

Edinburgh Research Explorer

Filtering algorithms for global chance constraints

Citation for published version:
Hnich, B, Rossi, R, Tarim, SA & Prestwich, S 2012, 'Filtering algorithms for global chance constraints'
Artificial Intelligence, vol. 189, no. n/a, pp. 69–94. DOI: 10.1016/j.artint.2012.05.001

Digital Object Identifier (DOI):
10.1016/j.artint.2012.05.001

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Artificial Intelligence

Publisher Rights Statement:
© Hnich, B., Rossi, R., Tarim, S. A., & Prestwich, S. (2012). Filtering algorithms for global chance constraints.
Artificial Intelligence, 189(n/a), 69–94. 10.1016/j.artint.2012.05.001

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28963653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.artint.2012.05.001
https://www.research.ed.ac.uk/portal/en/publications/filtering-algorithms-for-global-chance-constraints(07c5ea01-2c67-4d81-bb4d-1a938eb9b9b0).html

Filtering Algorithms for Global Chance

Constraints 1

Brahim Hnich a Roberto Rossi b,∗ S. Armagan Tarim c

Steven Prestwich d

aDepartment of Computer Engineering, Izmir University of Economics, Turkey

bUniversity of Edinburgh Business School, Edinburgh, UK

cDepartment of Management, Hacettepe University, Ankara, Turkey

dCork Constraint Computation Centre, University College Cork, Ireland

Abstract

Stochastic Constraint Satisfaction Problems (SCSPs) are a powerful modeling frame-
work for problems under uncertainty. To solve them is a P-Space task. The only
complete solution approach to date — scenario-based stochastic constraint program-
ming — compiles SCSPs down into classical CSPs. This allows the reuse of classical
constraint solvers to solve SCSPs, but at the cost of increased space requirements
and weak constraint propagation. This paper tries to overcome these drawbacks by
automatically synthesizing filtering algorithms for global chance constraints. These
filtering algorithms are parameterized by propagators for the deterministic version
of the chance constraints. This approach allows the reuse of existing propagators in
current constraint solvers and it has the potential to enhance constraint propaga-
tion. Our results show that, for the test bed considered in this work, our approach is
superior to scenario-based stochastic constraint programming. For these instances,
our approach is more scalable, it produces more compact formulations, it is more ef-
ficient in terms of run time and more effective in terms of pruning for both stochastic
constraint satisfaction and optimization problems.

Key words: stochastic constraint programming; stochastic constraint satisfaction;
global chance constraints; filtering algorithms; stochastic alldifferent.

∗ Corresponding author. Roberto Rossi, University of Edinburgh Business
School, 29 Buccleuch Place, EH8 9JS, Edinburgh, United Kingdom. Tel. +44 (0)
131 651 4389.

Email addresses: brahim.hnich@ieu.edu.tr (Brahim Hnich),
roberto.rossi@wur.nl (Roberto Rossi), armagan.tarim@hacettepe.edu.tr (S.
Armagan Tarim), s.prestwich@4c.ucc.ie (Steven Prestwich).
1 Acknowledgments: This work is an extended version of [9]. S. Armagan Tarim is

Submitted to AI Journal 2 August 2012

1 Introduction

In this work we consider problems in which we are required to make decisions
under uncertainty. The word uncertainty is used to characterize the existence,
in these problems, of uncontrollable or “random” variables 2 , which cannot be
influenced by the decision maker. In addition to random variables, the prob-
lems we consider also comprise controllable or “decision” variables, to which
a value from given domains has to be assigned. More specifically, a problem
classified as deterministic with respect to the degree of uncertainty does not
include random variables, while a stochastic problem does. Random variables
are typically employed to model factors such as the customer demand for a
certain product, the crop yield of a given piece of land during a year, the arrival
rate of orders at a reservation center and so forth. A continuous or discrete
domain of possible values that can be observed is associated with each ran-
dom variable. A probabilistic measure — typically a probability distribution
— over such a domain is assumed to be available in order to fully quantify
the likelihood of each value (respectively, range of values in the continuous
case) that appears in the domain. The decision making process comprises one
or more consecutive decision stages. In a decision stage, a decision is taken by
the decision maker who assigns a value to each controllable variable related
to this decision stage of the problem and, subsequently, the uncontrollable
variables related to this stage are observed and their realized values become
known to the decision maker.

Stochastic constraint satisfaction problems (SCSPs) are a powerful modeling
framework for decision making under uncertainty. SCSPs were first introduced
in [23] and further extended in [21] to allow multiple chance constraints and a
range of different objectives. SCSP is a PSPACE-complete problem [23]. The
approach in [21] compiles down SCSPs into deterministic equivalent CSPs.
Intuitively, the compilation strategy in [21] relies on a heavy use of binary
variables that are employed in order to encode every single possible future
scenario in a monolithic constraint programming model. This makes it possible
to reuse existing solvers, but at the cost of increased space requirements and
of weakened constraint propagation.

In this paper we overcome these drawbacks by automatically synthesizing
filtering algorithms for global chance constraints. These filtering algorithms
are built around propagators for the deterministic version of the chance con-
straints. Like the approach in [21], our approach reuses the propagators al-
ready available for classical CSPs; nevertheless, our approach uses fewer de-

supported by Hacettepe University (HU-BAB) and the Scientific and Technological
Research Council of Turkey (TUBITAK) under Grant No. 110M500.
2 Alternatively, in the literature, these variables are also denoted as “stochastic”.

2

cision variables — since it does not rely on a reformulation employing binary
variables associated with scenarios — and it has the potential to strengthen
constraint propagation. The ease and power of the generic modeling tools dis-
cussed in this paper make our approach appealing. For the test bed considered
in this work, our approach is superior to the one in [21], since it is more scal-
able, it produces more compact formulations, and it achieves stronger pruning;
in these experiments our approach is more efficient also in terms of run time
and explored nodes for both stochastic constraint satisfaction and optimiza-
tion problems.

This work extends preliminary results presented in [9]. In particular, we have
introduced additional material proving the intractability of maintaining gen-
eralized arc consistency for global chance constraints that embed a global
constraint for which a poly-time propagator exists. We have introduced two
incremental filtering algorithms that were not included in [9]. In addition to
the random stochastic constraint satisfaction problems discussed in [9], we
have tested out approach on two additional benchmark problems: the static
stochastic knapsack problem and the stochastic plane landing scheduling prob-
lem. The thorough experimental analysis in this work significantly extends the
one in [9].

The paper is structured as follows: in Section 2 we provide the relevant formal
background; in Section 3 we discuss the structure of a SCSP solution; in
Section 4 we describe the state-of-the-art approach to SCSPs; in Section 5 and
Section 6 we discuss our novel approach; in Section 7 we propose incremental
versions of our filtering algorithm; in Section 8 we discuss our benchmark
problems; in Section 9 we present our computational experience; in Section 10
we provide a brief literature review; finally, in Section 11 we draw conclusions
and outline our future work.

2 Formal Background

A Constraint Satisfaction Problem (CSP) consists of a set of variables, each
with a finite domain of values, and a set of constraints specifying allowed
combinations of values for some variables. A solution to a CSP is an assignment
of variables to values in their respective domains such that all of the constraints
are satisfied. Constraint solvers typically explore partial assignments enforcing
a local consistency property. A constraint c is generalized arc consistent (GAC)
if and only if when a variable is assigned any of the values in its domain, there
exist compatible values in the domains of all the other variables of c. In order
to enforce a local consistency property on a constraint c during search, we
employ filtering algorithms that remove inconsistent values from the domains
of the variables of c. These filtering algorithms are repeatedly called until no
more values are pruned. This process is called constraint propagation.

3

An m-stage SCSP is defined as a 7-tuple 〈V, S,D, P, C, θ, L〉, where V is a
set of decision variables and S is a set of stochastic variables, D is a function
mapping each element of V and each element of S to a domain of potential
values. In what follows, we assume that both decision and stochastic variable
domains are finite. P is a function mapping each element of S to a probability
distribution for its associated domain. C is a set of chance constraints over a
non-empty subset of decision variables and a subset of stochastic variables. θ
is a function mapping each chance constraint h ∈ C to θh which is a threshold
value in the interval (0, 1]. L = [〈V1, S1〉, . . . , 〈Vi, Si〉, . . . , 〈Vm, Sm〉] is a list of
decision stages such that each Vi ⊆ V , each Si ⊆ S, the Vi form a partition of
V , and the Si form a partition of S.

The solution of an m-stage SCSP is, in general, represented by means of
a policy tree [21]. The arcs in such a policy tree represent values observed
for stochastic variables whereas nodes at each level represent the decisions
associated with the different stages. We call the policy tree of an m-stage
SCSP that is a solution a satisfying policy tree.

3 Satisfying Policy Trees

In order to simplify the presentation, we assume without loss of generality
that each Vi = {xi} and each Si = {si} are singleton sets. All the results can
be easily extended in order to consider |Vi| > 1 and |Si| > 1. In fact, if Si

comprises more than one random variable, it is always possible to aggregate
these variables into a single multivariate random variable [11] by convoluting
them. If Vi comprises more than one decision variable, the following discussion
still holds, provided that the termDecV ar, which we will introduce in the next
paragraph, is interpreted as a set of decision variables.

