

Edinburgh Research Explorer

A steady-state genetic algorithm with resampling for noisy
inventory control
Citation for published version:
Prestwich, S, Rossi, R, Tarim, SA & Hnich, B 2008, A steady-state genetic algorithm with resampling for
noisy inventory control. in G Rudolph, T Jansen, S Lucas, C Poloni & N Beume (eds), Parallel Problem
Solving from Nature – PPSN X: 10th International Conference Dortmund, Germany, September 13-17, 2008
Proceedings. vol. 5199 LNCS, Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), Springer-Verlag GmbH, pp. 559-568. DOI:
10.1007/978-3-540-87700-4_56

Digital Object Identifier (DOI):
10.1007/978-3-540-87700-4_56

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Parallel Problem Solving from Nature – PPSN X

Publisher Rights Statement:
© Prestwich, S., Rossi, R., Tarim, S. A., & Hnich, B. (2008). A steady-state genetic algorithm with resampling for
noisy inventory control. In G. Rudolph, T. Jansen, S. Lucas, C. Poloni, & N. Beume (Eds.), Parallel Problem
Solving from Nature – PPSN X: 10th International Conference Dortmund, Germany, September 13-17, 2008
Proceedings. (Vol. 5199 LNCS, pp. 559-568). (Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). Springer-Verlag GmbH. 10.1007/978-3-540-
87700-4_56

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28963659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-540-87700-4_56
https://www.research.ed.ac.uk/portal/en/publications/a-steadystate-genetic-algorithm-with-resampling-for-noisy-inventory-control(cd47ce70-4b16-4238-8fcc-9f3aed39468a).html

A Steady-State Genetic Algorithm With

Resampling for Noisy Inventory Control⋆

Steven Prestwich1, S. Armagan Tarim2, Roberto Rossi1 and Brahim Hnich3

1 Cork Constraint Computation Centre, University College, Cork, Ireland
s.prestwich@cs.ucc.ie, r.rossi@4c.ucc.ie

2 Department of Management, Hacettepe University, Turkey
armagan.tarim@hacettepe.edu.tr

3 Faculty of Computer Science, Izmir University of Economics, Turkey
brahim.hnich@ieu.edu.tr

Abstract. Noisy fitness functions occur in many practical applications
of evolutionary computation. A standard technique for solving these
problems is fitness resampling but this may be inefficient or need a large
population, and combined with elitism it may overvalue chromosomes or
reduce genetic diversity. We describe a simple new resampling technique
called Greedy Average Sampling for steady-state genetic algorithms such
as GENITOR. It requires an extra runtime parameter to be tuned, but
does not need a large population or assumptions on noise distributions.
In experiments on a well-known Inventory Control problem it performed
a large number of samples on the best chromosomes yet only a small
number on average, and was more effective than four other tested tech-
niques.

1 Introduction

In many real-world applications of Genetic Algorithms (GAs) and other Evo-
lutionary Computation algorithms, the fitness function is noisy: that is, the
fitness of a chromosome cannot be computed directly but must be averaged over
a number of samples. Examples include the learning of randomised games such as
Backgammon, human-computer interaction, and simulation problems for which
we wish to evolve a robust plan. The standard deviation of the sample mean of
a random variable with standard deviation σ is σ/

√
n where n is the number

of samples, so a large number of samples may be needed for very noisy fitness
functions.

Several techniques for handling fitness noise in EAs are surveyed in [4, 13]:
the use of sampling to obtain an average fitness reduces noise; increasing the
population size makes it harder for an unfit chromosome to displace a fitter one

⋆ S. A. Tarim and B. Hnich are supported by the Scientific and Technological Research
Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027. R. Rossi is sup-
ported by Science Foundation Ireland under Grant No. 03/CE3/I405 as part of the
Centre for Telecommunications Value-Chain-Driven Research (CTVR) and Grant
No. 05/IN/I886.

(a point also made by [10]) and can be viewed as a form of implicit averaging;
and rescaled mutation samples distant points in the search space then moves
a small distance toward them. [5] propose regression to estimate the fitness of
neighbouring chromosomes. [1] vary sample rates across both chromosomes and
generations in a generational GA. [18] record fitness levels in a search history, and
use a stochastic model of fitness levels to locate new points in the search space.
[3] use a threshold selection heuristic for accepting chromosomes. [17] adapt
the sampling rate to different regions of the search space, a technique they call
dynamic resampling. [19] use a Bayesian approach to sampling called Optimal
Computing Budget Allocation, which assumes normally distributed noise.

