
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stochastic constraint programming by neuroevolution with
filtering
Citation for published version:
Prestwich, S, Tarim, SA, Rossi, R & Hnich, B 2010, Stochastic constraint programming by neuroevolution
with filtering. in Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems: 7th International Conference, CPAIOR 2010, Bologna, Italy, June 14-18, 2010,
Proceedings. vol. 6140 LNCS, Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 282-286. DOI: 10.1007/978-3-642-13520-
0_30

Digital Object Identifier (DOI):
10.1007/978-3-642-13520-0_30

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems

Publisher Rights Statement:
© Prestwich, S., Tarim, S. A., Rossi, R., & Hnich, B. (2010). Stochastic constraint programming by
neuroevolution with filtering. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems: 7th International Conference, CPAIOR 2010, Bologna, Italy, June 14-18,
2010. Proceedings. (Vol. 6140 LNCS, pp. 282-286). (Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). 10.1007/978-3-642-13520-0_30

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28963657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-13520-0_30
https://www.research.ed.ac.uk/portal/en/publications/stochastic-constraint-programming-by-neuroevolution-with-filtering(4fd4fa40-97b6-4a8b-b7ff-a1a2d2843b89).html


Stochastic Constraint Programming
by Neuroevolution With Filtering⋆

S. D. Prestwich1, S. A. Tarim2, R. Rossi3, and B. Hnich4

1Cork Constraint Computation Centre, University College Cork, Ireland
2Department of Management, Hacettepe University, Ankara, Turkey

3Logistics, Decision and Information Sciences Group, Wageningen UR, the Netherlands
4Faculty of Computer Science, Izmir University of Economics, Turkey

s.prestwich@cs.ucc.ie, armtar@yahoo.com,
roberto.rossi@wur.nl, brahim.hnich@ieu.edu.tr

Abstract. Stochastic Constraint Programming is an extension of Constraint Pro-
gramming for modelling and solving combinatorial problemsinvolving uncer-
tainty. A solution to such a problem is a policy tree that specifies decision vari-
able assignments in each scenario. Several complete solution methods have been
proposed, but the authors recently showed that an incomplete approach based on
neuroevolution is more scalable. In this paper we hybridiseneuroevolution with
constraint filtering on hard constraints, and show both theoretically and empiri-
cally that the hybrid can learn more complex policies more quickly.

1 Introduction

Stochastic Constraint Programming (SCP) is an extension ofConstraint Programming
(CP) designed to model and solve complex problems involvinguncertainty and prob-
ability [7]. An m-stage SCSP is defined as a tuple(V, S, D, P, C, θ, L) whereV is a
set of decision variables,S a set of stochastic variables,D a function mapping each
element ofV ∪ S to a domain of values,P a function mapping each variable inS to
a probability distribution,C a set of constraints onV ∪ S, θ a function mapping each
constraint inC to a threshold valueθ ∈ (0, 1], andL = [〈V1, S1〉, . . . , 〈Vm, Sm〉] a list
of decision stagessuch that theVi partitionV and theSi partitionS. Each constraint
must contain at least oneV variable, a constrainth ∈ C containing onlyV variables is
ahard constraintwith thresholdθ(h) = 1, and one containing at least oneS variable is
a chance constraint.

To solve an SCSP we must find apolicy treeof decisions, in which each node rep-
resents a value chosen for a decision variable, and each arc from a node represents the
value assigned to a stochastic variable. Each path in the tree represents a different possi-
ble scenarioand the values assigned to decision variables in that scenario. A satisfying

⋆ S. A. Tarim and B. Hnich are supported by the Scientific and Technological Research Council
of Turkey (TUBITAK) under Grant No. SOBAG-108K027. S. A. Tarim is also supported by
Hacettepe University (BAB). A version of this algorithm will used to further research in risk
management as part of a collaboration with IBM Research, with partial support from the Irish
Development Association and IRCSET.



policy treeis a policy tree in which each chance constraint is satisfied with respect to the
tree. A chance constrainth ∈ C is satisfied with respect to a policy tree if it is satisfied
under some fractionφ ≥ θ(h) of all possible paths in the tree.

Most current SCP approaches are complete and do not seem practicable for large
multi-stage problems, but the authors recently proposed a more scalable method called
Evolved Parameterised Policies(EPP) [3]. In this paper we hybridise EPP with con-
straint filtering, and show theoretically and empirically that this improves learning. An
upcoming technical report will contain details omitted from this short paper.