Let S = {s1, s2, . . . , sm} be the set of all stochastic variables in the problem
and V = {x1, x2, . . . , xm} be the set of all decision variables. In an m-stage
SCSP, the policy tree has

N = 1 + |s1|+ |s1| · |s2|+ . . .+ |s1| · |s2| · . . . · |sm−1| = 1 +
m−1
∑

i=1

i
∏

j=1

|sj|

nodes, where |sj| denotes the cardinality of D(sj). We adopt the follow-
ing node and arc labeling schemes for the policy tree of an m-stage SCSP.
The depth of a node can be uniquely associated with its respective decision
stage, more specifically Vi is associated with nodes at depth i − 1. We label
each node with 〈DecV ar,DecV al, Index〉 where DecV ar is a decision vari-
able that must be assigned at the decision stage associated with the node,
DecV al ∈ D(DecV ar) is the value that this decision variable takes at this

4

node, and Index ∈ {0, . . . ,N − 1} is a unique index for this node. Each
arc will be labeled with 〈StochV ar, StochV al〉 where StochV ar ∈ S and
StochV al ∈ D(StochV ar). According to our labeling scheme, the root node
has label 〈x1, x̄1, 0〉 where x̄1 is the value assigned to the variable x1 associ-
ated with the root node and the index of the root node is 0. The root node
is at depth 0. For each value s̄1 ∈ D(s1), we have an arc leaving the root
node labeled with 〈s1, s̄1〉. The |s1| nodes connected to the root node are la-
beled from 1 to |s1|. For each node at depth 1, we label each of |s2| arcs
with 〈s2, s̄2〉 for each s̄2 ∈ D(s2). For the nodes at depth 2, we label them
from 〈x2, x̄2, |s1| + 1〉 to 〈x2, x̄2, |s1| + |s1|.|s2|〉, and so on until we label all
arcs and all nodes of the policy tree. A path p from the root node to the
last arc can be represented by the sequence of the node and arc labelings, i.e.
p = [〈x1, x̄1, 0〉, 〈s1, s̄1〉, . . . , 〈xm, x̄m, m− 1〉, 〈sm, s̄m〉]. Let Ψ denote the set of
all distinct paths of a policy tree. For each p ∈ Ψ, we denote by arcs(p) the
sequence of all the arc labelings in p whereas nodes(p) denotes the sequence
of all node labelings in p. That is arcs(p) = [〈s1, s̄1〉, . . . , 〈sm, s̄m〉] whereas
nodes(p) = [〈x1, x̄1, 0〉, . . . , 〈xm, x̄m, m − 1〉]. We denote by Ω = {arcs(p)|p ∈
Ψ} the set of all scenarios of the policy tree. The probability of ω ∈ Ω is
given by Pr{ω} =

∏m
i=1 Pr{si = s̄i}, where Pr{si = s̄i} is the probability that

stochastic variable si takes value s̄i.

Now consider a chance constraint h ∈ C with a specified threshold level θh.
Consider a policy tree T for the SCSP and a path p ∈ T . Let h↓p be the deter-
ministic constraint obtained by substituting the stochastic variables in h with
the corresponding values (s̄i) assigned to these stochastic variables in arcs(p).
Let h̄↓p be the resulting tuple obtained by substituting the decision variables
in h↓p by the values (x̄i) assigned to the corresponding decision variables in
nodes(p). We say that h is satisfied with respect to a given policy tree T iff

∑

p∈Ψ:h̄↓p∈h↓p

Pr{arcs(p)} ≥ θh.

Definition 1 Given an m-stage SCSP P and a policy tree T , T is a satisfying
policy tree to P iff every chance constraint of P is satisfied with respect to T .

Example 1 Let us consider a two-stage SCSP in which V1 = {x1} and
S1 = {s1}, V2 = {x2} and S2 = {s2}. Stochastic variable s1 may take two pos-
sible values, 5 and 4, each with probability 0.5; stochastic variable s2 may also
take two possible values, 3 and 4, each with probability 0.5. The domain of x1

is {1, . . . , 4}, the domain of x2 is {3, . . . , 6}. There are two chance constraints 3

in C, c1 : Pr{s1x1 + s2x2 ≥ 30} ≥ 0.75 and c2 : Pr{s2x1 = 12} ≥ 0.5. In this

3 In what follows, for convenience, we will denote a chance constraint by using the
notation “Pr{〈cons〉} ≥ θ”, meaning that constraint 〈cons〉, constraining decision

5

s1 = 5

x1 = 3

s1 = 4

s2 = 4

s2 = 3

s2 = 4

s2 = 3

0.25

0.25

0.25

0.25

x2 = 4

x2 = 6

1

2

V
1

S
1

Scenario
probability CV

2
S

2
c

1
: 5á3 + 4á4 ³ 30

c
2
: 4á3 = 12

c
1
: 4á3 + 4á6 ³ 30

c
2
: 4á3 = 12

c
1
: 5á3 + 3á4 < 30

c
2
: 3á3 12

c
1
: 4á3 + 3á6 ³ 30

c
2
: 3á3 12

Fig. 1. Policy tree for the SCSP in Example 1

case, the decision variable x1 must be set to a unique value before random
variables are observed, while decision variable x2 takes a value that depends
on the observed value of the random variable s1. A possible solution to this
SCSP is the satisfying policy tree shown in Fig. 1 in which x1 = 3, x1

2 = 4
and x2

2 = 6, where x1
2 is the value assigned to decision variable x2, if random

variable s1 takes value 5, and x2
2 is the value assigned to decision variable x2,

if random variable s1 takes value 4. The four labeled paths of the above policy
tree are as follows:

p1 = [〈x1, 3, 0〉, 〈s1, 5〉, 〈x2, 4, 1〉, 〈s2, 4〉]

p2 = [〈x1, 3, 0〉, 〈s1, 5〉, 〈x2, 4, 1〉, 〈s2, 3〉]

p3 = [〈x1, 3, 0〉, 〈s1, 4〉, 〈x2, 6, 2〉, 〈s2, 4〉]

p4 = [〈x1, 3, 0〉, 〈s1, 4〉, 〈x2, 6, 2〉, 〈s2, 3〉]

As the example shows, a solution to a SCSP is not simply an assignment of
the decision variables in V to values, but it is instead a satisfying policy tree.

and random variables, should be satisfied with probability greater or equal to θ.

6

4 Scenario-based Approach to Solve SCSPs

In [21], the authors discuss an equivalent scenario-based reformulation for SC-
SPs, which we shall call SBA in what follows. This reformulation makes it
possible to compile SCSPs down into conventional (non-stochastic) CSPs. For
example, the multi-stage SCSP described in Example 1 is compiled down to
its deterministic equivalent CSP shown in Fig. 2. The decision variables x1

1, x
1
2,

Constraints:

(1) (5x1
1 + 4x1

2 ≥ 30)↔ (Z1
c1
= 1) (6) (4x1

1 = 12)↔ (Z1
c2
= 1)

(2) (5x1
1 + 3x1

2 ≥ 30)↔ (Z2
c1
= 1) (7) (3x1

1 = 12)↔ (Z2
c2
= 1)

(3) (4x1
1 + 4x2

2 ≥ 30)↔ (Z3
c1
= 1) (8) (4x1

1 = 12)↔ (Z3
c2
= 1)

(4) (4x1
1 + 3x2

2 ≥ 30)↔ (Z4
c1
= 1) (9) (3x1

1 = 12)↔ (Z4
c2
= 1)

(5)
∑4

ω=1 0.25Z
ω
c1
≥ θc1 (10)

∑4
ω=1 0.25Z

ω
c2
≥ θc2

Decision variables:

x1 ∈ {1, 2, 3, 4}, x1
2 ∈ {3, 4, 5, 6},

x2
2 ∈ {3, 4, 5, 6}, Zω

h ∈ {0, 1} ∀ω = 1, . . . , 4; ∀h ∈ {c1, c2}.

Fig. 2. Deterministic equivalent CSP for Example 1

and x2
2 represent the nodes of the policy tree. The variable x1 is decided at

stage 1 so we have one copy of it (x1
1) whereas since x2 is to be decided at

stage 2 and since s1 has two values, we need two copies for x2, namely x1
2

and x2
2. Chance constraint c1 is compiled down into constraints (1), . . . ,(5),

whilst chance constraint c2 is compiled down into constraints (6), . . . ,(10).
Constraints (1), . . . ,(4) are reification constraints in which every binary deci-
sion variable Zω

c1
is 1 iff in scenario ω ∈ {1, . . . , 4} constraint s̄1x1

1 + s̄2x
i
2 ≥ 30

— where i ∈ {1, 2} identifies the copy of decision variable x2 associated with
scenario ω — is satisfied. Finally, constraint (5) enforces that the satisfaction
probability achieved must be greater than or equal to the required threshold
θc1 = 0.75. Similar reasoning applies to constraints (6), . . . ,(10).

The scenario-based reformulation approach allows us to exploit the full power
of existing constraint solvers. However, it has a number of serious drawbacks
that might prevent it from being applied in practice.

Increased Space Requirements : For each chance constraint, |Ω| extra
Boolean variables and at least |Ω| + 1 extra constraints are introduced.
This requires more space and might increase the solution time;

Weakened Constraint Propagation : the scenario-based reformulation heav-
ily depends on reification constraints for constraint propagation. For this
reason, it propagates weakly. Also, if the chance constraint involves a global
constraint (e.g., Pr{alldiff(x1, s1, x2)} ≥ θ), then the corresponding reifica-
tion constraints (e.g., alldiff(x1

1, s̄1, x
1
2) ↔ Zw) cannot simply be supported

7

in an effective way in terms of propagation by most of the current constraint
solvers. While a solver like Minion [?] effectively supports the above con-
struct, in several other solvers it is often possible to decompose the alldiff
into a clique of binary not-equals constraints and pose instead reification
constraints of the following form (x1

1 6= s̄1 ∧ x1
1 6= x1

2 ∧ x1
2 6= s̄1) ↔ Zw, but

this is, of course, not an ideal solution.

5 Formal Background

Like the approach in [23], in order to solve an m-stage SCSP, we intro-
duce a decision variable for each node of the policy tree. Given an SCSP
〈V, S,D, P, C, θ, L〉, we let PT be an array of decision variables indexed from
0 to N − 1 representing the space of all possible policy trees. The domains of
these variables are defined as follows:

• D(PT [i]) = D(x1), i ∈M1 = {0},
• D(PT [i]) = D(x2), i ∈M2 = {1, . . . , |s1|},
• D(PT [i]) = D(x3), i ∈M3 = {(1 + |s1|), . . . , (|s1| · |s2|+ |s1|)},
• ...
• D(PT [i]) = D(xm), i ∈ Mm = {(1 + |s1| · |s2| · . . . · |sm−2|), . . . , (|s1| · |s2| ·
. . . · |sm−1|+ |s1| · |s2| · . . . · |sm−2|)},

where Mj represents the set of indexes — in our node labeling — that appear
at depth j in the policy tree, j = {1, . . . , m}. This array of decision variables
is shared among the constraints in the model similarly to what happens with
decision variables in classic CSPs.

Definition 2 Given a chance constraint h ∈ C and a policy tree decision
variable array PT , a value v in the domain of PT [i] is consistent with

respect to h iff there exists an assignment of values to variables in PT that
is a satisfying policy with respect to h, in which PT [i] = v.

Definition 3 A chance constraint h ∈ C is generalized arc-consistent iff
every value in the domain of every variable in PT is consistent with respect
to h.

Definition 4 A SCSP is generalized arc-consistent iff every chance con-
straint is generalized arc-consistent.