A popular approach is to use a Noisy Genetic Algorithm (NGA) which com-
putes the fitness of each chromosome by averaging over a number of samples [9,
11, 14, 15]. Following [1] we shall refer to this as static sampling, and refer to
this algorithm as NGAs. NGAs wastes considerable time evaluating unpromis-
ing chromosomes, but it can be improved by linearly increasing the number of
samples with search time, starting from a low value [21, 27]. We shall refer to
this as incremental sampling and the resulting algorithm as NGAi. However,
though NGAs and NGAi have been used to solve real problems, they may not
be the most efficient approach. It is pointed out in [22] that a reduction in noise
is not necessary for every chromosome, only for the best ones. Of course, this
entails discovering which are the best chromosomes without performing a large
number of samples, but poor chromosomes might become apparent after just a
few samples.

An alternative technique is to resample chromosome fitness: that is, some
chromosomes are allowed to survive for more than one generation, and their
fitness is periodically recomputed to refine the estimate. Various heuristics may
be used to decide when to discard a chromosome. [22] experiments with aver-
aging over a small number of samples, and guiding resampling by a statistical
test which assumes Gaussian noise but is considered to be robust under non-
Gaussian noise. [12] uses the standard deviation of the fitness to correct for
its noise, again under assumptions on noise distribution. Resampling and the
common heuristic of elitism do not always combine well. [6] show that, with
an elitist GA, the probabilistic method of [12] is inferior to a resampling ap-
proach. [2] show that, in Evolutionary Strategies that allow fitness values to
survive for more than one generation, failure to resample can lead to systematic
overvaluation of chromosomes. [8] found that, when applying co-evolutionary
learning to the noisy task of learning how to play Backgammon, more sampling
can have a bad effect on the learning besides incurring overhead. It causes less
fit chromosomes to be pruned more quickly which reduces genetic diversity too
drastically, especially with small populations. Despite these drawbacks, resam-
pling and elitism have been successfully combined. [25] describe an extension of
the Simple (generational) GA that maintains a list of the fittest solutions found
so far, while increasing the number of samples as search proceeds as in NGAi;
they also increase the population size during search.

Another successful resampling elitist GA is the Kalman-extended Genetic

Algorithm (KGA) [23], designed for problems whose fitness is both noisy and
nonstationary. It adapts its sampling rate for each chromosome individually,
based on techniques from Kalman filtering. Removing the nonstationary aspects
of KGA yields a steady-state algorithm that evaluates the fitness of each new
chromosome just once before adding it to the population, then replaces the
least-fit population member by the new chromosome. Alternate iterations are
devoted to resampling chromosomes that are already in the population. The
current fitness estimate of a chromosome is the mean over all its samples. In
KGA a chromosome is selected for resampling according to its current fitness
estimate and how many times it has already been sampled (which is a measure
of the fitness uncertainty): choose the chromosome with fewest samples, among
those whose fitness estimates are greater than the population fitness mean minus
the population fitness standard deviation. The intuition behind this approach is
that unfit chromosomes with high fitness estimate based on only a few samples
will be resampled, and their low fitness will become apparent. We shall refer to
this as Kalman sampling.

In this paper we investigate resampling strategies for the steady-state (there-
fore elitist) GENITOR algorithm [26]. Our aim is to find a simple resampling
strategy that can be used with a steady-state GA, does not assume any noise
properties, does not require a large population, resamples fit chromosomes many
times to avoid overvaluation, yet on average uses only a few samples per chromo-
some. We find it necessary to introduce a new runtime parameter that requires
manual tuning, but this might be automated in future work. We demonstrate our
technique on a well-known problem from Inventory Control. Section 2 describes
our algorithm, Section 3 describes the problem we attempt to solve, Section 4
presents experimental results, and Section 5 concludes the paper.

2 The algorithm

We use a single GA in our experiments: a basic version of GENITOR [26] without
refinements such as a gene to determine crossover probability. GENITOR is a
steady-state GA that, at each iteration, selects two parent chromosomes, breeds
a single offspring by (optional) crossover followed by mutation, evaluates it, and
uses it to replace the least-fit member of the population. We use random parent
selection, and standard uniform crossover applied with a crossover probability
0.5: if it is not applied then a single parent is selected and mutated. In our
problem (described below) each gene can take any of 100 integer values, plus
a special value denoted by NULL. Because of the special nature of the NULL
value we select it with probability 0.5, otherwise randomly select one of the
100 integer values. Mutation is applied to a chromosome once with probability
0.5, twice with probability 0.25, three times with probability 0.125, and so on.
A small population of size 30 is used. We assume that at least U samples are
required to obtain a sufficiently reliable fitness estimate, and in experiments
we will use the large value U = 1000. Thus we face the challenge of sampling

effectively without incurring the drawbacks described above: inefficiency, lack of
genetic diversity, or overvaluation, while using only a small population.

