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Abstract. Cost-based filtering is a novel approach that combines tech-
niques from Operations Research and Constraint Programming to filter
from decision variable domains values that do not lead to better solu-
tions [7]. Stochastic Constraint Programming is a framework for mod-
eling combinatorial optimization problems that involve uncertainty [19].
In this work, we show how to perform cost-based filtering for certain
classes of stochastic constraint programs. Our approach is based on a
set of known inequalities borrowed from Stochastic Programming — a
branch of OR concerned with modeling and solving problems involving
uncertainty. We discuss bound generation and cost-based domain filter-
ing procedures for a well-known problem in the Stochastic Programming
literature, the static stochastic knapsack problem. We also apply our
technique to a stochastic sequencing problem. Our results clearly show
the value of the proposed approach over a pure scenario-based Stochas-
tic Constraint Programming formulation both in terms of explored nodes
and run times.

1 Introduction

Constraint Programming (CP) [1] has been recognized as a powerful tool for
modeling and solving combinatorial optimization problems. CP provides global
constraints offering concise and declarative modeling capabilities and efficient
domain filtering algorithms. These algorithms remove combinations of values
which cannot appear in any consistent solution. Cost-based filtering is an ele-
gant way of combining techniques from CP and Operations Research (OR) [7].
OR-based optimization techniques are used to remove from variable domains
values that cannot lead to better solutions. This type of domain filtering can
be combined with the usual CP-based filtering methods and branching heuris-
tics, yielding powerful hybrid search algorithms. Cost-based filtering is a novel
technique that has been the subject of significant recent research.
?
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Stochastic Constraint Programming (SCP) [19] is an extension of CP, in
which there is a distinction between decision variables, which we are free to set,
and stochastic (or observed) variables, which follow some probability distribu-
tion. SCP is designed to handle problems in which uncertainty comes into play.
Uncertainty may take different forms: data about events in the past may not
be known exactly due to measuring or difficulties in sampling, and data about
events in the future may simply not be known with certainty.

In this work we propose a novel approach to performing cost-based filtering
for certain classes of stochastic constraint programs. Our approach is based on
a well-known inequality borrowed from Stochastic Programming [4], a branch of
OR that is concerned with modeling constraint satisfaction/optimization prob-
lems under uncertainty. We implemented this approach for two problems in
which uncertainty plays a role. In both cases we obtained significant improve-
ments with respect to a pure SCP formulation both in terms of explored nodes
and run times.

The rest of the paper is structured as follows. In Section 2 we give the nec-
essary formal background. In Section 3 we review relevant inequalities from
Stochastic Programming. In Section 4, we introduce global optimization chance
constraints. We describe our empirical results in Section 5 and review related
works in Section 6. Finally, we conclude and outline our future work in Section 7.

2 Formal Background

A Constraint Satisfaction Problem (CSP) [1] is a triple 〈V, C,D〉, where V =
{V1, . . . , Vn} is a set of decision variables, D is a function mapping each element
of V to a domain of potential values, and C is a set of constraints stating
allowed combinations of values for subsets of variables in V . A solution to a
CSP is an assignment to every variable of a value in its domain, such that all
of the constraints are satisfied. We may also be interested in finding a feasible
solution that maximizes (minimizes) the value of a given objective function over
a subset of the variables. With no loss of generality, we restrict our discussion
to maximization problems.

Optimization-oriented global constraints embed an optimization component,
representing a proper relaxation of the constraint itself, into a global constraint
[7]. This component provides three pieces of information: (a) the optimal solu-
tion of the relaxed problem; (b) the optimal value of this solution representing an
upper bound on the original problem objective function; (c) a gradient function
grad(V ,v), which returns for each variable-value pair (V ,v) an optimistic eval-
uation of the profit obtained if v is assigned to V . These pieces of information
are exploited both for propagation purposes and for guiding the search.

In [19], a stochastic CSP is defined as a 6-tuple 〈V, S, D, P, C, θ〉, where V is
a set of decision variables and S is a set of stochastic variables, D is a function
mapping each element of V and each element of S to a domain of potential val-
ues. A decision variable in V is assigned a value from its domain. P is a function
mapping each element of S to a probability distribution for its associated do-
main. C is a set of constraints. A constraint h ∈ C that constrains at least one



