixed Integer Programming
approach also failed given several hours). We varied only the a parameter, which was
sufficient to obtain differentR values (and different results: see below). We allow 29
different order-up-to levels at each period, linearly spaced in the range 0–280 at inter-
vals of 10, plus the N no-order option, so from each state we must choose between 30
possible actions. This range of order-up-to levels includes the levels in the optimum
policies for all five instances. Of course if none of the levels coincides with some order-
up-to-level in an optimal policy then this prevents us from finding the exact optimum
policy. But even choosing levels carefully so that the exactvalues are reachable does
not lead to optimal policies using the three algorithms.

Table 1. Instances and their optimum policies

demand demand cost/ cost/120
# h s a mean std devR S period periods

(1) 1 10 50 50 10 1 63 68 8160
(2) 1 10 100 50 10 2 112 94 11280
(3) 1 10 200 50 10 3 159 138 16560
(4) 1 10 400 50 10 4 200 196 23520
(5) 1 10 800 50 10 5 253 279 33480

As mentioned above, this problem can be solved in polynomialtime because of its
special form, which is how we know the optimum policies. We therefore also gener-
ate five additional instances (1c,2c,3c,4c,5c) by adding anorder capacity constraint to
instances (1,2,3,4,5) respectively, simply by choosing anupper bound below the level
necessary for the optimum policy. For each instance the 30 levels are linearly spaced
between 0 and⌊0.8S⌋ (respectively 54, 89, 127, 156 and 223). This problem is NP-
hard and we know of no method that can solve it to optimality ina reasonable time. We
therefore do not know the optimum policies for these instances, only that their costs are
at least as high as those without the order constraints.

We tailored NGA and CURL for our application by modifying themutation oper-
ator: because of the special nature of the N action we mutate agene to N with 50%
probability, otherwise to a random order-up-to level. Thisbiased mutation improves
NGA and CURL performance. We also tailored SARSA and CURL forour applica-
tion. Firstly, we initialise all state-action values to theoptimistic value of 0, because the
use of optimistic initial values encourages early exploration [30]. Secondly, we experi-
mented with different methods for varyingǫ, which may decay with time using different
methods. [3, 16] decreaseǫ linearly from 0.2 to 0.0 until some point in time, then fix
it at 0.0 for the remainder. [30] recommend varyingǫ inversely with time or the num-



ber of episodes. We found significantly better results usingthe latter method, under the
following scheme:ǫ = 1/(1 + ǫ′e) wheree is the number of episodes so far andǫ′ is
a fixed coefficient chosen by the user. For the final 1% of the runwe setǫ = 0 so that
the final policy cost reflects that of the greedy policy (aftersettingǫ to 0 we found little
change in the policy, so we did not devote more time to this purely greedy policy).

Each of the three algorithms has several parameters to be tuned by the user. To simu-
late a realistic scenario in which we must tune an algorithm once then use it many times,
we tuned all three to a single instance: the middle instance (3) without an order capacity
constraint. For SARSA(λ) we tunedǫ′, α, λ by the common method of hill-climbing in
parameter space to optimise the final cost of the evolved policy, restricted toλ values
{0.0, 0.1, . . . , 0.9, 1.0} andǫ′, α values{0.1, 0.03, 0.01, 0.003, . . .}. This process led
to α = 0.003, ǫ′ = 0.001 andλ = 0.7. We chose NGA settingspc = pm = 0.5 and
P = S = 30 for each instance: performance was robust with respect to these parame-
ters, as reported by many GA researchers. To tune CURL we fixedthe GA parameters
as above, setλ = 0, and applied hill-climbing to the remaining CURL parameters, re-
stricted topl ∈ {1.0, 0.3, 0.1, 0.03, . . .}, to obtainα = 0.1, pl = 0.3. Usingλ > 1
did not make a significant difference to performance (thoughit necessitated different
values forα andpl): it might be necessary for deterministic problems in whichwe do
not evaluate chromosome fitness over several simulations, but here we haveS = 30
simulations per chromosome in which to perform bootstrapping so we use the more
efficient SARSA(0).

Figures 4 and 5 plots the performances of the algorithms on the instances. The
SARSA(λ) cost is an exponentially-smoothed on-policy cost (the policy actually fol-
lowed by the algorithm during learning). The NGA and CURL costs are those of the
fittest chromosome. All graph points are means over 20 runs. We use the number of
SARSA(λ) episodes or GA simulations as a proxy for time, and allow each algorithm
106 episodes or simulations. This slightly biases the results in favour of SARSA(λ):
one of its episodes takes approximately three times longer than a simulation because of
its eligibility trace. But there may be faster implementations of SARSA(λ) than ours so
we use this implementation-independent metric.

The graphs show that neither SARSA(λ) nor NGA dominates the other over all
instances, though SARSA(λ) is generally better (this might be caused by our choice
of instances). However, CURL is uniformly better than NGA, and therefore some-
times better than SARSA(λ) also. Previous research into EC and RL on POMDPS has
shown that neither dominates over all problems, but that EC is better on highly non-
Markovian problems, so we assume that the problems in which NGA beats SARSA(λ)
are highly non-Markovian. This implies that CURL is a very promising approach to
such POMDPs, though further experiments are needed to confirm this pattern.

It might be suspected that the biased mutation technique unfairly aids NGA and
CURL: but adding this technique to SARSA(λ) worsens its performance. Unlike RL
algorithms, EC algorithms can benefit from application-specific mutation and recombi-
nation operators, and these can also be used in CURL. The current CURL implementa-
tion uses a simple table-based representation of the POMDP,which is often the worst
choice [19], so we believe that there is a great deal of room for improvement.
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5 Conclusion

Reinforcement Learning (RL) and Evolutionary Computation(EC) are competing ap-
proaches to solving POMDPs. We presented a new Cultural Algorithm (CA) schema
called CURL that hybridises RL and EC, and inherits EC convergence properties. We
also described POMDPs from stochastic inventory theory on which neither RL nor EC
dominates the other. In experiments a CURL instantiation outperforms the EC algo-
rithm, and on highly non-Markovian instances it also outperforms the RL algorithm.
We believe that CURL is a promising approach to solving POMDPs, combining EC
and RL algorithms with little modification.

This work is part of a series of studies in solving inventory problems using sys-
tematic and randomised methods. In future work we intend to develop CURL for more
complex inventory problems, and for more standard POMDPs from the Artificial Intel-
ligence literature.
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