This is our basic GA but we have yet to specify a sampling strategy to cope
with fitness noise. We will compare five resampling strategies, three of which are
well-known: static sampling (as in NGAs) in which we take U samples for each
chromosome, incremental sampling (as in NGAs) in which we take a variable
number of samples per chromosome that linearly increases from 1 to U during
the GA execution, and Kalman sampling (as in KGA). The other two strategies
are new.

Our first new strategy tries to combine the rapid convergence of Kalman
sampling with the reliability of static sampling. It applies Kalman sampling but
with a number S ≥ 1 of samples to initialise and resample chromosomes, with
the best value of S to be determined by experiment. We shall refer to this as
Kalman averaged sampling and our GA with this sampling scheme as KASGA.
It is inspired by a note in [1] stating that if the fitness variance in the population
is small compared to the noise variance then a GA will make no progress, and
it becomes necessary to increase the sample rate. It is also inspired by the use
of a small number of samples for evolutionary algorithms in [22].

Our second new strategy also takes S samples each time a chromosome is
selected for (re)sampling, but it resamples the chromosome with highest fitness,
ignoring chromosomes that already have U samples. Note that if S < U then
there is always at least one chromosome with fewer than U samples: the most
recently created chromosome, which only has S samples. Note also that we nor-
mally choose S to be a divisor of U to avoid unnecessary resampling, but this is
not strictly required. We shall call this scheme greedy averaged sampling because
it greedily resamples the most promising chromosome, based on current fitness
estimates. Combining this with the GA we obtain a new algorithm we shall call
the Greedy Average Sample GA (GASGA). This is our main contribution and
it is summarised in Figure 1.

GASGA(S, P, U)

create population of size P

evaluate population using S samples

while not(termination condition)

select two parents

breed one offspring O

evaluate O using S samples

replace least-fit chromosome by O

select fittest chromosome F with #samples< U

re-evaluate F using S samples

output fittest chromosome

Fig. 1. GASGA pseudo-code

3 An inventory control problem with uncertainty

The problem we consider is as follows. Given a planning horizon of N periods and
a demand for each period t ∈ {1, . . . , N}, which is a random variable with a given
probability density function; we assume that these distributions are normal,
though this is not required by our GA. Demands occur instantaneously at the
beginning of each time period and are non-stationary (can vary from period to
period), and demands in different periods are independent. A fixed delivery cost
a is incurred for each order, a linear holding cost h is incurred for each product
unit carried in stock from one period to the next, and a linear stockout cost s is
incurred for each period in which the net inventory is negative (it is not possible
to sell back excess items to the vendor at the end of a period). The aim is to find
a replenishment plan that minimizes the expected total cost over the planning
horizon.

Different inventory control policies can be adopted to cope with this and
other problems. A policy states the rules used to decide when orders are to
be placed and how to compute the replenishment lot-size for each order. (The
term policy here refers to the form of the plan, whereas in some fields such as
Artificial Intelligence a policy refers to an actual plan. We use the term in both
senses, and the meaning should be clear from the context.) One possibility is the
replenishment cycle policy (R, S) [20]. With non-stationary demands this policy
takes the form (Rn, Sn) where Rn denotes the length of the nth replenishment
cycle and Sn the order-up-to-level for replenishment. In this policy a wait-and-
see strategy is adopted, under which the actual order quantity for replenishment
cycle n is determined only after the demand in former periods has been realized.
The order quantity is computed as the amount of stock required to raise the
closing inventory level of replenishment cycle n − 1 up to level Sn. To provide
a solution we must populate both the sets Rn and Sn for n = {1, . . . , N}. The
(R, S) policy yields plans of higher cost than optimal but has been formulated
to reduce nervousness in inventory control, and is more often used in practice.