variable in S is a chance-constraint. θh is a threshold value in the interval [0, 1],
indicating the minimum satisfaction probability for chance-constraint h. Note
that a chance-constraint with a threshold of 1 (or without any explicit thresh-
old specified) is equivalent to a hard constraint. A stochastic CSP consists of a
number of decision stages. A decision stage is a pair 〈Vi, Si〉, where Vi is a set of
decision variables and Si is a set of stochastic variables. In an m-stage stochastic
CSP, V and S are partitioned into disjoint sets, V1, . . . , Vm and S1, . . . , Sm, and
we consider multiple stages, 〈V1, S1〉, 〈V2, S2〉, . . . , 〈Vm, Sm〉. To solve an m-stage
stochastic CSP an assignment to the variables in V1 must be found such that,
given random values for S1, assignments can be found for V2 such that, given
random values for S2, ..., assignments can be found for Vm so that, given random
values for Sm, the hard constraints are satisfied and the chance constraints are
satisfied in the specified fraction of all possible scenarios. The solution of an m-
stage stochastic CSP is represented by means of a policy tree [18]. A policy tree
is a set of decisions where each path represents a different possible scenario and
the values assigned to decision variables in this scenario. Let S denote the space
of policy trees representing all the solutions of a stochastic CSP. We may be
interested in finding a feasible solution, i.e. a policy tree s ∈ S, that maximizes
the value of a given objective function f(·) over the stochastic variables S (edges
of the policy tree) and over a subset V̂ ⊆ V of the decision variables (nodes in
the policy tree). A Stochastic COP is then defined in general as maxs∈S f(s).
In [19] a policy-based view of stochastic constraint programs is proposed. Such
an approach has been further investigated in [3]. An alternative semantics for
stochastic constraint programs comes from a scenario-based view [4, 18]: this so-
lution method consists in generating a scenario-tree that incorporates all possible
realizations of discrete stochastic variables into the model explicitly.

3 Value of Stochastic Solutions

Let Ξ be a discrete stochastic (vector) variable whose realizations correspond
to the various scenarios. Recall that in the policy-based view of stochastic CP a
scenario is a set of edges in the policy tree connecting the root to a leaf. Define

P = max
x∈S

z(x, ξ)

as the optimization problem associated with one particular scenario ξ ∈ Ξ, where
S is a finite set, and z(x, ξ) is a real valued function of two (vector) variables x
and ξ. Note that in what follows the discussion is dual for minimization problems.
In order to simplify the notation used, we will here use the same notation for
referring to a problem and to the value of its optimal solution. The meaning will
be made clear by the context.

The function z(x, ξ) can be seen as a payoff table that for a given decision x
provides the profit with respect to a given scenario ξ having probability Pr{ξ}.
We may be then interested in computing the optimal solution value to the re-
course problem [4] RP(P)= maxx∈S

∑
Ξ Pr{ξ}z(x, ξ). This can be expressed, by



using the expectation operator E, as

RP(P) = max
x∈S

Ez(x,Ξ),

with an optimal solution x∗.
The expected value problem, the deterministic problem obtained by replacing

all the stochastic (vector) variables by their expected values, is defined as

EV(P) = max
x∈S

z(x,E[Ξ]).

Let us denote by x̂ an optimal solution of the expected value problem, called
the expected value solution. Anyone familiar with Stochastic Programming or
realizing that uncertainty is a fact of life would feel a little insecure about taking
decision x̂. Indeed, unless such a decision is independent of Ξ, there is no reason
to believe that this decision is even close to the optimal solution of the recourse
problem.

For any stochastic maximization (minimization) program, under the assump-
tions that (i) z(x,Ξ), the profit function, is a concave1 (convex) function of Ξ
and (ii) maxx∈S z(x,Ξ) (minx∈S z(x,Ξ)) exists for all Ξ,

Proposition 1. EV(P) - RP(P) ≥ 0 (EV(P) - RP(P) ≤ 0).

Proof. A proof is given in [2].

It directly follows that EV(P) ≥ RP(P) (EV(P) ≤ RP(P)). We will base our
cost-based filtering strategies on this inequality.2 Assumption (i) restricts the
form of the cost function. As witnessed by much of the Stochastic Programming
literature [4, 11], many real life applications exhibit such a behavior in the profit
(cost) function. Nevertheless, it is often possible to encounter stochastic con-
straint programs whose objective exhibits a generalized non-convex dependence
on the stochastic variables. Note that, although the classical Jensen (Proposi-
tion 1) and Edmundson-Madansky type bounds [4], which we will employ in
the following sections, or their extensions are generally not available for such
problems, tight bounds may still be constructed under mild regularity condi-
tions as discussed in [13]. Assumption (ii) states that Proposition 1 provides a
valid bound only when a feasible solution exists and its existence is not affected
by the distribution of the stochastic variables. Intuitively, this means that noth-
ing can be inferred by using Proposition 1 if EV(P) is infeasible or, clearly, if
RP(P) is infeasible. Assumption (ii) may be violated in problems where chance-
constraints appear. We will not discuss how to handle generic chance-constraints
and how to produce deterministic equivalent reformulations for them in EV(P):
the reader may refer to [6]. In this work we will consider only examples of stochas-
tic COPs that always satisfy assumptions (i) and (ii). In particular, to comply
1 A real-valued function f is convex if for any x1, x2 in the domain and any λ ∈ [0, 1],

λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2) [5]. f is concave if −f is convex.
2 Other inequalities are discussed in [4], pp. 140–141. Effective relaxations can be also

built on these other inequalities.



with assumption (ii), we will consider problems for which a feasible solution al-
ways exists and for which the chance-constraints are “hard” (θ = 1). Note that
“hard” chance-constraints in RP(P) become deterministic in EV(P).