Maintaining GAC on an SCSP is NP-Hard in general as solving an SCSP
is P-Space in general. In what follows, we show that maintaining GAC on a
global chance constraint can be intractable even when maintaining GAC on

8

Constraints:

alldiff(zi, . . . , zn, y1, . . . , yi−1)

r1 = 1→ yj ∈ D(xj) ∀j ∈ 1, . . . , i− 1

r1 = 2→ yj ∈ D(xj+n) ∀j ∈ 1, . . . , i− 1
Decision variables:

zj ∈ D(xj) ∀j ∈ i, . . . , n

yj ∈ D(xj) ∪D(xj+n) ∀j ∈ 1, . . . , i− 1
Random variables:

r1 ∈ {1, 2}

Stage structure:

V1 = {zi, z2, . . . , zn} V2 = {y1, y2, . . . , yi−1}

S1 = {r1} S2 = {}

L = [〈V1, S1〉, 〈V2, S2〉]

Fig. 3. A two-stage SCSP.

the corresponding deterministic version of that constraint is tractable. In par-
ticular, we show that maintaining GAC on the alldiff global chance constraint
is NP-Hard while maintaining GAC on the deterministic alldiff constraint is
polynomial [16].

We show a reduction from the problem TwoAllDiff of finding a solution to
two alldiff constraints which is NP-hard [12] to an SCSP:

alldiff(x1, . . . , xi, . . . , xn) ∧ alldiff(xi, . . . , xn, . . . , xm)

Assume without loss of generality that i − 1 = m − n. We can always add
dummy variables to the alldiff constraint with less number of variables.

Given an instance for the TwoAllDiff problem, we construct an instance of
a two-stage SCSP as follows. We introduce n +m decision variables and one
stochastic variable r whose domain is composed of only two values and the
probability of each is 1

2
. The decision variables are divided into two groups.

In the first group, which is decided at the first stage, we introduce a decision
variable zj whose domain is the same as xj for all j ∈ {i, . . . , n}. In the
second group, we introduce i− 1 second stage yj variables where the domain
of yj is the union of the domain of xj and xj+n for all j ∈ {1, . . . , i− 1}. We
introduce three chance constraints. The first chance constraint is the global
alldiff chance constraint which constrains all the decision variables. The other
two chance constraints restrict the domains of the second stage variables as
follows. If we are in the first scenario, the second stage variable’s domains are
restricted to take the same domain as the non-overlapping variables in the
first alldiff constraint whereas if we are in the second scenario, the second
stage variable’s domains are restricted to take the same domain as the non-

9

overlapping variables in the second alldiff constraint. Fig. 3 shows the complete
SCSP.

Constraints:

(1) alldiff(zi, . . . , zn, y
1
1, . . . , y

1
i−1)

(2) alldiff(zi, . . . , zn, y
2
1, . . . , y

2
i−1)

Decision variables:

zj ∈ D(xj), ∀j ∈ {i, . . . , n}

y1j ∈ D(xj), ∀j ∈ {1, . . . , i− 1}

y2j ∈ D(xj+n), ∀j ∈ {1, . . . , i− 1}

Fig. 4. Deterministic equivalent CSP of the SCSP of Fig 3

Theorem 1 TwoAllDiff has a solution iff the two stage SCSP in Fig. 3 has
a satisfying policy tree.

Proof: (Sketch) The deterministic equivalent CSP for the two stage SCSP
in Fig. 3 generated using a scenario-based approach is indeed equivalent to
the TwoAllDiff up to variable renaming and is shown in Fig 4. Indeed, the
zi, . . . , zn correspond to xi, . . . , xn, respectively. The y11, . . . , y

1
i−1 correspond

to x1, . . . , xi−1, respectively. Finally, y
2
1, . . . , y

2
i−1 correspond to xn+1, . . . , xm,

respectively. Note that the unary constraints in the two-stage SCSP are ab-
sorbed into the domains.2

A satisfying policy tree of the two-stage SCSP in Fig. 3 corresponds to a
solution to TwoAllDiff as follows. The assignment to the first stage vari-
ables zi, . . . , zn correspond to an assignment to xi, . . . , xn, respectively. The
assignment of the second stage variables under the first scenario (r = 1) corre-
spond to an assignment to the remaining variables of the first alldiff constraint
whereas the assignment of the second stage variables under the second sce-
nario (r = 2) correspond to an assignment to the remaining variables of the
second alldiff constraint. Since finding a satisfying policy tree to the SCSP in
Fig. 3 is NP-Hard, then achieving GAC is also NP-Hard [4].

Finally, it is straightforward to prove that GAC on the SCSP in Fig. 3 is
equivalent to GAC on the alldiff global chance constraint as the other two
chance constraints only restrict the domains on the second stage variables
in the policy tree. Therefore, maintaining GAC on the alldiff global chance
constraint is NP-Hard as well.

We can easily also show that maintaining bounds consistency (BC), a weaker
consistency than GAC, on the the alldiff global chance constraint is NP-Hard.
We consider the ThreeAllDiff problem in which we want to achieve BC. It
is shown in [?] that this problem is intractable when we have more than two
overlapping alldiff constraints. We can easily generalize the previous reduc-

10

tion in a straightforward manner to also show that maintaining BC on the
alldiff global chance constraint is NP-Hard. Any instance of the ThreeAllDiff
problem in which we want to achieve BC can be transformed into an instance
of a two-stage SCP very similar to the one in Fig. 3. We, however, need to
have three values in the domain of the stochastic variable instead of two, each
with probability 1

3
. Furthermore, the first stage decision variables will corre-

spond to the overlapping variables in the ThreeAllDiff like in the previous
reduction. The second stage decision variables will be used to represent the
non-overlapping variables in the same way as we did in the previous reduction
where each scenario will correspond to one alldiff constraint.

For convenience, given a chance constraint h ∈ C, we redefine h↓p as the
deterministic constraint obtained by substituting every decision variable xi in
h with decision variable PT [k] — where 〈xi,−, k〉 is an element in nodes(p) —
and every stochastic variable si with the corresponding value (s̄i) assigned to si
in arcs(p). Note that the deterministic constraint h↓p is a classical constraint,
so a value v in the domain of any decision variable is consistent iff there exist
compatible values for all other variables such that h↓p is satisfied, otherwise v

is inconsistent. Denote by h
i,v
↓p constraint h↓p in which decision variable PT [i]

is set to v. hi,v
↓p is consistent if value v in D(PT [i]) is consistent w.r.t. h↓p.

Example 1a Let h be chance constraint c1 and p be path p1 in Example 1.
Let i = 2; according to our labeling PT [2] = x2 and D(PT [2]) = {3, . . . , 6}.
Let v = 4; then from the solution previously presented it is clear that hi,v

↓p is
consistent since value 4 in D(PT [2]) is consistent w.r.t. h↓p.

Let Ψi,h = {p ∈ Ψ|h↓p constrains PT [i]}. We introduce f [i, v, h] as follows:

f [i, v, h] =
∑

p∈Ψi:h
i,v

↓p
is consistent

Pr{arcs(p)},

where f [i, v, h] is the sum of the probabilities of the scenarios in which value v
in the domain of PT [i] is consistent. To keep notation as compact as possible,
since we always refer to a “generic” constraint h, in what follows we write Ψi

in place of Ψi,h and f [i, v] in place of f [i, v, h]. As the next proposition shows,
one can exploit f [i, v] to identify a subset of the inconsistent values.

Proposition 1 For any i ∈Mk and value v ∈ D(PT [i]), if

f [i, v] +
∑

j∈Mk,j 6=i

max(j) < θh,

then v is inconsistent with respect to h; where max(j) = max{f [j, v]|v ∈
D(PT [j])}.

Proof: (Sketch) The assignment PT [i] = v is consistent w.r.t. h iff the
satisfaction probability of h is greater or equal to θh. From the definition of

11

f [i, v] and of max(j) it follows that if f [i, v] +
∑

j∈Mk,j 6=imax(j) < θh, when
PT [i] = v, the satisfaction probability of h is less than θh even if we choose
the best possible value for all the other variables in Mk. 2

6 Generic Filtering Algorithms

We now describe our generic filtering strategy for chance constraints. We dis-
tinguish between two cases: the case when θh < 1 and the case where θh = 1.
In the first case, we design a specialized filtering algorithm whereas for the
second case we provide a reformulation approach that is more efficient. Both
methods, however, are parameterized with a filtering algorithm A for the de-
terministic constraints h↓p for all p ∈ Ψ that maintains GAC (or any other level
of consistency). This allows us to reuse existing filtering algorithms in current
constraint solvers and makes our filtering algorithms generic and suitable for
any global chance constraint.

6.1 Case 1 (θh < 1)

Algorithm 1 takes as input chance constraint h, PT , and a propagator A.
It filters from PT inconsistent values with respect to h. For each decision
variable and each value in its domain, we initialize f [i, v] to 0 (line 2). At line
5, we iterate through the scenarios in Ψ. For each scenario, we create a copy c

of constraint h↓p and of the decision variables it constrains. Then we enforce
GAC on c using A. For each i such that PT [i] is constrained by h↓p, we iterate
through the domain of the copy of the decision variable and, if a given value
v has support, we add the probability associated with the current scenario
to the respective f [i, v] (line 10). It should be noted that, for each scenario,
constraint c is dynamically generated every time the filtering algorithm runs,
and also that these constraints are never posted into the model. They are only
used to reduce the domains of the copies of the associated decision variables.
At line 12, for each variable i ∈ {0, . . . ,N − 1} we compute the maximum
support probability f [i, v] provided by a value v in the domain of PT [i], and
we store it at max[i]. At line 16, for each stage k ∈ {1, . . . , m}, we store in
g[k] the sum of the max[i] of all variables i ∈Mk. Finally, (line 20) at stage k
we prune from D(PT [i]) any value v that makes g[k] strictly smaller than θh
when we replace max[i] in g[k] with f [i, v].

Theorem 2 Algorithm 1 is a sound filtering algorithm.

Proof: (Sketch) Soundness. When a value v is pruned by Algorithm 1 at
line 24, g[k] becomes strictly smaller than θh when we replace max[i] in g[k]

12

Algorithm 1: Generic Non-incremental Filtering Algorithm

input : h; PT ; A.
output: Filtered PT with respect to h.

begin1

for each i ∈ {0, . . . ,N − 1} do2

for each v ∈ D(PT [i]) do3

f [i, v]← 0;4

for each p ∈ Ψ do5

Create a copy c of h↓p and of the decision variables it constrains;6

Enforce GAC on c using A;7

for each index i of the variables in c do8

for each v in domain of the copy of PT [i] do9

f [i, v]← f [i, v] + Pr{arcs(p)};10

delete c and the respective copies of the decision variables;11

for each i ∈ {0, . . . ,N − 1} do12

max[i]← 0;13

for each v ∈ D(PT [i]) do14

max[i]← max(max[i], f [i, v]);15

for each k ∈ {1, . . . , m} do16

g[k]← 0;17

for each i ∈Mk do18

g[k]← g[k] +max[i];19

for each k ∈ {1, . . . , m} do20

for each i ∈Mk do21

for each v ∈ PT [i] do22

if g[k]−max[i] + f [i, v] < θh then23

prune value v from D(PT [i]);24

end25

with f [i, v]. Indeed g[k] is thus equal to f [i, v]+
∑

j∈Mk,j 6=imax(j) which makes
Proposition 1 true. Thus, any pruned value v is inconsistent. 2

Algorithm 1 fails to prune some inconsistent values because such values are
supported by values that may become inconsistent at a later stage of the
algorithm. We illustrate these situations with an example.