There are more efficient algorithms which are guaranteed to yield optimal
policies (under reasonable simplifying assumptions) so a GA would not be ap-
plied to precisely this problem in practice. However, if we complicate the problem
in simple but realistic ways, for example by adding order capacity constraints or
dropping the assumption of independent demands, these efficient algorithms be-
come unusable. In contrast, a GA can be used almost without modification. Thus
the problem is useful as a representative of a family of more complex problems.

The replenishment cycle policy can be modelled as follows. Each chromosome
represents a single policy, each gene corresponds to a period n, an allele specifies
the order-up-to level or the lack of an order (denoted here by the special value
NULL) for that period, and a chromosome’s fitness is the inverse of the total
cost incurred by the policy that it represents. For our experiments we allow 100
different order-up-to levels, linearly spaced in the range 1–300. Thus each gene
has 101 alleles. These parameters were chosen as suitable for the instances we
tested.

4 Experiments

We obtained results using several problem parameter settings, and in each case
found the same relationships between the algorithms. For this reason, and be-
cause of limited space, we present results for only one instance: 100 periods,
stationary demands with mean 50 and standard deviation 10 in all periods, and
cost parameters h = 1, a = 400 and s = 10. Problems with 100 periods are very
hard: none of the methods we test can find the optimal policy within several
hours (nor did attempts using Mixed Integer Programming and Reinforcement
Learning algorithms). The optimal policy has an expected total cost of 19,561
with replenishment every 4 periods (starting from the first period) and order-
up-to levels of 205 deduced from the cyclic nature of the problem (which is not
exploited by the algorithms we test).

We will compare several GAs using three metrics: the fitness of the selected
chromosome, the reliability of the selected chromosome measured by the number
of samples used to compute the fitness, and the wastefulness of the GA mea-
sured by the number of samples used to estimate the fitness of discarded chro-
mosomes. Almost every chromosome is discarded at some point during search,
so the wastefulness is an approximation to the average number of samples used
per chromosome. Ideally we aim for a GA with high fitness and reliability, but
low wastefulness. In our experiments we aim for a reliability of U = 1000. The
results are shown in Figure 2.

The fitness graph also shows results for the SARSA(λ) Reinforcement Learn-
ing algorithm [24] for comparison, as the problem can be modelled as an episodic
Partially Observable Markov Decision Process in which a state is the period, an
action is either the choice of an order-up-to level or the lack of an order (NULL)
in a period, and a reward (undiscounted) is minus the total cost incurred in a pe-
riod. We use an ǫ-greedy heuristic, varying ǫ inversely with time as recommended
in [24], and tuning the α, λ parameters by the common method of hill-climbing
in parameter space. All state-action values were initialised to 0, as the use of
optimistic initial values encourages early exploration [24].

Because there is a range of Pareto-optimal solutions among the chromosomes
of a GA, varying from high fitness based on few samples to low fitness based on
many samples, we have a problem: how should different GAs be compared? We
are interested in fit solutions based on many samples, so for each GA we shall
select the chromosome with the greatest value of samples/cost. The results are
as follows.

The graphs show that NGAs has high reliability, but it converges quite slowly
and has high wastefulness as it uses exactly 1000 samples for every chromosome.
NGAi has much better fitness than NGAs. It reaches this fitness rapidly but
then make little further progress, perhaps because of its increasing wastefulness.
However, it achieves NGAs’s reliability by the end of the run, and only matches
its wastefulness by the end of the run. Note that the reliability does not quite
reach 1000 samples: there is a delay between (i) increasing the number of sam-
ples to a given number, and (ii) obtaining a chromosome whose fitness is both
high and based on that number of samples. This delay would not occur in a

fitness:

 0 200000 400000 600000 800000 1e+06

co
st

simulations/episodes

SARSA
NGAs
NGAi
KGA

KASGA
GASGA

reliability:

 10

 100

 1000

 0 200000 400000 600000 800000 1e+06

sa
m

pl
es

simulations

NGAs
NGAi
KGA

KASGA
GASGA

wastefulness:

 1

 10

 100

 1000

 0 200000 400000 600000 800000 1e+06

sa
m

pl
es

simulations

NGAs
NGAi
KGA

KASGA
GASGA

Fig. 2. Experimental results

generational GA, in which no chromosome survives to the next generation. We
should perhaps use a generational GA to evaluate incremental sampling, as this
was the form of GA used in the Noisy GA work, but in this paper our aim is to
compare several sampling techniques on the same (steady-state) GA. However,
a generational GA will presumably exhibit similar wastefulness.