4 Global optimization chance-constraints

Solving stochastic constraint programs is computationally a challenging task.
In [19], the computational complexity — membership in PSPACE — of these
models is discussed. In [18], the authors proposed a standard way of compiling
down these models into conventional (non-stochastic) CP models that can be
solved by any available commercial software. This approach employs a scenario-
based [4] modelling strategy for representing stochastic variables. Of course this
approach has a price since the number of scenarios that need to be considered
in order to fully represent the problem grows exponentially with the number
of decision stages in the problem. A possible way to overcome this difficulty
is to reduce the number of scenarios considered by sampling them, but this
obviously affects the completeness of the model. Another possibility consists
instead in developing specialized and efficient filtering strategies. For this purpose
global chance-constraints have been proposed in [16]. These constraints differ
from conventional global constraints in the fact that they represent relations
among a non-fixed number of decision variables and stochastic variables.

In this work, by creating a parallel with [7], we present optimization-oriented
global chance-constraints as a way of enhancing the solving process of stochas-
tic constraint programs. Conventional optimization-oriented global constraints
perform cost-based filtering by encapsulating in global constraints optimization
components representing suitable relaxations of the constraint itself. Similarly
optimization-oriented global chance-constraints also encapsulate suitable relax-
ations of the constraint considered, but in contrast to conventional optimization-
oriented global constraints this relaxation may involve stochastic variables.

A global optimization chance-constraint provides the same three pieces of
information provided by optimization-oriented global constraints. The difference
is the fact that in a global optimization chance-constraint we find two stages of
relaxations. At the first stage of relaxation, we are mainly involved with the
stochastic variables and we exploit well-known inequalities such as the one in
Proposition 1 to replace stochastic variables in our stochastic programs with
deterministic quantities and to yield a valid relaxation that is a deterministic
problem. This deterministic problem, however, may still be computationally very
challenging (NP-hard in general). Therefore, a second stage of relaxation may be
needed to produce a further relaxation that is computationally more tractable.
Finally, as we will see, a global optimization chance-constraint may also provide
a valid, and possibly good, solution at each node of the search tree.

In this section and in the following ones we will refer to a running example
and we will employ the following problem to better understand the concepts ex-
plained. Consider the Static Stochastic Knapsack Problem (SSKP) [12]: a subset
of k items has to be chosen, given a knapsack of size q into which to fit the
items. Each item i has an expected reward of ri. The size Wi of each item is not



Objective:

max

{∑k
i=1 riXi − cE

[∑k
i=1WiXi − q

]+
}

Decision variables:
(1) Xi ∈ {0, 1} ∀i ∈ 1, . . . , k
Stochastic variables:
Wi → item i weight

Fig. 1. RP(SSKP). Note that [y]+ = max{y, 0}.

Objective:

max
{∑k

i=0 riXi − c
[∑n

j=1 Zj Pr{j}
]}

Constraints:

(1) Zj ≥
∑k

i=1Wj
i Xi − q ∀j ∈ 1, . . . , n

Decision variables:
(2) Xi ∈ {0, 1} ∀i ∈ 1, . . . , k

(3) Zj ∈ [0,
∑k

i=1Wj
i ] ∀j ∈ 1, . . . , n

Fig. 2. DetEquiv(RP(SSKP)). Pr{j} is the probability of scenario j ∈ {1, . . . , n}. Note that∑n
j=1 Pr{j} = 1.

known at the time the decision has to be made, but we assume that the decision
maker has an estimate of the probability distribution of W = (W1, . . . ,Wk). A
per unit penalty of c has to be paid for exceeding the capacity of the knapsack.
By modeling this problem as a one-stage Stochastic COP, the recourse problem
RP(SSKP) can be formulated as shown in Fig. 1. The objective function max-
imizes the trade-off between the reward brought by the objects selected in the
knapsack (those for which the binary decision variable Xi is set to 1) and the
expected penalty paid for buying additional capacity units in those scenarios in
which the low cost capacity q is not sufficient.

Example 1. Consider 5 items, item rewards ri are {10, 15, 20, 5, 25}. The dis-
crete probability distribution functions f(i) for the weight of item i = 1, . . . , 5
are respectively, f(1) = {10(0.5), 8(0.5)}, f(2) = {10(0.5), 12(0.5)}, f(3) =
{9(0.5), 13(0.5)}, f(4) = {4(0.5), 6(0.5)}, f(5) = {12(0.5), 15(0.5)}. The figures
in parenthesis represent the probability that an item takes a certain weight. The
other problem parameters are c = 2, q = 30. The optimal solution of the recourse
problem selects items {2, 3, 5} and has a value of RP(SSKP)=49.