Example 2 Consider a 2-stage SCSP in which V1 = {x1}, where x1 ∈ {1, 2},
S1 = {s1}, where s1 ∈ {a, b}, V2 = {x2}, where x2 ∈ {1, 2, 3}, and S2 = {s2},
where s2 ∈ {a, b}. Let Pr{si = j} = 0.5 for all i ∈ {1, 2} and j ∈ {a, b}. Let

13

PT [0] f [0, v] PT [1] f [1, v] PT [2] f [2, v]
1 0.75 1 0.25 3 0.5
2 0.25 2 0.25

Table 1
Example of inconsistent values gone undetected in Example 2

h(x1, x2, s1, s2) be the chance constraint with θh = 0.75. In this constraint,
for the first scenario (s1 = a and s2 = a) the only consistent values for
PT [0] and PT [1] are 1 and 2 respectively. For the second scenario (s1 = a

and s2 = b) the only consistent values for PT [0] and PT [1] are 2 and 1
respectively. For the third scenario (s1 = b and s2 = a) the only consistent
values for PT [0] and PT [2] are 1 and 3 respectively. For the fourth scenario
(s1 = b and s2 = b) the only consistent values for PT [0] and PT [2] are 1 and
3 respectively. That is, the set of allowed tuples for the deterministic version
of h is {〈1, 2, a, a〉, 〈2, 1, b, a〉, 〈1, 3, b, a〉, 〈1, 3, b, b〉}. Our algorithm originally
introduces three decision variables PT [0] ∈ {1, 2}, PT [1] ∈ {1, 2, 3}, and
PT [2] ∈ {1, 2, 3}. Assume that at some stage during search, the domains
become PT [0] ∈ {1, 2}, PT [1] ∈ {1, 2}, and PT [2] ∈ {3}. In Table 1, the
values that are not pruned by Algorithm 1 when θ = 0.75 are underlined. Only
value 2 in the domain of PT [0] is pruned. But value 2 was providing support
to value 1 in the domain of PT [1]. This goes undetected by the algorithm and
value 1 for PT [1] no longer provides f [1, 1] = 0.25 satisfaction, but 0. Thus,
there exists no satisfying policy in which PT [1] = 1.

We can easily remedy this problem by repeatedly calling Algorithm 1 until we
reach a fixed-point and no further pruning is done. For the rest of the paper,
we refer to this modified algorithm as Algorithm 1 as well.

Theorem 3 Algorithm 1 runs in O(|Ω| · a · N 2 · d2) time and in O(N · d+ p)
space where a is the time complexity of A, p is its space complexity, and d is
the maximum domain size.

Proof: (Sketch) Time complexity. In the worst case, Algorithm 1 needs to
be called N · d times in order to prune at each iteration just one inconsistent
value. At each of these iterations, the time complexity is dominated by com-
plexity of line 7 assuming that |Ω| ≫ |V |. Enforcing GAC on each of the |Ω|
constraints runs in a time using algorithm A. In the worst case, we need to
repeat this whole process N · d times in order to prune at each iteration just
one inconsistent value. Thus the time complexity of this step is in |Ω| ·a ·N ·d.
The overall time complexity is therefore in O(|Ω| · a · N 2 · d2) time.
Space complexity. The space complexity is dominated by the size of PT
and by the space complexity of A. PT requires N ·d space whereas A requires
p space. Therefore, the modified algorithm runs in O(N · d+ p) space. 2

In Table 2 we report the pruned values for Example 1 achieved by Algorithm
1. The values that are not pruned are underlined. Note that if we propagate

14

PT [0] f [0, v] PT [1] f [1, v] PT [2] f [2, v]
1 0.0 3 0.25 3 0.0
2 0.5 4 0.5 4 0.25
3 1.0 5 0.5 5 0.5
4 1.0 6 0.5 6 0.5

Table 2
Pruning for Example 1 after calling Algorithm 1

PT [0] f [0, v] PT [1] f [1, v] PT [2] f [2, v]
1 1 1 0.5 1 0.5
2 1 2 0.5 2 0.5

Table 3
Filtered domains in Example 3

the constraints in the model generated according to the approach described
in [21] and shown in Fig. 2, no value is pruned at all.

Even though Algorithm 1 is a sound filtering algorithm, it is unfortunately
still incomplete as maintaining GAC on h is intractable in general.

Theorem 4 The level of consistency achieved by Algorithm 1 on global chance
constraint h is weaker than GAC on h.

Proof: (Example 3) consider a 2-stage SCSP where V1 = {x1} where
x1 ∈ {1, 2}, S1 = {s1} where s1 ∈ {a, b}, V2 = {x2} where x2 ∈ {1, 2},
and S2 = {s2} where s2 ∈ {a, b}. Let Pr{si = j} = 0.5 for all i ∈ {1, 2}
and j ∈ {a, b}. Let h(x1, x2, s1, s2) be the chance constraint with θh = 0.75.
Furthermore, for the first scenario (s1 = a and s2 = a) the consistent tuples
for x1 and x2 are in {〈1, 1〉 〈2, 1〉 〈2, 2〉}. For the second scenario (s1 = a and
s2 = b) the consistent tuples for x1 and x2 are in {〈1, 2〉 〈2, 1〉 〈2, 2〉}. For the
third scenario (s1 = b and s2 = a) the consistent tuples for x1 and x2 are in
{〈1, 1〉 〈2, 1〉 〈2, 2〉}. For the fourth scenario (s1 = b and s2 = b) the consistent
tuples for x1 and x2 are in {〈1, 2〉 〈2, 1〉 〈2, 2〉}. That is the set of allowed tuples
for the deterministic equivalent constraint of h is

{〈1, 1, a, a〉, 〈2, 1, a, a〉, 〈2, 2, a, a〉, 〈1, 2, a, b〉, 〈2, 1, a, b〉, 〈2, 2, a, b〉,

〈1, 1, b, a〉, 〈2, 1, b, a〉, 〈2, 2, b, a〉, 〈1, 2, b, b〉, 〈2, 1, b, b〉, 〈2, 2, b, b〉}

Algorithm 1 introduces three decision variables PT [i] ∈ {1, 2} for all i ∈
{0, 1, 2}. Table 3 shows the result of Algorithm 1. None of the values is pruned,
but there exists no satisfying policy in which PT [0] = 1. 2

15

6.2 Case 2 (θh = 1)

When θh = 1 the global chance constraint h can be reformulated as

h↓p, ∀p ∈ Ψ

If all deterministic constraints are simultaneously GAC, then this reformula-
tion is equivalent to Algorithm 1. Nevertheless, even in this special case, we
still lose in terms of pruning.

Theorem 5 GAC on h is stronger than GAC on the reformulation.

Proof: (Sketch) We consider the same example as in the previous proof but
with θh = 1 instead. All deterministic constraints are simultaneously GAC,
but PT [i] = 1 cannot be extended to any satisfying policy. 2

7 Incremental Filtering Algorithm

Filtering algorithm 1 can be made incremental by introducing backtrackable
objects that keep track of the scenarios for which a domain wipeout has already
been detected or in which a given value has been already pruned at some
earlier branching point during search. It is clear that tracking information at
scenario level leads to a “lightweight” incremental algorithm while tracking
information at value level leads to a more “memory intensive” algorithm. In
Section 7.1 we introduce a lightweight incremental extension to Algorithm 1.
A memory-intensive one is introduced in Section 7.2.

7.1 Lightweight Incremental Algorithm

Let BS denote a stored bit set of size |Ω|. A stored bit set is an array of bits
that is automatically restored to its previous state at each backtrack during
search. Each bit BS[p] is uniquely associated with path p ∈ Ψ and it can
be either set to 1 or 0. BS is created when the global chance constraint is
initialized. Upon creation, every bit in BS is set to 1. Let

Pr{BS} =
∑

p∈Ψ:BS[p]=1

Pr{arcs(p)}.

As in the previous case, our algorithm is parameterized with a filtering algo-
rithm A for the deterministic constraint h↓p.

16

Algorithm 2: Generic Lightweight Incremental Filtering Algorithm

input : h; PT ; A; BS.
output: Filtered PT with respect to h.

begin1

for each i ∈ {0, . . . ,N − 1} do2

for each v ∈ D(PT [i]) do3

f [i, v]← 0;4

d[i, v]← 0;5

for each p ∈ Ψ do6

if BS [p] = 1 then7

Create a copy c of h↓p and of the decision variables it constrains;8

Enforce GAC on c using A;9

if c is inconsistent then10

BS[p] = 0;11

if Pr{BS} < θh then12

backtrack;13

else14

for each index i of the variables in c do15

for each v in domain of the copy of PT [i] do16

f [i, v]← f [i, v] + Pr{arcs(p)};17

for each v pruned from domain of the copy of PT [i] do18

d[i, v]← d[i, v] + Pr{arcs(p)};19

if Pr{BS} − d[i, v] < θh then20

prune value v from D(PT [i]);21

delete c and the respective copies of the decision variables;22

for each i ∈ {0, . . . ,N − 1} do23

max[i]← 0;24

for each v ∈ D(PT [i]) do25

max[i]← max(max[i], f [i, v]);26

for each k ∈ {1, . . . , m} do27

g[k]← 0;28

for each i ∈Mk do29

g[k]← g[k] +max[i];30

for each k ∈ {1, . . . , m} do31

for each i ∈Mk do32

for each v ∈ PT [i] do33

if g[k]−max[i] + f [i, v] < θh then34

prune value v from D(PT [i]);35

end36

17

Algorithm 2 takes as input chance constraint h, PT , a propagator A, and a
stored bit set BS . It filters from PT inconsistent values with respect to h.
For each decision variable and each value in its domain, we initialize f [i, v]
and d[i, v] to 0 (line 2); d[i, v] is an auxiliary accumulator that tracks the to-
tal probability associated with scenarios in which value v in D(PT [i]) does
not have support. At line 6, we iterate through the scenarios in Ψ. For each
scenario p ∈ Ψ, at line 7 if h↓p has been already detected to be inconsistent
at earlier branches in the search tree (BS[p] = 0) we do nothing, otherwise
(BS[p] = 1) we create a copy c of constraint h↓p and of the decision variables
it constrains. Then we enforce GAC on c using A (line 9). Recall that h↓p is
a classical constraint, so we can enforce consistency by using standard prop-
agation techniques. At line 10, if GAC produces a domain wipeout in c at
line 9, we set the bit BS[p] to 0 and, at line 12, we check if the remaining
scenarios can provide an overall probability that exceeds θh. If they cannot,
we backtrack. On the other hand, if GAC does not produce a domain wipeout
in c at line 9, at line 14 for each i such that PT [i] is constrained by h↓p, we
iterate through the domain of the copy of the decision variable and, if a given
value v has support — i.e. it has not been pruned when we enforced GAC on
c at line 9 — we add the probability associated with the current scenario to
the respective f [i, v] (line 17); conversely, if a value v does not have support
— i.e. it has been pruned when we enforced GAC on c at line 9 — we add
the probability associated with the current scenario to the respective d[i, v]
(line 19) and we immediately check if it is possible to prune such a value (line
20). The remaining lines of the algorithm are identical to those described in
Algorithm 1.