KGA has excellent fitness but very low reliability. Though KGA has given
good results on other problems, here no chromosome survives long enough to
achieve a sufficient number of samples. This is caused by the high fitness noise
in our problem: as chromosomes are resampled their estimated fitnesses fluctuate
significantly, and over many iterations the fittest chromosome is not much more
likely to survive than any other. Our problem is very noisy, with the fitness
standard deviation not much less than the mean, and KGA seems unsuitable for
such problems. KASGA is a marked improvement over KGA. Increasing S until
the reliability is approximately 1000 samples, we reach a value S = 250. The
graphs show that KASGA has better fitness than NGAs but no other algorithm,
probably because of its fairly high wastefulness (approximately 400 samples per
chromosome). But it does have high reliability, making it more usable than KGA.

GASGA outperforms KASGA and the other algorithms. Again increasing
S until reliability is approximately 1000, this time we reach a value of only
S = 25. The graphs show that GASGA has higher fitness than any other GA
(other than KGA). GASGA is also less wasteful than any other GA (other than
the unreliable KGA): though it finds high-fitness solutions using 1000 samples,
it uses only 39 samples per chromosome on average. This is exactly what we
aimed for: a GA that achieves high fitness and reliability but low wastefulness.

As noted above, in further experiments using different problem parameters
we obtained the same relationships among the GAs. The only difference was the
SARSA(λ) result: on this instance it found a solution that was approximately as
good as that found by GASGA, on others it found better solutions, and on others
it found worse solutions. This illustrates the known fact that Reinforcement
Learning and Evolutionary Computation are rival approaches to some problems,
and neither dominates the other over all instances [16].

GASGA should find application to many problems with noisy fitness func-
tions. The required number of samples can be chosen by considering the required
solution accuracy and the observed variance in solution fitness. Parameter S
must currently be tuned by hand: too small a value causes GASGA to behave
like KGA, and it never obtains a reliable solution; too large a value causes it to
behave like NGA, and it converges slowly. We tried automating S by maintain-
ing it at a level that only just generates a chromosome with 1000 samples, but
this forced it to a higher value than necessary (over 100); automation of S is a
topic for future work.

5 Conclusion

We designed a simple new resampling strategy for steady-state GAs that makes
no assumptions about fitness noise distributions (though problems with different

distributions will probably require the parameter values to be tuned differently),
does not require a large population, provides a high level of reliability, yet takes
a low number of samples on average. Incorporated into GENITOR and applied
to a problem from classical Inventory Control, it gave better results than four
other sampling strategies. In future work we will evaluate GASGA on other
problems with noisy fitness functions such as perception [7], image registration
[9, 15], network design [27] and remediation design [11].

None of the algorithms we tested are able to find optimal policies for the
inventory problem so it is a challenging benchmark for Evolutionary Computa-
tion, and in further experiments we also found it to be hard for Reinforcement
Learning and Mixed Integer Programming. This makes it an interesting bench-
mark despite its simplicity, and in future work we will add features such as order
capacity constraints.

References

1. A. Aizawa, B. Wah. Scheduling of Genetic Algorithms in a Noisy Environment.
Evol. Comput. 2(2):97–122, 1994.

2. D. V. Arnold, H.-G. Beyer. Local Performance of the (1+1)-ES in a Noisy Envi-
ronment. IEEE Trans. Evolutionary Computation 6(1):30–41, 2002.

3. T. Beielstein, S. Markon. Threshold Selection, Hypothesis Tests, and DOE Meth-
ods. Congress on Evolutionary Computation, IEEE Press, 2002, pp. 777–782.

4. H.-G. Beyer. Evolutionary Algorithms in Noisy Environments: Theoretical Issues
and Guidelines for Practice. Computer Methods in Applied Mechanics and Engi-

neering 186(2–4):239–267, 2000.
5. J. Branke, C. Schmidt, H. Schmeck. Efficient Fitness Estimation in Noisy Envi-

ronments. Genetic and Evolutionary Computation Conference, Morgan Kaufmann,
2001, pp. 243–250.

6. L. T. Bui, H. A. Abbass, D. Essam. Fitness Inheritance for Noisy Evolution-
ary Multi-Objective Optimization. Genetic and Evolutionary Computation Con-

ference, Washington DC, USA, ACM Press, 2005.
7. G. de Croon, M. F. van Dartel, E. O. Postma. Evolutionary Learning Outper-

forms Reinforcement Learning on Non-Markovian Tasks. Workshop on Memory

and Learning Mechanisms in Autonomous Robots, 8th European Conference on

Artificial Life, Canterbury, Kent, UK, 2005.
8. P. J. Darwen. Computationally Intensive and Noisy Tasks: Coevolutionary Learn-

ing and Temporal Difference Learning on Backgammon. Congress on Evolutionary

Computation, 2000.
9. J. M. Fitzpatrick, J. J. Grefenstette. Genetic Algorithms in Noisy Environments.