This solution can be obtained by solving a deterministic equivalent conventional
constraint program obtained by employing a scenario-based representation [18].
Let Wj

i be the realized weight of object i in scenario j. We hand-crafted a
deterministic equivalent model DetEquiv(RP(SSKP)) for RP(SSKP) following
the guidelines in [18]. This model is shown in Fig. 2. Constraint (1) states that
Zj , total excess weight in scenario j, must be greater than the sum of the weights
of the objects selected in this scenario minus the low cost capacity q. Constraint
(2) restricts the decision variables Xi to be binary. Xi is equal to 1 iff item i
is selected in the knapsack. Constraint (3) fixes an upper bound for Zj ; this



upper bound is the sum of the weights of all the k objects in scenario j. The
objective function maximizes the trade-off between the total reward brought by
the objects selected and the sum of penalty costs — weighted by the respective
scenario probability — paid for those scenarios where the low cost capacity q is
not sufficient.

4.1 Expectation-based relaxation for stochastic variables
The first step in our cost-based filtering strategy consists in applying a relaxation
involving the stochastic variables. By applying Proposition 1, if the profit (re-
spectively cost for minimization problems) function satisfies the two assumptions
discussed, an upper (lower) bound for the cost of an optimal solution to RP(P)
can be obtained by solving EV(P), that is the deterministic problem in which
all the stochastic variables are replaced by their respective expected values.

Lemma 1. The profit function for RP (SSKP ) is concave in W.

Proof. When proving concavity w.r.t.W we can ignore the constant term
∑k

i=1 riXi.

What remains is f(W) = −cE
[
W

T ·X − q
]+

, where “·” is the inner product and

WT
is vector W transposed. We now prove that −f(W) = cE

[
WT ·X − q

]+

is convex in W. By recalling that a maximum of convex functions is convex [5],
this function is clearly convex w.r.t. each element of vector W and it is therefore
convex in W. This implies that −f is concave in W.

Obviously, in RP(SSKP), it is always possible to find a feasible assignment for
decision variables, therefore both the assumptions are satisfied for this problem.
The expected value problem EV(SSKP) can be obtained by replacing every
random variable Wi in RP(SSKP) with the respective expected value E[Wi],
thus obtaining a fully deterministic model.

Example 2. Here we solve the problem where the weights of the objects are
deterministic and equal to the respective expected weights3: bE[f(1)]c = 9,
bE[f(2)]c = 11, bE[f(3)]c = 11, bE[f(4)]c = 5, bE[f(5)]c = 13. This problem
provides the first two pieces of information needed by our cost-based filtering
method, that is (a) the optimal solution of the relaxed problem and (b) the
optimal value of this solution, which represents, according to Proposition 1, an
upper bound for the original problem objective function. In our running example
this solution selects items 3, 4, 5 and has a value of EV(SSKP)= 50.

4.2 Relaxing the expected value problem
It should be noted that, although the expected value problem is easier than the
recourse problem, it may still be difficult to solve (NP-hard). For this reason we
3 As this is a maximization problem, the expected weight of each object is rounded

down to the nearest integer (b c) in order to keep the bound provided by the relax-
ation optimistic.



can further relax the expected value problem in order to obtain a valid bound
by solving an easier problem. Let R(EV(P)) be a generic relaxation of EV(P).
Then for a maximization problem EV(P)≤ R(EV(P)) holds, therefore R(EV(P))
provides a valid bound for the recourse problem.

In SSKP, for instance, instead of solving to optimality the deterministic (NP-
Complete) knapsack problem obtained for the expected value scenario, we may
instead solve in linear time its continuous relaxation, thus obtaining Dantzig’s
upper bound, DUB(EV(SSKP)) [15]. DUB(EV(SSKP)) ≥ EV(SSKP) therefore
DUB(EV(SSKP)) ≥ RP(SSKP). DUB(EV(SSKP)) is a valid upper bound for
our recourse problem.

Example 3. To obtain DUB(EV(SSKP)) we order items for profit over expected
weight: {25/13, 20/11, 15/11, 10/9, 5/5}, and we insert items until the first that
does not fit completely into the remaining knapsack capacity. Of this last item
we take a fraction of the profit proportional to the capacity available. Therefore
DUB(EV(SSKP))= 25 + 20 + (6 ∗ 15/11) = 53.18.

Obviously at any node of the search tree it is possible to solve the expected
value problem taking into account decision variables already assigned. The bound
obtained can be used to exclude part of the tree that cannot lead to a better
solution.

In [7] the authors discuss filtering strategies based on reduced costs (RC). As
we shall see in the next section a similar technique can be adopted for SSKP,
provided that an efficient way of obtaining bounds is available for the expected
value problem.