To summarize, in Algorithm 2 backtrack may occur at line 13, informally
speaking if in “too many” scenarios we have observed a domain wipeout —
that is if we cannot possibly achieve the prescribed satisfaction probability
with the remaining scenarios. Furthermore, backtrack may occur if we observe
a domain wipeout after pruning value v from D(PT [i]) at line 21 and 35.

Theorem 6 Algorithm 2 is a sound filtering algorithm.

Proof: (Sketch) Soundness. A value is either pruned at line 35 or/and line
20 or backtracking occurs at line 12. The pruning that happens at line 35 is
similar to the one that happens in the non-incremental algorithm. g[k] becomes
strictly smaller than θh when we replace max[i] in g[k] with f [i, v]. Indeed g[k]
is thus equal to f [i, v] +

∑

j∈Mk,j 6=imax(j) which makes Proposition 1 true.
The pruned value v is inconsistent. The eager pruning at line 20 is a weakened
reformulation of the condition verified at line 35. When backtracking occurs at
line 12, the probability associated with scenarios for which an inconsistency
has been detected amounts to a value greater than 1 − θh. Therefore there

18

exists no policy tree T for which

∑

p∈Ψ:h̄↓p∈h↓p

Pr{arcs(p)} ≥ θh

2

There are two key differences between Algorithm 1 and Algorithm 2: the eager
pruning at line 20, which is a weakened reformulation of the condition verified
at line 35; and the backtracking at line 12. As previously remarked, Algorithm
1 fails to prune some inconsistent values because such values are supported
by values that may become inconsistent at a later stage of the algorithm.
Eager pruning tries to partially overcome this issue by proactively removing
inconsistent values. This, in turn, may affect the assessment carried out on
subsequent scenarios. Eventually, eager pruning may reduce the number of
calls required to reach a fixed point.

As in the previous case, we can call Algorithm 2 until we reach a fixed-point
and no further pruning is done. We denote as Algorithm 2 this modified algo-
rithm as well.

Theorem 7 Algorithm 2 runs in O(|Ω|·a·N 2·d2) time and in O(N ·d+p+|Ω|)
space where a is the time complexity of A, p is its space complexity, and d is
the maximum domain size.

Proof: (Sketch) Time complexity The proof is identical to that provided
for Algorithm 1.
Space complexity The space complexity is now dominated by the size of
BS, of PT and by the space complexity of A. BS has size |Ω|, in fact we store
one bit per scenario. PT requires N · d space whereas A requires p space.
Therefore, the algorithm runs in O(N · d+ p+ |Ω|) space. 2

7.2 Memory-intensive Incremental Algorithm

The approach discussed in Section 7.1 keeps track, during search, of the scenar-
ios which have already generated a domain wipeout. In contrast to the naive
filtering presented in Algorithm 1, this enhanced algorithm therefore avoids
propagating again over a scenario p ∈ Ψ for which h↓p is disentailed. The
filtering effectiveness, i.e. the number of values pruned from decision variable
domains, is not affected, while the filtering efficiency is clearly improved since
a number of unnecessary runs for algorithm A are avoided when possible. This
approach has memory requirements that are comparable to those of Algorithm
1, in fact this enhanced algorithm simply requires a backtrackable stored bit

19

set of size |Ω| in order to memorize which scenarios have already generated a
domain wipeout. In this section, we introduce an alternative memory intensive
strategy that keeps track during search of which values in decision variable
domains have already been pruned for each possible scenario.

Similarly to the approach discussed in Section 7.1, we introduce a stored bit set
BS, in which each bit BS[p] is uniquely associated with path p ∈ Ψ and it can
be either set to 1 or 0. BS keeps track, during search, of which scenarios have
already generated a domain wipeout. BS is created when the global chance
constraint is initialized. Upon creation, every bit in BS is set to 1. We recall
that

Pr{BS} =
∑

p∈Ψ:BS[p]=1

Pr{arcs(p)}.

In contrast to the approach discussed in Section 7.1, in this case we also
associate a stored bit set of size |Ψi| with each value v ∈ D(PT [i]), for i =
0, . . . ,N − 1. Let us denote this backtrackable object as VBS [v,PT [i], p],
where p ∈ Ψi denotes a scenario in which h↓p constrains PT [i]. For each
scenario p ∈ Ψi, decision variable PT [i] and value v, VBS[v,PT [i], p] = 1 if
the value has not been already pruned from D(PT [i]) in scenario p, otherwise
VBS [v,PT [i], p] = 0. Also VBS is created when the global chance constraint
is initialized. Upon creation, every bit in VBS is set to 1.

It is clear that f [i, v], which in the previous algorithms denoted a value recom-
puted from scratch at each propagation run, is now functionally dependent on
VBS and BS. We can therefore write

f [i, v] =
∑

p∈Ψi

Pr{arcs(p)} · BS [p] · VBS[v,PT [i], p]. (1)

This is simply the sum of the probabilities of those scenarios in which PT [i] is
constrained by h↓p and in which neither the whole constraint h↓p is disentailed
nor value v is inconsistent.

As in the previous cases, our algorithm is parameterized with a filtering algo-
rithmA for the deterministic constraints h↓p. Due to the increasing granularity
at which we track inconsistency, it is relevant in this case to identify which
decision variable originated the event that triggered the current propagation
run, let this decision variable be PT [t].

Algorithm 3 takes as input chance constraint h, PT , a propagatorA, stored bit
sets BS and VBS, and the source of the propagation event, decision variable
PT [t]. It filters from PT inconsistent values with respect to h. At line 2, we
iterate through the scenarios in Ψt. Recall that these are all the scenarios
p ∈ Ψ in which the decision variable PT [t] that triggered the propagation is
constrained by h↓p. For each scenario p ∈ Ψt, at line 3, if h↓p has been already

20

Algorithm 3: Generic Memory-intensive Incremental Filtering

algorithm

input : h; PT ; A; BS; VBS; PT [t].
output: Filtered PT with respect to h.

begin1

for each p ∈ Ψt do2

if BS [p] = 1 then3

Create a copy c of h↓p and of the decision variables it constrains;4

exclude, for any given decision variable d in c every value v for
which VBS [v, d, p] = 0;
Enforce GAC on c using A;5

if c is inconsistent then6

BS[p] = 0;7

if Pr{BS} < θh then8

backtrack;9

else10

for each index i of the variables in c do11

for each v pruned from domain of the copy of PT [i] do12

VBS[v,PT [i], p] = 0;13

delete c and the respective copies of the decision variables;14

for each i ∈ {0, . . . ,N − 1} do15

max[i]← 0;16

for each v ∈ D(PT [i]) do17

max[i]← max(max[i], f [i, v]);18

for each k ∈ {1, . . . , m} do19

g[k]← 0;20

for each i ∈Mk do21

g[k]← g[k] +max[i];22

for each k ∈ {1, . . . , m} do23

for each i ∈Mk do24

for each v ∈ PT [i] do25

if g[k]−max[i] + f [i, v] < θh then26

prune value v from D(PT [i]);27

end28

21

detected to be inconsistent at earlier branches in the search tree (BS [p] = 0)
we do nothing, otherwise (BS[p] = 1) we create a copy c of constraint h↓p and
of the decision variables it constrains. Then we enforce GAC on c using A (line
5). Recall that h↓p is a classical constraint, so we can enforce consistency by
using standard propagation techniques. At line 6, if GAC produces a domain
wipeout in c at line 5, we set the bit BS[p] to 0 and, at line 8, we check if the
remaining scenarios can provide an overall probability that exceeds θh. If they
cannot, we backtrack. On the other hand, if GAC does not produces a domain
wipeout in c at line 5, at line 10 for each i such that PT [i] is constrained by
h↓p, we iterate through the domain of the copy of the decision variable. For
each value v that has been pruned when we enforced GAC on c at line 5, we
set the respective bit VBS [v,PT [i], p] to zero (line 10). The remaining lines
of the algorithm are identical to those described in Algorithms 1 and 2.

To summarize, in Algorithm 3 backtrack may occur at line 9, informally speak-
ing if in “too many” scenarios we have observed a domain wipeout, or at line
27, if we observe a domain wipeout after pruning value v from D(PT [i]).

Theorem 8 Algorithm 3 is a sound filtering algorithm.

Proof: (Sketch) Soundness A value is either pruned at line 27 or backtrack-
ing occurs at line 8. The pruning that happens at line 27 is similar to the one
that happens in the non-incremental algorithm. g[k] becomes strictly smaller
than θh when we replace max[i] in g[k] with f [i, v]. Indeed g[k] is thus equal to
f [i, v] +

∑

j∈Mk,j 6=imax(j) which makes Proposition 1 true. The pruned value
v is inconsistent. Due to the identity introduced in Eq. 1, when backtracking
occurs (at line 8) the probability associated with scenarios for which an incon-
sistency has been detected amounts to a value greater than 1− θh. Therefore
there exists no policy tree T for which

∑

p∈Ψ:h̄↓p∈h↓p

Pr{arcs(p)} ≥ θh

2

As in the previous case, we can call Algorithm 3 until we reach a fixed-point
and no further pruning is done. We also denote as Algorithm 3 this modified
algorithm.