2 Filtered Evolved Parameterised Policies

EPP [3] uses an evolutionary algorithm to find an artificial neural network (ANN) whose
input is a representation of a policy tree node, and whose output is a domain value for
the decision variable to be assigned at that node. The ANN describes apolicy func-
tion: it is applied whenever a decision variable is to be assigned, and can be used to
represent or recreate a policy tree. The evolutionary fitness function penalises chance
constraint violations, and is designed to be optimal for ANNs representing satisfying
policy trees. In experiments on random SCSPs, EPP was ordersof magnitude faster
than state-of-the-art complete algorithms [3]. Because itevolves an ANN it is classed
as aneuroevolutionarymethod (see for example [6]).

A drawback with EPP is that it treats hard constraints in the same way as chance
constraints. This is not incorrect, but a problem containing many hard constraints may
require a complex ANN with more parameters to tune, leading to longer run times. We
now describe a constraint-based technique for the special case of finite domain SCSPs
that allows more complex policies to be learned by simpler ANNs.

We modify EPP so that the ANN output is not used to compute a decision variable
value directly, but instead to compute arecommended value. As we assign values to the
decision and stochastic variables under some scenarioω, we apply constraint filtering
algorithms using only the hard constraints, which may remove values from both de-
cision and stochastic variable domains. If domain wipe-outoccurs on any decision or
stochastic variable then we stop assigning variables underω and every constraint is arti-
ficially considered to be violated inω; otherwise we continue. On assigning a stochastic
variables we chooseω(s), but if ω(s) has been removed from dom(s) then we stop as-
signing variables underω and every constrainth is artificially considered to be violated
in ω; otherwise we continue. On assigning a decision variablex we compute the rec-
ommended value then choose the first remaining domain value after it in cyclic order.
For example suppose that initially dom(x) = {1, 2, 3, 4, 5} but this has been reduced
to {2, 4}, and the recommended value is 5. This value is no longer in dom(x) so we
choose the cyclically next remaining value 2. If all variables are successfully assigned
in ω then we check by inspection whether each constraint is violated or satisfied.

Some points should be clarified here. Firstly, it might be suspected that filtering
a stochastic variable domain violates the principle that these variables are randomly
assigned. But stochastic variables are assigned values from their unfiltereddomains.
Secondly, the value assigned to a decision variable must depend only upon the values
assigned to stochastic variables occurringearlier in the stage structure. Does filtering



Constraints:
c1 : Pr {x = s ⊕ t} = 1

Decision variables:
x ∈ {0, 1}

Stochastic variables:
s, t ∈ {0, 1}

Stage structure:
V1 = ∅ S1 = {s, t}
V2 = {x} S2 = ∅
L = [〈V1, S1〉, 〈V2, S2〉]

Fig. 1. SCSP used in Proposition 1.

the domains of stochastic variables that occurlater violate this principle? No: constraint
filtering makes no assumptions on the values of unassigned variables, it only tells us
that assigning a value to a decision variable will inevitably lead to a hard constraint
violation. Thirdly, we consider all constraints to be violated if either domain wipe-out
occurs, or if the selected value for a stochastic variable has been removed earlier by
filtering. This might appear to make the evolutionary fitnessfunction incorrect. But
both these cases correspond to hard constraint violations,and considering constraints
to be violated in this way is similar to using a penalty function in a genetic or local
search algorithm: it only affects the objective function value for non-solutions.

We call the modified methodFiltered Evolved Parameterised Policies(FEPP) and
now state two useful properties.

Proposition 1. FEPP can learn more policies than EPP with a given ANN.

Proof sketch.We can show that any policy that can be learned by EPP can also be
learned by FEPP. Conversely, we show by example that there exists an SCSP that can
be solved by FEPP but not by EPP using a given ANN. Suppose thatthe ANN is a
singleperceptron[2] whose inputs are thes andt values and whose output is used to
select a domain value forx, the SCSP is as shown in Figure 1, and FEPP enforces arc
consistency. A single perceptron cannot learn the⊕ (exclusive-OR) function [2] so EPP
cannot solve the SCSP. But arc consistency removes the incorrect value from dom(x)
so FEPP makes the correct assignment irrespective of the ANN. 2

Proposition 2. Increasing the level of consistency increases the set of policies that can
be learned by FEPP with a given ANN.

Proof sketch.We can show that any policy that can be learned by FEPP with a given
ANN and filtering algorithmA can also be learned with a stronger filtering algorithm
B. Conversely, we show by example that there exists an SCSP, anANN, and filtering
algorithmsA andB, such that the SCSP can be solved by FEPP withB but notA. Let
the SCSP be as shown in Figure 2,A enforce pairwise arc consistency on the disequality
constraints comprisingc2,B enforce hyper-arc consistency onc2 using the algorithm of
[5], and bothA andB enforce arc consistency onc1. In any satisfying policyx = s⊕ t.