4.3 Cost-based filtering
In order to perform cost-based filtering, as in RC-based filtering, we need a
gradient function grad(V ,v), which returns for each variable-value pair (V ,v)
an optimistic evaluation of the profit obtained if v is assigned to V . This function
is obviously problem dependent, but regardless of the strategy adopted in the
former section — i.e. whether we are using a relaxation for the expected value
problem or solving this problem to optimality — it is possible to specify it and
use it to filter provably suboptimal values. In what follows we present a gradient
function for SSKP. At each node of the search tree, in order to compute this
function, we use a continuous relaxation of the expected value problem similar
to the one proposed by Dantzig for the well-known 0-1 Knapsack Problem [15].
We will now define the gradient function for SSKP by reasoning on the expected
value problem. Assume that a partial assignment for decision variables is given.
Let K be the set of all the items in the problem, |K| = k. Let S be the set of
items for which a decision has been fixed, with |S| < k. Let q∗ be the sum of the
expected weights of the elements in S that are part of the knapsack. The profit
r associated with this assignment is equal to the sum of the profits of the items
in the knapsack minus the eventual expected penalty cost c(q∗ − q), if q − q∗ is
negative. Now we consider an element i ∈ K/S. There are two possible options:
taking it into the knapsack or not. If we take it, we increase the profit by ri minus



any eventual expected penalty cost we pay if the expected residual capacity is
or becomes negative. Finally for every other element in K/S we check if the
balance between its profit and the eventual expected penalty gives an overall
positive profit and, if so, we add it to the knapsack. This procedure requires at
most O(k) steps for each element for which a decision has not yet been taken,
therefore it can be applied at each node of the search tree to compute a valid
upper bound associated with a certain decision on an item, which therefore may
be filtered if suboptimal.

Example 4. We now consider the case in which items 2 and 3 have been selected
in the knapsack and item 4 is not selected. We still have to decide on items
1 and 5. The total capacity used is c∗ = 11 + 11 = 22. The profit r brought
by items 2 and 3 is 35. We consider the set of the remaining items for which
a decision must be taken, K/S ≡ {1, 5}. Let us reason on item 1: this is a
critical item, in fact if taken in the knapsack it will use more capacity than
the residual 30 − 22 = 8 units. If we consider the option of taking this item,
then the expected profit is r1 = 10 − 2 ∗ (30 − 22 − 9) = 8, there is no more
residual capacity and item 5 is therefore excluded in the bound computation
since 25 − 4 ∗ 13 ≤ 0. The computed bound is 35 + 8 = 43. The reasoning is
similar for item 5. If we consider the option of taking this item, then the expected
profit is r5 = 25− 2 ∗ (30− 22− 13) = 15, there is no more residual capacity and
item 1 is therefore excluded in the bound computation since 10− 4 ∗ 9 ≤ 0. The
computed bound is 35 + 15 = 50. Assume now that the current best solution
has a value of 46, corresponding to a knapsack that contains elements 3, 4 and
5: then element 1 can be excluded from the knapsack.

Obviously, as discussed in [7] the information provided by the relaxed model
(EV(P)), i.e. expected weights, gradient function etc., can be also used to define
search strategies. For instance in SSKP we may branch on variables according to
a decreasing profit over expected weight heuristic, or selecting the one for which
the chosen gradient function gives the most promising value.

4.4 Finding good feasible solutions
In CP, it is critical, in order to achieve efficiency, to quickly obtain a good feasible
solution so that cost-based filtering can prune provably suboptimal nodes as early
as possible. In Stochastic COPs the EV(P) solution can be often used as a good
starting solution in the search process. If such a solution is feasible with respect
to RP(P) — in our examples assumption (ii) guarantees this — we can easily
compute EEV(P), that is the expected result of using the EV(P) solution in
the recourse problem RP(P). Furthermore, at every node of the search tree it is
possible to adopt a variable fixing strategy and compute the EV(P) solution with
respect to such a node, that is the best possible EV(P) solution incorporating the
partial decisions represented by the given node of the search tree. This provides
a full assignment for decision variables in RP(P) at each point of the search. By
using this assignment, we can again easily compute EEV(P). In this case EEV(P)
is the cost of a feasible, and possibly good, solution for RP(P) incorporating the
partial assignment identified by the current node explored in the search tree.



Example 5. In our SSKP example the solution of the expected value problem,
EV(SSKP), selects items 3, 4 and 5 in the optimum knapsack. This solution
is clearly feasible for RP(SSKP). We can therefore compute EEV(SSKP)= 46.
This is, of course, a good lower bound for the objective function value.

5 Experimental results

In this section we report our computational experience on two one-stage stochas-
tic COPs, the SSKP and the Stochastic Sequencing with Release Times and
Deadlines (SSEQ). In our experiments we used Choco 1.2, an open source solver
written in Java [14]. We ran our experiments on an Intel(R) Centrino(TM) CPU
1.50GHz with 2Gb of RAM.