Theorem 9 Algorithm 3 runs in O(|Ω|·a·N 3·d3) time and in O(p+N ·d·|Ω|)
space where a is the time complexity of A, p is its space complexity, and d is
the maximum domain size.

Proof: (Sketch) Time complexity. The proof is identical to that provided
for Algorithm 1 except for the fact that now f [i, v] is functionally dependent
on BS and VBS . Therefore, every time f [i, v] is used, its computation requires
at worst |Ω| iterations. Since we compute f [i, v] for each value v in the domain

22

of each decision variable PT [i] (line 15), the overall time complexity is now
in O(|Ω| · a · N 3 · d3) time. Space complexity. As in Algorithm 2, the space
complexity is dominated by the size of BS, of PT and by the space complexity
of A. BS has size |Ω|, in fact we store one bit per scenario. Nevertheless, now
we also store a bit set of size |Ω| for each value v in the domain of each decision
variable PT [i]. PT requires N ·d space whereas A requires p space. Therefore,
the algorithm runs in O(p+ (N · d+ 1) · |Ω|) space. 2

8 Benchmark Problems

In this section we introduce a number of benchmark problems used in our
experiments. For each problem we provide the problem definition, a set of in-
stances that will be used in our computational experiments and some consider-
ations on the advantages brought by our novel approach in terms of modeling
expressiveness.

8.1 Random Stochastic CSPs (RSCSP)

We introduce a number of randomly generated SCSPs.

8.1.1 Problem definition

The SCSPs considered feature five chance constraints over 4 integer decision
variables, x1, . . . , x4 and 8 stochastic variables, s1, . . . , s8.

There are five chance constraints in the model, the first embeds an equality,

c1 : Pr{x1s1 + x2s3 + x3s5 + x4s7 = 80} ≥ α,

the second and the third embed inequalities,

c2 : Pr{x1s2 + x2s4 + x3s6 + x4s8 ≤ 100} ≥ β

c3 : Pr{x1s2 + x2s4 + x3s6 + x4s8 ≥ 60} ≥ β.

The fourth chance constraint embeds again an inequality, but in this case the
constraint is defined over a subset of all the decision and random variables in
the model:

c4 : Pr{x1s2 + x3s6 ≥ 30} ≥ 0.7.

Finally, the fifth chance constraint embeds an equality also defined over a
subset of all the decision and random variables in the model:

c5 : Pr{x2s4 + x4s8 = 20} ≥ 0.05.

23

We considered 3 possible stage structures. In the first stage structure we have
only one stage, 〈V1, S1〉, where V1 = {x1, . . . , x4} and S1 = {s1, . . . , s8}. In
the second stage structure we have two stages, 〈V1, S1〉 and 〈V2, S2〉, where
V1 = {x1, x2}, S1 = {s1, s2, s5, s6}, V2 = {x3, x4}, and S2 = {s3, s4, s7, s8}. In
the third stage structure we have four stages, 〈V1, S1〉, 〈V2, S2〉, 〈V3, S3〉, and
〈V4, S4〉, where V1 = {x1}, S1 = {s1, s5}, V2 = {x2}, S2 = {s2, s6}, V3 = {x3},
S3 = {s3, s7}, and V4 = {x4}, S4 = {s4, s8}.

8.1.2 Instance generation

The decision variable domains are: D(x1) = {5, . . . , 10}, D(x2) = {4, . . . , 10},
D(x3) = {3, . . . , 10}, and D(x4) = {6, . . . , 10}. The domains of stochastic
variables s1, s3, s5, s7 comprise 2 integer values each. The domains of stochas-
tic variables s2, s4, s6, s8 comprise 3 integer values each. The values in these
domains have been randomly generated as uniformly distributed in {1, . . . , 5}.
Each value appearing in the domains of random variables s1, s3, s5, s7 is as-
signed a realization probability of 1

2
. Each value appearing in the domains of

random variables s2, s4, s6, s8 is assigned a realization probability of 1
3
. Parame-

ters α and β take values in {0.005, 0.01, 0.03, 0.05, 0.07, 0.1} and {0.6, 0.7, 0.8},
respectively. In total, we therefore consider 18 different possible configurations
for the parameters α and β. For each of these configurations, we generate 15
different probability distributions — i.e. sets of values in the domains — for
the random variables in our model. These probability distributions were di-
vided in three groups and employed to generate 5 single-stage problems, 5
two-stage problems and 5 four-stage problems. Therefore the test bed com-
prised, in total, 270 instances.

8.1.3 Modeling expressiveness

It should be noted that the approach discussed in [21], i.e. SBA, requires sev-
eral auxiliary constraints and decision variables to model the problems above.
In contrast, by using our novel modeling approach, we obtain significantly
more compact formulations. More specifically, the single-stage problem is mod-
eled, in [21], using 6484 decision variables and 6485 constraints, while GCC —
our approach — requires only 4 decision variables and 5 chance constraints;
this is mainly due to the fact that, in addition to the 4 decision variables re-
quired to build the policy tree, SBA introduces 1296 binary decision variables
for each of the 5 chance constraints in the model; furthermore, SBA also in-

24

Constraints:

(1) Pr {alldiff(y1, y2, . . . , y8)} ≥ θ

(2) yi = xi + di ∀i ∈ 1, . . . , 8
Decision variables:

xi ∈ {1, 3, 5, 7, 11, 13, 15} ∀i ∈ 1, . . . , 4

xi ∈ {2, 4, 6, 8, 10, 12, 14} ∀i ∈ 4, . . . , 8

yi ∈ {1, . . . , 15} ∀i ∈ 1, . . . , 8
Random variables:

di → delay of plane i ∀i ∈ 1, . . . , k
Stage structure:

V1 = {x1, x2, x3, x4}

V2 = {y1, y2, y3, y4, x5, x6, x7, x8}

V3 = {y5, y6, y7, y8}

S1 = {d1, d2, d3, d4}

S2 = {d5, d6, d7, d8}

S3 = {}

L = [〈V1, S1〉, 〈V2, S2〉, 〈V3, S3〉]

Fig. 5. A three-stage SCSP for the chance-constrained plane landing scheduling.

troduces 1297 reification constraints for each chance constraint in the model,
similarly to what is shown in Example 1 (Fig. 2). The two-stage problem is
modeled by SBA using 6554 decision variables (74 for the policy tree and 6480
binary decision variables) and 6485 constraints, while GCC requires only 74
decision variables and 5 chance constraints; finally, the four-stage problem is
modeled by SBA using 6739 decision variables and 6485 constraints, while
GCC requires only 259 decision variables and 5 chance constraints.

8.2 Plane Landing Scheduling Problem (PLSP)

Our second benchmark problem is the SCSP in Fig. 5. This model is fairly
simple, still it captures an important practical problem: the control of landing
conflicts for P planes on a single runway under stochastic arrival delays.

8.2.1 Problem definition

Consider a set of Li available landing slots for plane i. Decision variable xi rep-
resents the landing slot — for instance a 15 minutes time interval — assigned
to plane i, the random variable di represents the random delay of plane i. Deci-
sion variables x1, x2, . . . , x8 are partitioned in two stages, V1 = {x1, x2, . . . , x4}
and V2 = {x5, x2, . . . , x8}. Similarly, the respective random delays di are also

25

partitioned in two decision stages. This means that once the delays of the first
4 planes have been observed it is possible to act consequently and choose the
most appropriate recourse action that is available in the policy tree.

Enforcing constraint (1), under the stage structure described in Fig. 5 means
ensuring that the probability of observing a landing conflict — i.e. two planes
that land within the same time slot — remains below the specified threshold
1−θ = 0.05 (i.e. θ = 0.95). More specifically xi denotes the “planned” landing
slot, while yi represents the “realized” arrival time. xi is decided at stage 1 (for
i = 1, . . . , 4) or at stage 2 (for i = 5, . . . , 8), before the actual delay of plane
i, d̄i, is observed. Conversely, yi represents the realized landing time, which
is equal to the planned arrival time xi plus the realized delay d̄i. Decision
variables yi are fixed only after the realized delays are known. The domain of
yi ranges over the total number T of available landing slots, for instance this
may be a whole 8-hour working day planning horizon.

In every possible scenario ω ∈ Ω of the policy tree associated with the SCSP
in Fig. 5 a delay d̄ωi is associated with each plane i. If for two planes i and j

the “realized” delays in scenario ω are such that xi + d̄ωi = xj + d̄ωj , that is
yωi = yωj , then we have a landing conflict in scenario ω. A feasible landing plan
is therefore a satisfying policy tree that guarantees a probability of conflict
lower than 1− α.

The reader should be aware of the limitations of this simple example. For
instance, in a satisfying policy tree for our model some planes in V1 may be
scheduled at a time that comes after the scheduled time for planes in V2. A
realistic model should prevent these situations by forcing planes in V1 to be
scheduled at earlier time slots. Furthermore, the model presented can be made
more realistic by adding more runways, slots and airports, by modeling the
connection times and by therefore providing a full schedule that guarantees a
given service level. Discussing the complete problem is out of the scope of this
work, since our objective here is to demonstrate a practical application area
for the stochastic alldiff constraint and to investigate the filtering effectiveness
of our strategies in a proof-of-concept model. However, the simple model we
presented already gives a clear idea of how relevant a constraint such as the
stochastic alldiff is for practical applications. We leave the investigation of a
complete model for plane landing scheduling as a possible direction for future
research.

8.2.2 Instance generation

We consider θ ∈ {0.95, 0.90, 0.85, 0.80, 0.75, 0.70} and 5 sets of different proba-
bility distributions for each random variable di, these distributions have been
randomly generated by selecting two possible integer delays uniformly dis-

26

tributed in {1, . . . , 4} to each of which a realization probability equal to 0.5 is
then assigned. The available landing slots (decision variable domains) go from
1 to 15, the maximum landing time T = 19, in fact the maximum observable
delay is 4. Note that, as shown in Fig. 5, we consider domains with holes for
each decision variables in order to let the GAC algorithm exploit the structure
of the problem. In total, we therefore generated 30 different instances.

8.2.3 Modeling expressiveness

The policy tree for the model in Fig. 5 comprises 2116 decision variables: 4 at
the root node (xi, i ∈ {1, . . . , 4}), 64 at the first stage (xi, i ∈ {5, . . . , 8}) and
2048 at the third stage (yi, i ∈ {1, . . . , 8}).

The reader should be aware that bidirectional implications such as

s = 1↔ alldiff(x, y, z)

involving global constraints are not allowed in most constraint solvers; for
instance Choco [13] does not support this construct. One of the solvers that
effectively supports this construct is Minion [?]. In this solver, an SBA model
would require 256 auxiliary binary variables for encoding chance constraint
(1).