Constraints:
c1 : Pr {x < 2 → x = s ⊕ t} = 1
c2 : Pr {alldifferent(x, y, u)} = 1

Decision variables:
x ∈ {0, 1, 2, 3}
y ∈ {2, 3}

Stochastic variables:
s, t ∈ {0, 1}
u ∈ {2, 3}

Stage structure:
V1 = ∅ S1 = {s, t}
V2 = {x} S2 = {u}
V3 = {y} S3 = ∅
L = [〈V1, S1〉, 〈V2, S2〉, 〈V3, S3〉]

Fig. 2. SCSP used in Proposition 2.

The proof rests on the fact thatB reduces dom(x) to {0, 1} before search begins so⊕
can immediately be enforced. FEPP underA cannot do this so it is forced to learn⊕,
which is impossible for a perceptron.2

Thus FEPP can potentially exploit advanced CP techniques such as global con-
straints. We state without proof two further propositions.

Proposition 3. The optimisation problem representing an SCSP has more solutions un-
der FEPP than under EPP, with a given ANN.

A solutionhere is a set of parameter values for the ANN that represents asatisfying
policy tree for the SCSP.

Proposition 4. The optimisation problem representing an SCSP has more solutions un-
der FEPP if the level of consistency is increased, with a given ANN.

So even where FEPP has the same learning ability as EPP, it maybe more efficient
because it solves an optimisation problem with more solutions. Increasing the number
of solutions is not guaranteed to make the problem easier to solve, especially as filtering
incurs a runtime overhead, but it may do so.

3 Experiments

We now test two hypotheses: does filtering enable an ANN to learn more complex poli-
cies in practice as well as in theory (proposition 1)? And where a policy can be learned
without filtering, does filtering speed up learning (as we hope is implied by proposition
3)? For our experiments we use Quantified Boolean Formula (QBF) instances. QBF and
SCSP are closely related as there is a simple mapping from QBFto Stochastic Boolean
Satisfiability, which is a special case of SCSP [1]. QBF-as-SCSP is an interesting test
for FEPP becauseall its constraints are hard.



instanceEPPFEPP
cnt01 0.9 0.03

impl02 2.9 0.02
impl04 — 8.8

TOILET2.1.iv.4 — 31
toilet a 02 01.4 — 9.5

tree-exa10-10 — 4.0

Table 1. Results on QBF instances transformed to SCSPs

We have implemented a prototype FEPP using a weak form of constraint filtering
calledbackchecking. We use the same ANN as in [3]: aperiodic perceptron[4], which
has been shown to learn faster and require fewer weights thana standard perceptron.
Results for EPP and FEPP are shown in Table 1, both tuned roughly optimally to each
instance. All times were obtained on a 2.8 GHz Pentium (R) 4 with 512 MB RAM
and are medians of 30 runs. “—” indicates that the problem wasnever solved despite
multiple runs with different EPP parameter settings. Thesepreliminary results support
both our hypotheses: there are problems that can be solved byFEPP but not (as far as
we can tell) by EPP; and where both can solve a problem FEPP is faster. So far we have
found no QBF instance on which EPP beats FEPP.

4 Conclusion

FEPP is a true hybrid of neuroevolution and constraint programming, able to benefit
from improvements to its evolutionary algorithm, its neural network and its filtering
algorithms. In future work we will work on all three of these aspects and test FEPP on
real-world optimisation problems involving uncertainty.

References

1. S. M. Majercik. Stochastic Boolean Satisfiability. Handbook of Satisfiability, Chapter 27,
IOS Press, 2009, pp. 887–925.

2. M. Minsky, S. Papert. Perceptrons: An Introduction to Computational Geometry. The MIT
Press, Cambridge MA, 1972.

3. S. D. Prestwich, S. A. Tarim, R. Rossi, B. Hnich. Evolving Parameterised Policies for
Stochastic Constraint Programming.15th International Conference on Principles and Prac-
tice of Constraint Programming, Lecture Notes in Computer Sciencevol. 5732, 2009, pp.
684–691.

4. R. Racca. Can Periodic Perceptrons Replace Multi-Layer Perceptrons?Pattern Recognition
Letters21:1019–1025, 2000.

5. J.-C. Régin. A Filtering Algorithm for Constraints of Difference in CSPs.12th National
Conference on Artificial Intelligence, AAAI Press, 1994, pp. 362–367.

6. K. O. Stanley, R. Miikkulainen. A Taxonomy for Artificial Embryogeny.Artificial Life
9(2):93–130, MIT Press, 2003.

7. T. Walsh. Stochastic Constraint Programming.15th European Conference on Artificial Intel-
ligence, 2002.