5.1 Static Stochastic Knapsack Problem
We created a Choco CP model for DetEquiv(RP(SSKP)), and we implemented
for it a global optimization chance-constraint incorporating the filtering dis-
cussed in the former sections. To recall, within this constraint at each node of
the search tree the stochastic variables are replaced by their respective expected
values. Then, after fixing decision variables according to the partial solution as-
sociated with the given search tree node, EV(SSKP) is solved and the bound
obtained is used to prune suboptimal parts of the search tree. Furthermore cost-
based filtering is performed as explained in Section 4.3. Finally EEV(P), the
expected result of using the EV(P) solution in the recourse problem, is computed
at each node of the search tree and used as a valid lower bound (profit of a
feasible solution). In fact RP(SSKP) satisfies assumption (ii) for Proposition 1,
therefore the solution of EV(SSKP) is feasible for RP(SSKP).

In our experiments we adopted a randomly generated test bed similar to the
one proposed in [12]. There are three sets of instances considered: the first set
has k = 10, the second set has k = 15 and the third has k = 20 items. For
all the instances, item random weights, Wi, from which scenarios are generated,
are independent and normally distributed with probability distribution function
N(µi, σi). The expected weights, µi, are generated from the uniform (20,30)
distribution, and the weight standard deviations, σi, are generated from the
uniform (5,10) distribution. Rewards ri are generated from the uniform (10,20)
distribution. The per unit penalty is c = 4, while the available low cost capacity
is q = 250 for 20 items, q = 187 for 15 items, and q = 125 for 10 items. We
randomly generated, using simple random sampling, sets of scenarios having
different sizes: {100, 300, 500, 1000}. Scenarios are equally likely. The variable
selection heuristic branches first on items with lower profit over expected weight
ratio. The value selection tries first not to insert an item into the knapsack.
In Table 1 we report our computational results. In all the instances considered
our approach outperforms a pure SCP model in terms of explored nodes: the
maximum improvement reaches a factor of 576.5. Run times are also shorter
in our approach for almost all the instances. An exception is observed for the
smallest instance, where the cost of filtering domains is not compensated by
the payoff in terms of reduction of the search space. The maximum speed-up
observed for run times reaches a factor of 90.5.



Instance Time Nodes
k Scenarios SCP SCP-OO SCP SCP-OO
10 100 0.4 0.5 916 100
10 300 1.3 0.5 2630 59
10 500 2.4 0.2 4237 8
10 1000 7.2 2.4 6227 120
15 100 2.5 0.3 4577 11
15 300 15 2.3 10408 252
15 500 33 1.1 9982 75
15 1000 150 6.3 16957 222
20 100 70 10 102878 1024
20 300 250 13 85073 953
20 500 860 9.5 129715 225
20 1000 3200 240 134230 7962

Table 1. Experimental results for SSKP. Comparison between a pure SCP approach (SCP) and an
SCP model enhanced with optimization-oriented global-chance constraints (SCP-OO), times are in
seconds. In each line we indicated in bold the best performance in terms of run time and explored
nodes.

5.2 Stochastic sequencing with release times and deadlines
We consider a specific sequencing problem similar to the one considered by
Hooker et. al [9]. Garey and Johnson [8] also mention this problem in their
list of NP-hard problems and they refer to it as “Sequencing with Release Times
and Deadlines” (SSEQ). An optimization version of this scheduling problem was
also described in [10]. The problem consists in finding a feasible schedule to pro-
cess a set I of k orders (or jobs) using a set M of n parallel machines. Processing
an order i ∈ I can only begin after the release date ri and must be completed at
the latest by the due date di. Order i can be processed on any of the machines.
The processing time of order i ∈ I on machine m ∈ M is Pim. The model just
described is fully deterministic, but we will now consider a generalization of this
problem to the case where some inputs are uncertain. For convenience we will
just consider uncertain processing times Pim for order i ∈ I on machine m ∈ M .
Instead of simply finding a feasible plan we now aim to minimize the expected
total tardiness of the plan (the deterministic version of this problem is known as
“Sequencing to minimize weighted tardiness” [8] and it is NP-hard). A solution
for our SSEQ problem consists in an assignment for the jobs on the machines
and in a total order between jobs on the same machine. In such a plan, a job
will be processed on its release date if no other previous job is still processing,
or as soon as the previous job terminates. The recourse problem RP(SSEQ) can
be formulated as a one-stage Stochastic COP. This is shown in Fig. 3.