For those solvers that do not support the above construct, in order to model
the SCSP in Fig. 5 by using the approach in [21], it is often possible to adopt
a decomposition for the alldiff constraint. However, the associated model is
clearly not only unreadable, but also extremely inefficient in terms of prop-
agation effectiveness, in fact the structure of the problem is totally lost and
a significant number of auxiliary binary variables have to be employed in the
scenario-based model to decompose the alldiff constraint in each scenario.
These variables add up to the 256 required to encode the chance constraint.

We observe again that, by using our novel modeling approach, we obtain signif-
icantly more compact model formulations than the state-of-the-art approach
in [21].

8.3 Stochastic Knapsack Problem (SKP)

Our last benchmark problem is the stochastic knapsack problem [10] — a
known problem in stochastic constraint optimization.

27

Objective:
max z

Subject to:

(1) z = E

[

∑k
i=1 rixi

]

(2) Pr
{

∑k
i=1 ωixi ≤ C

}

≥ θ

Decision variables:

xi ∈ {0, 1} ∀i ∈ 1, . . . , k
z ∈ R

Random variables:

ωi → item i weight ∀i ∈ 1, . . . , k
ri → item i profit ∀i ∈ 1, . . . , k

Stage structure:

V1 = {x1, x2, . . . , xk, z}

S1 = {r1, r2 . . . , rk, ω1, ω2, . . . , ωk}

L = [〈V1, S1〉]

Fig. 6. Stochastic constraint programming formulation for the single-stage SKP.

8.3.1 Problem definition

A subset of k items must be chosen, given a knapsack of size c into which
to fit the items. Each item i, if included in the knapsack, brings a stochastic
profit ri. Also the size ωi of each item is stochastic and it is not known at the
time the decision has to be made. Nevertheless, we assume that the decision
maker knows the probability mass functions PMF(ωi) and PMF(ri) [11], for
each i = 1, . . . , k. The probability of the plan not exceeding the capacity C

of the knapsack should be greater than or equal to a given threshold θ. The
objective is to find the knapsack that maximizes the expected profit.

We consider both the single and the multi-stage formulation of the problem. In
the single-stage formulation, objects are selected before any of the respective
profits or weights have been observed. In the multi-stage formulation, items
are considered sequentially, starting from item 1 up to item k. In other words,
first we take the decision of inserting or not a given object into the knapsack,
then we immediately observe its weight, which is a random variable, before
any further item is taken into account.

In Fig. 6 we provide a stochastic constraint programming formulation for the
SKP exploiting global chance constraints. In this model, the objective function
maximizes z, that is the expected total profit brought by the objects selected
in the knapsack — those for which the binary decision variable xi is set to
1. This expectation is computed in chance constraint (1). Chance constraint
(2) ensures that the capacity C is not exceeded with a probability of at least
θ. The model in Fig. 7 is a single-stage model in which we first select all the

28

Stage structure:

V1 = {x1, z} ∀i ∈ 1, . . . , k

Vi = {xi} ∀i ∈ 2, . . . , k

Si = {ri, ωi} ∀i ∈ 1, . . . , k

L = [〈V1, S1〉, 〈V2, S2〉, . . . , 〈Vk, Sk〉]

Fig. 7. Stage structure for the multi-stage SKP.

objects we want to include in the knapsack and then we observe their weights
and profits.

In Fig. 7 we provide an alternative stage structure, that can be used in place
of the stage structure in Fig. 6 to formulate the the multi-stage SKP. The
model now comprises, in the stage structure L, multiple decision stages that
alternate decisions and observations according to the arrival sequence of the
objects. In practice, in an optimal policy for the multi-stage SKP an object
may be selected or not, depending on the realized weights for previous objects.

Please note that Choco [13], the underlying solver we adopt for our algorithms,
provides native support for real valued decision variables (object RealVar),
therefore it is straightforward to define and handle variable z during search
and propagation. Furthermore, E

[

∑k
i=1 rixi

]

is an expression involving ex-
pected values. These expressions can in principle be handled using a generic
reformulation as follows. Let E[〈exp〉] denote the expected value of 〈exp〉. Re-
call that Ψ denote the set of all distinct paths of a policy tree in the SCSP
of interest. Since we assume that the support of random variables is finite, it
follows that the expected value can be easily reduced to a fully deterministic
expression

E[〈exp〉] =
∑

p:p∈Ψ

〈exp〉↓p · Pr{arcs(p)},

where 〈exp〉↓p is the deterministic expression obtained by replacing every ran-
dom variable in 〈exp〉 with the respective deterministic value this variable
takes in scenario arcs(p) and every decision variable in 〈exp〉 with the respec-
tive copy PT [i] associated with path p. Note, however, that Choco [13] does
not allow expressions of mixed types, i.e., float and integer types. Therefore,
we implement a simple filtering algorithm that handles expected values ex-
pression which should compute a real value, but the expression involves some
integer values as well. This filtering algorithm is discussed in Appendix I.

8.3.2 Instance generation.

We consider a number of randomly generated instances for the single and
multi-stage SKP. The SCSPs considered feature a single chance constraints
over 4 integer decision variables, x1, . . . , x4, and 4 stochastic variables, ω1, . . . , ω4,

29

representing object weights. The decision variable domains are: D(x1) =
D(x2) = D(x3) = D(x4) = {0, 1}. The domains of stochastic variables
ω1, . . . , ω4 comprise 2 integer values each. The values in these domains have
been randomly generated as uniformly distributed in {1, . . . , 100}. Further-
more, the model also comprises 4 stochastic variables, r1, . . . , r4 representing
the random profit brought by a given object, once it has been selected in a
knapsack. Also the domains of stochastic variables r1, . . . , r4 comprise 2 inte-
ger values each randomly generated as uniformly distributed in {1, . . . , 100}.
Each value appearing in the domains of random variables is assigned a real-
ization probability of 1

2
. We generated 5 different random instances, then for

each of these instances we consider θ ranging in {0.95, 0.90, 0.85, 0.80, 0.75}
and C ranging in {300, 250, 200, 150, 100}. This produced a test bed of 125 in-
stances. We consider 2 possible stage structures: in the first we have only one
stage, 〈V1, S1〉, where V1 = {z, x1, . . . , x4} and S1 = {r1, . . . , r4, ω1, . . . , ω4}; in
the second we have two stages, 〈V1, S1〉 and 〈V2, S2〉, where V1 = {z, x1, x2},
S1 = {r1, r2, ω1, ω2}, V2 = {x3, x4}, and S2 = {r3, r4, ω3, ω4}. The complete
test bed therefore comprises 250 instances.

8.3.3 Modeling expressiveness.

It is clear that, under the first stage structure, the policy tree comprises only
4 binary decision variables and the real valued variable z; under the second
stage structure, it comprises 34 binary decision variables and the real valued
variable z. Of course, as discussed in the previous sections, the SBA model
requires a much larger number of variables to encode the chance constraints
in the model. Roughly, the additional number of binary variables required
by SBA is proportional to the number of scenarios and of chance constraints
in the model,regardless of the stage structure. In this case, since we have
8 binary discrete random variables, the number of scenarios amounts to 28.
Therefore the SBA model includes at least 256 auxiliary binary variables for
the chance constraint enforcing the capacity restriction, and 256 auxiliary
integer variables for computing the expected cost. A comparable number of
auxiliary constraints is also introduced. We stress once more that by using
our novel modeling approach we obtain significantly more compact model
formulations than the state-of-the-art approach in [21].

30

9 Computational Experience

In this section we discuss our computational experience aimed at answering
the following questions:

(1) Does the new approach based on the proposed filtering algorithms bring
any benefit in terms of pruning compared to the state-of-the-art ap-
proach?

(2) Does the new approach based on the proposed filtering algorithms bring
any benefit in terms of search efficiency compared to the-state-of-the-art
approach?

(3) What effect can we observe when we vary the level of consistency of
algorithm A?

(4) Is the new approach based on the proposed filtering algorithms more
scalable?

All the experiments were performed on an Intel Core 2 Duo 1.86 GHz with
2GB RAM. The solver used for our test is Choco 1.2 [13], a Java open source
CP solver. Variable and value selection heuristics were selected empirically
among the following ones made available in Choco [13] (“min domain”, “dom
over den degree”, “dom over degree”, “most constrained”). The combination
adopted for RSCSP and SKP is the one that gave better results for SBA. For
SPLSP, since we do not compare against SBA, we arbitrarily selected a “min
domain” heuristic for variable selection and then we analyzed the impact of
different value selection heuristics on search performances.

9.1 Pruning Effectiveness

Consider the RSCSPs introduced in Section 8. We compare the effectiveness
of the filtering performed by SBA and GCC (Algorithm 1).

The propagation strategy discussed in Section 6 requires an existing propaga-
tor A for the deterministic constraints. Since the only constraints appearing
in the RSCSPs above are linear (in)equalities, we employ a simple bounds
consistency procedure for linear (in)equalities implemented in Choco 1.2 [13].

In this experiment, we only consider 90 two-stage feasible instances of the 270
instances of RSCSPs randomly generated according to the strategy discussed
in Section 8 (5 different probability distributions for the random variables and
18 different configurations for parameters α and β). We generate a solution
for each of these instances. Then we randomly pick subsets of the decision
variables in the problem, we assign them to the value they take in this solution,
we propagate according to SBA and GCC, respectively, and we compare the

31

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

P
er

ce
nt

ag
e

of
 v

al
ue

s
pr

un
ed

Percentage of decision variables assigned

Domain Reduction

SBA
GCC

Fig. 8. Effectiveness of the filtering performed by SBA and GCC (Algorithm 1)

percentage of values pruned by each of these two approaches.

In Fig. 8 we show the results of this comparison, which is performed for a
number of decision variables assigned that ranges from 0% — this corresponds
to a root node propagation — to 90% of the decision variables that appear in
the policy tree.

In the graph, for each percentage of decision variables assigned, we report —
in percentage on the total amount of values in the initial decision variable
domains — the minimum, the maximum, and the average number of values
pruned from the domains. As it appears from the graph, if we consider the
minimum percentage of values pruned by the two approaches, GCC always
achieves a stronger pruning than SBA in the worst case. Furthermore, as the
maximum percentage of values pruned reported in the graph witnesses, GCC
is able to achieve a much stronger pruning than SBA in the best case. On
average, GCC always outperforms SBA, by filtering up to 8.64% more values
when 60% of the decision variables are assigned and at least 3.11% more values
at the root node.