Machine Learning 3:101–120, 1988.
10. D. E. Goldberg, K. Deb, J. H. Clark. Genetic Algorithms, Noise, and the Sizing of

Populations. Complex Systems 6:333–362, 1992.
11. G. Gopalakrishnan, B. S. Minsker, D. Goldberg. Optimal Sampling in a Noisy

Genetic Algorithm for Risk-Based Remediation Design. World Water and Envi-

ronmental Resources Congress, ASCE, 2001.
12. E. J. Hughes. Evolutionary Multi-objective Ranking with Uncertainty and Noise.

First International Conference on Evolutionary Multi-Criterion Optimization, Lec-

ture Notes In Computer Science vol. 1993, Springer-Verlag, 2001, pp. 329–343.

13. Y. Jin, J. Branke. Evolutionary Optimization in Uncertain Environments — a
Survey. IEEE Transactions on Evolutionary Computation 9(3):303–317, 2005.

14. B. L. Miller. Noise, Sampling, and Efficient Genetic Algorithms. PhD thesis, Uni-
versity of Illinois, Urbana-Champaign, 1997.

15. B. L. Miller, D. E. Goldberg. Optimal Sampling for Genetic Algorithms. Intelligent

Engineering Systems Through Artificial Neural Networks, vol. 6, ASME Press,
1996, pp. 291–298.

16. D. E. Moriarty, A. C. Schultz, J. J. Grefenstette. Evolutionary Algorithms for
Reinforcement Learning. Journal of Artificial Intelligence Research 11:241–276,
1999.

17. A. Di Pietro, L. While, L. Barone. Applying Evolutionary Algorithms to Prob-
lems With Noisy, Time-Consuming Fitness Functions. Congress on Evolutionary

Computation, IEEE, 2004, pp. 1254–1261.
18. Y. Sano,H. Kita. Optimization of Noisy Fitness Functions by Means of Genetic

Algorithms Using History of Search With Test of Estimation. Congress on Evolu-

tionary Computation, IEEE, 2002, pp. 360–365.
19. C. Schmidt, J. Branke, S. E. Chick. Integrating Techniques from Statistical Rank-

ing into Evolutionary Algorithms. EvoWorkshops, 3rd European Workshop on Evo-

lutionary Algorithms in Stochastic and Dynamic Environments, Lecture Notes in

Computer Science vol. 3907, Springer, 2006, pp. 752–763.
20. E. A. Silver, D. F. Pyke, R. Peterson. Inventory Management and Production

Planning and Scheduling. John-Wiley and Sons, New York, 1998.
21. J. B. Smalley, B. Minsker, D. E. Goldberg. Risk-Based In Situ Bioremediation

Design Using a Noisy Genetic Algorithm. Water Resour. Res. 36(10):3043–3052,
2000.

22. P. Stagge. Averaging Efficiently in the Presence of Noise. 5th International Confer-

ence on Parallel Problem Solving from Nature, Lecture Notes in Computer Science

vol. 1498, Springer-Verlag, 1998, pp. 188–197.
23. P. D. Stroud. Kalman-Extended Genetic Algorithm for Search in Nonstationary

Environments with Noisy Fitness Functions. IEEE Transactions on Evolutionary

Computation 5(1):66–77, 2001.
24. R. S. Sutton, A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,

1998.
25. T. W. Then, E. K. P. Chong. Genetic Algorithms in Noisy Environments. 9th IEEE

International Symposium on Intelligent Control , Columbus, Ohio, USA, 1994, pp.
225–230.

26. D. Whitley, J. Kauth. GENITOR: A Different Genetic Algorithm. Rocky Mountain

Conference on Artificial Intelligence, Denver, CO, USA, 1988, pp. 118–130.
27. J. Wu, C. Zheng, C. C. Chien, L. Zheng. A Comparative Study of Monte Carlo

Simple Genetic Algorithm and Noisy Genetic Algorithm for Cost-Effective Sam-
pling Network Design Under Uncertainty. Advances in Water Resources 29:899–
911, 2006.