Decision variable Xim takes value 1 iff job i is processed on machine m,
decision variable Sab takes value 1 iff job a is processed before job b. Con-
straints (1) and (2) enforce a total order among jobs on the same machine.
Constraint (3) enforces that each job must be processed on one and only one
machine. Constraint (4) states that the (stochastic) completion time, Ci, of a job
i minus its (stochastic) duration Pim on the machine on which it is processed
must be greater than or equal to its release date ri, where Ci is an auxiliary
variable used for simplifying notation. Let Im ≡ {J1m,J2m, . . . ,Jqm} ⊆ I be
the ordered set of jobs assigned to machine m. CJqm is defined recursively as
CJqm = max{rJqm , CJ(q−1)m

}+PJqmm, and CJ0m = 0. Constraint (5) states that
if two jobs a and b are processed on the same machine and if a is processed



Objective:

min
{∑k

i=1 E [Ci − di]
+

}

Constraints:
(1) Sab + Sba ≤ 1 ∀a, b ∈ 1, . . . , k, a 6= b
(2) Xam + Xbm ≤ Sab + Sba + 1 ∀a, b ∈ 1, . . . , k, a 6= b, ∀m ∈ 1, . . . , n
(3)

∑n
m=1 Xim = 1 ∀i ∈ 1, . . . , k

(4) Ci −
∑n

m=1 PimXim ≥ ri ∀i ∈ 1, . . . , k
(5) Sab = 1 → Cb ≥ Ca +

∑n
m=1 PbmXbm ∀a, b ∈ 1, . . . , k, a 6= b

Decision variables:
(6) Xim ∈ {0, 1} ∀i ∈ 1, . . . , k, ∀m ∈ 1, . . . , n
(7) Sab ∈ {0, 1} ∀a, b ∈ 1, . . . , k, a 6= b
Stochastic variables:
Pim: processing time of job i on machine m
Auxiliary variables:
Ci: stochastic completion time of job i.

Fig. 3. RP(SSEQ). Note that [y]+ = max{y, 0}. E denotes the expectation operator.

before b, that is Sab = 1, then the (stochastic) completion time of job a plus
the (stochastic) duration of job b on the machine on which it is processed must
be less than or equal to the (stochastic) completion time of job b. Finally, the
objective function minimizes the sum of the expected tardiness of each job. The
tardiness is defined as max{0, Ci − di}. The cost function to be minimized can
easily be proved convex in the random job durations. The expected total tar-
diness is in fact minimized for n machines. Job completion times on different
machines are independent, therefore if we prove convexity for machine m ∈ M ,
then it directly follows that the cost function of the problem is also convex4. The
cost function for machine m can be expressed as E

[∑
i∈Im

(Ci − di)+
]
.

Lemma 2. The expected total tardiness for machine m is convex in the uncer-
tain processing times Pim.

Proof. Maximum of convex functions is convex. CJ1m = rJ1m +PJ1mm is convex:
it follows that Ci for any i ∈ Im is convex, since function “max” is a convex
function. Therefore the objective function is convex.

In RP(SSEQ) a feasible solution can be found for any given set of stochastic job
lengths, therefore both the assumptions are satisfied for this problem. We hand-
crafted a deterministic equivalent model DetEquiv(RP(SSEQ)) shown in Fig. 4
for the RP(SSEQ) following the guidelines of scenario-based approach described
in [18]. In this model, Pv

im is the deterministic length of job i on machine m in
scenario v and Cv

i is the deterministic completion time of job i in scenario v.
Finally, as discussed for SSKP, we can obtain the expected value problem

EV(SSEQ) by replacing every stochastic variable Pim in RP(SSEQ) with the
respective expected value E[Pim]. Since all the chance-constraints in RP(SSEQ)
are “hard”, they are retained in EV(SSEQ) and they become deterministic.

We implemented DetEquiv(RP(SSEQ)) in Choco and we coded an optimization-
oriented global chance-constraint which exploits the expected value problem
4 Note that the sum of convex functions is convex [5].



Objective:

min
{∑k

i=1
∑w

v=1 Pr{w} [Cv
i − di]

+
}

Constraints:
(1) Sab + Sba ≤ 1 ∀a, b ∈ 1, . . . , k, a 6= b
(2) Xam + Xbm ≤ Sab + Sba + 1 ∀a, b ∈ 1, . . . , k, a 6= b, ∀m ∈ 1, . . . , n
(3)

∑n
m=1 Xim = 1 ∀i ∈ 1, . . . , k

and ∀v ∈ 1, . . . , w
(4) Cv

i −
∑n

m=1 Pv
imxim ≥ ri ∀i ∈ 1, . . . , k

(5) Sab = 1 → Cv
b ≥ Cv

a +
∑n

m=1 Pv
bmXbm ∀a, b ∈ 1, . . . , k, a 6= b

Decision variables:
(6) Xim ∈ {0, 1} ∀i ∈ 1, . . . , k, ∀m ∈ 1, . . . , n
(7) Sab ∈ {0, 1} ∀a, b ∈ 1, . . . , k, a 6= b
(8) Cv

i ∈ {0, maxi=1,...,k ri+∑k
t=1(maxm=1,...,n πv

tm)} ∀i ∈ 1, . . . , k, ∀v ∈ 1, . . . , w

Fig. 4. DetEquiv(RP(SSEQ)). Note that [y]+ = max{y, 0}. Pr{v} is the probability of scenario
v ∈ {1, . . . , w}. Note that

∑w
v=1 Pr{v} = 1.

both in order to generate valid bounds at each node of the search tree and
to filter provably suboptimal values from decision variable domains. At each
node of the search tree, we consider the associated partial assignment for deci-
sion variables Xim and Sab and we fix decision variables in EV(SSEQ) according
to it. Then we solve EV(SSEQ) with respect to the remaining decision variables
that have not been assigned. This provides a lower bound for the cost of a locally
optimal solution associated with the node considered. This bound can be used
for pruning suboptimal nodes. Furthermore at any given node, after performing
variable fixing in EV(SSEQ) for every variable Xim and Sab already assigned,
all the remaining binary variables Xim that have not been assigned yet can be
forward checked by fixing the respective value to 1, by solving EV(SSEQ) with
this new decision fixed, and by employing the new bound provided.

In order to generate instances for our experiments, we adopted release times,
deadlines and deterministic processing times from the first two “hard” instances
proposed in [9], the one with 3 jobs and 2 machines and the one with 7 jobs and 3
machines. In each scenario, we generated processing times uniformly distributed
in [1, 2 ∗ Jim], where Jim is the deterministic processing time required for job
i on machine m for the instance considered. We considered different number of
scenarios in {10, 30, 50, 100}. Scenarios are equally likely in terms of probability.
The variable selection heuristic branches first on binary decision variables. The
value selection tries increasing values in the domain. In Table 2 we report the
results observed with and without the improvement brought by our cost-based
filtering approach.

It should be noted that in this case, in contrast to the approach employed for
SSKP, we only relax stochastic variables and we do not employ a relaxation for
the deterministic equivalent problem, which therefore remains NP-hard. Recall
that in SSKP we adopted Dantzig’s relaxation to efficiently obtain a bound
for the deterministic equivalent problem. A direct consequence of this is that,
while in the SSKP example the improvement is significant both in terms of



Instance Time Nodes
Jobs Machines Scenarios SCP SCP-OO SCP SCP-OO
3 2 10 0.3 0.3 203 48
3 2 30 1.3 0.6 701 133
3 2 50 3.2 1.1 927 418
3 2 100 12 3.5 1809 838
7 3 10 180 866 57688 1723
7 3 30 1800 880 186257 5293
7 3 50 3300 1100 212887 6586
7 3 100 14000 1200 277804 8862

Table 2. Experimental Results for SSEQ. Comparison between a pure SCP approach (SCP) and an
SCP model enhanced with optimization-oriented global-chance constraints (SCP-OO), times are in
seconds. In each line we indicated in bold the best performance in terms of run time and explored
nodes.

explored nodes and run times for all the instances, in this example the run time
improvement starts to be significant (a factor of 11.6) only for the largest instance
(7 jobs and 3 machines) and for a high number of scenarios (100 scenarios). This
is due to the fact that at every node of the search tree we solve a difficult
problem (though far easier than the original stochastic constraint program) to
obtain bounds and perform cost-based filtering. In terms of explored nodes,
however, we obtain a significant improvement for every instance — the maximum
improvement factor is of 32.3 — since the bounds generated are tight.

6 Related work

This paper extends the original work by Focacci et al. [7] on optimization-
oriented global constraints. It also extends the original idea of global chance-
constraints [16] to optimization problems. It should be noted that dedicated
cost-based filtering techniques for stochastic combinatorial optimization prob-
lems have been presented in [17], but these techniques are specialized for in-
ventory control problems, while those here presented can be applied to a wider
class of stochastic constraint programs. On the other hand this work also builds
on known inequalities borrowed from Stochastic Programming [4, 2] usually ex-
ploited for relaxing specific classes of stochastic programs and obtaining good
bounds or approximate solutions. Nevertheless Stochastic Programming models
are typically formulated as dynamic programs or MIP models. In both cases
these bounds are not exploited for filtering decision variable domains as in our
approach and they cannot be used for guiding the search.

7 Conclusions

We proposed a novel strategy to performing cost-based filtering for certain classes
of stochastic constraint programs, under the assumptions that (i) the objective
function is concave or convex in the stochastic variables, and (ii) the existence
of a feasible solution is not affected by the distribution of the stochastic vari-
ables. This strategy is based on a known inequality borrowed from Stochas-
tic Programming. We applied this technique to two combinatorial optimiza-
tion problem involving uncertainty from the literature. Our results confirm that
orders-of-magnitude improvements in terms of explored nodes and run times can
be achieved. In the future, we aim to apply cost-based filtering to multi-stage
Stochastic COPs, define strategies to handle generic chance-constraints, which



are currently ruled out by our assumptions, and to extend the approach to other
valid inequalities such as Edmundson-Madansky [4] or to suitable inequalities for
non-convex problems [13]. Finally, we plan to exploit the information provided
by optimization-oriented global chance-constraints to define search strategies.
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