The reader should note that the filtering effectiveness for a given algorithm A
does not vary for Algorithm 1, Algorithm 2 and Algorithm 3. Therefore only
the computational efficiency (i.e. number of calls to algorithm A) changes. We
will investigate this further in the next section.

32

9.2 Search Efficiency

In the experiments presented so far, by using our novel approach, we outper-
form the state-of-the-art approach in [21] in terms of pruning. We now inves-
tigate if this is reflected in gains in terms of search efficiency. We consider
two benchmark problem: a feasibility problem (RSCSPs) and an optimization
problem (SKP). Both these problems have been introduced in Section 8. We
now show that, by using our novel modeling approach (GCC) in concert with
the non-incremental propagation strategy in Algorithm 1, we outperform the
state-of-the-art modeling approach in [21] (SBA) in terms of runtimes and
explored nodes. Furthermore, we show that incremental filtering (Algorithm
2 and Algorithm 3) is computationally more efficiency than non-incremental
filtering (Algorithm 1). These gains in efficiency also increase as we increase
the number of stages.

9.2.1 RSCSPs

In order to assess search efficiency, we compared our approach (GCC) — which
models the discussed SCSPs using five global chance constraints, one for each
chance constraint in the model — against the deterministic equivalent CSPs
generated using the state-of-the-art scenario-based approach in [21] (SBA).

In our comparative study we consider the 270 instances of RSCSPs discussed
in Section 8. The variable selection heuristic used during the search is the
domain over dynamic degree strategy, while the value selection heuristic selects
values from decision variable domains in increasing order. To each instance we
assign a time limit of 240 seconds for running the search. The computational
performances of Algorithm 1 and SBA are compared in Fig. 9 and Fig. 10.
Runtimes for Algorithm 1 and Algorithm 2 are compared in Fig. 11. A more
detailed overview on our computational experience is given in Fig. 12, which
presents a comprehensive set of boxplots 4 for our experiments.

The results show that GCC (Algorithm 1) solved all the instances that SBA
could solve within the time limit. In contrast, SBA was often not able to
solve — within the given time limit — instances that GCC could solve in
a few seconds. More specifically, both GCC and SBA could solve 90 of 90
1-stage instances; on average GCC explored roughly 5 times less nodes and
was about 3.34 times faster than SBA for these instances. GCC could solve
45 of 90 2-stage instances, while SBA could only solve 18 of them; on average

4 A box plot [22,15] is a convenient way of graphically depicting groups of numerical
data through their five-number summaries: the smallest observation, lower quartile,
median, upper quartile, and largest observation. A boxplot also indicates which
observations might be considered outliers.

33

100

101

102

103

104

105

100 101 102 103 104 105

SBA

GCC

Explored Nodes

•••••••••••••••••• •••
•••
•••
•••

•••
••••••

•••

•••

•••

•••

••••

•• •••
•

•• •••
•

•• •••
•••

•••
•••

•••
•••

•••

••••••
• •••••••

• •••

•

•

• •••••••••••••••

••••••••••••

•••

•••

•• ••••
• •

•••
•

••• •••

•

••••••
•••••
••• ••••••••

•
•

••
•••

•
• ••• •

• •••••
• ••

•• •••••••

•••

•• •

•••

•• •

•••

•• •

•• • •••
• •••••
••• •••
••

• •• •

•

•••••• •••••

Fig. 9. The graph compares SBA and GCC (Algorithm 1) in terms of explored nodes
for the 270 instances in our test bed. Axes are in logarithmic scale.

10−1

100

101

102

10−1 100 101 102

SBA

GCC

Run Times

••••••••• ••••••••• •••

•••

•••

•••

•••

••••••

•••

•••

•••

•••

••••

•• •••
•

•• •••
•

•• •••
•••

•••
•

• •

•••

•••

•••

•••••• • ••••••• ••••

•

•

• •••••••••••••••

••••••
••••••

•••

•••

•• ••••• •••••••• •••

•

•••••• •••••••••••••••••• ••••••• ••••• •••••• •••••••••••

•••

•••

•••

•••

•••

••••• • •••• •••••• • • •••••• •••

•

•••••• •••••

Fig. 10. The graph compares the run time performance of SBA and GCC (Algorithm
1) for the 270 instances in our test bed. Axes are in logarithmic scale.

GCC explored roughly 36 times less nodes and was about 15 times faster than
SBA for these instances. Finally, GCC could solve 31 of 90 4-stage instances,
while SBA could only solve 10 of them; on average GCC explored roughly 35
times less nodes and was about 20 times faster than SBA for these instances.
Incremental GCC (Algorithm 2) could solve: 90 of 90 1-stage instances, on
average it was about 3.90 times faster than SBA and 1.16 times faster than

34

10−1

100

101

102

10−1 100 101 102

GCC

Incremental GCC

Run Times

•• ••• •• ••
•
••• •••••

•••••••••
•••

•••
•••

•••
•••
•••••••• •

••••••

•••

•••

•••

•••

•••
•• •

•••

•
•
•

•••

•••

•••

••••••
•

•••

••••

••••

••

•

•••••••••••••••

••••••••••••••••••
••

••

••
•

•••••

•••

•••

•

•••••

•

•••••••••••

•••••••

•••••

••

••••

•

•••••

•

•••••••••••

•••

•••

•••

•••

•••

••••

•
•

•••

•

•••••

• •
•

•••

•••

•••

•

•• •••

•

•••••

Fig. 11. The graph compares the run time performance of non-incremental GCC
(Algorithm 1) and incremental GCC (Algorithm 2) for the 270 instances in our test
bed. Axes are in logarithmic scale.

GCC for these instances; 45 of 90 2-stage instances, on average it was about
58 times faster than SBA and 3.87 times faster than GCC for these instances;
and 32 — therefore one instance more than GCC — of 90 4-stage instances,
on average it was about 29 times faster than SBA and 2.70 times faster than
GCC for these instances.

35

1-stage problems 2-stage problems 4-stage problems

ru
n
ti
m

e
 (

s
e
c
)

ru
n
ti
m

e
 (

s
e
c
)

ru
n
ti
m

e
 (

s
e
c
)

e
x
p
lo

re
d
 n

o
d
e
s

e
x
p
lo

re
d
 n

o
d
e
s

e
x
p
lo

re
d
 n

o
d
e
s

1-stage problems 2-stage problems 4-stage problems

Fig. 12. Randomly generated SCSPs. Boxplots for run time (in seconds) and explored nodes in the test bed considered. For the 2-stage
and 4-stage instances the boxplots only refer to the subset of instances that could be solved by GCC. The y-axis is displayed in logarithmic
scale.

36

9.2.2 SKP

We consider the 250 instances of SKP generated as discussed in Section 8. Since
the only constraint appearing in the SKP is, once more, a linear inequality,
we employ also in this case the simple bounds consistency procedure for linear
(in)equalities implemented in Choco 1.2 [13] as existing propagator A. The
variable selection heuristic used during the search is the min domain strategy,
while the value selection heuristic selects values from decision variable domains
in decreasing order.

We compare the computational performances of the incremental versions of the
filtering algorithms (Algorithm 2 and Algorithm 3) and SBA. Note that non-
incremental version of the filtering algorithms (Algorithm 1) is not included
in the experiments as it is always outperformed by the incremental versions.
Limits were imposed, during search, for run time and explored nodes. More
specifically, since SKP is an optimization problem and the solution time per
instance tends to be higher than the one observed for RSCSP, we limited the
run time to 4,000 seconds and the search space to 10,000,000 nodes.

The runtimes obtained by Algorithm 2 are comparable to those obtained by
Algorithm 3. This ought to be expected, in fact the model comprises only
a chance constraint embedding a linear inequality; this implies that bounds
consistency is sufficient for guaranteeing GAC in each scenario; therefore track-
ing disentailment at value level cannot bring any benefit. Nevertheless, it is
interesting to note that the memory requirements of Algorithm 3 does not
significantly impact computational performances.

In the test bed considered, the incremental algorithms and SBA could solve,
within the given time and node limits, 125 of 125 1-stage instances; on average
both the incremental algorithms explored 2.4 times less nodes and were about
10 times faster than SBA for these instances. The incremental algorithms
could solve 116 of 125 2-stage instances; of these 116 instances, SBA only
solved 84. On average, both incremental algorithms explored at least 3.86
times less nodes — the “at least” refers to the fact that SBA hit the time and
node limits imposed for some instances — and were at least about 7 times
faster than SBA for these instances. None of the remaining 9 instances that the
incremental algorithms could not solve was solved by SBA within the allocated
time and node limits. Over the set of 116 2-stage instances that the incremental
algorithms could solve to optimality, SBA hit the imposed run time limit for
about 33% of the instances. In Fig. 13 we report boxplots for run times and
explored nodes over the test bed considered. The above experiments show that
our incremental filtering strategies are computationally more efficient than the
state of the art approach in [21].

37

1-stage problems 2-stage problems

1-stage problems 2-stage problems

e
x
p
lo

re
d
 n

o
d
e
s

e
x
p
lo

re
d
 n

o
d
e
s

ru
n
ti
m

e
 (

s
e
c
)

ru
n
ti
m

e
 (

s
e
c
)

Fig. 13. Stochastic knapsack problem. Boxplots for run time (in seconds) and explored nodes in the test bed considered. For the 2-stage
instances the percentiles only refer to the 116 instances that could be solved by GCC. The y-axis is displayed in logarithmic scale.

38

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

P
er

ce
nt

ag
e

of
 v

al
ue

s
pr

un
ed

Percentage of decision variables assigned

Domain Reduction

BC
GAC

Fig. 14. Effectiveness of the filtering when different degrees of consistency are en-
forced by the parameterizing algorithm A: GAC vs BC for stochastic alldiff.

9.3 Comparing the Incremental Algorithms

The previous experiments show that both incremental algorithms have similar
performances for the SKP. We now investigate further the relative performance
of the incremental algorithms.

We analyzed the incremental filtering algorithms when different degrees of
consistency — namely, BC and GAC — are enforced by the parameterizing
algorithm A in Algorithm 2 and Algorithm 3. We use the PLSP as our bench-
mark problem.

The experiments show that these two algorithms are in general incomparable,
and that their effectiveness depends upon the consistency level achieved by
algorithm A that is used, on the heuristics and, clearly, on the problem being
investigated.

We consider the 30 instances of PLSP generated as discussed in Section 8. We
computed a solution for each of these instances and we analyzed the impact
of the pruning when a given percentage of the decision variables in the model
have been assigned to their value in the solution computed. The results are
shown in Fig. 14.

39

In the graph, for each percentage of decision variables assigned, we report —
as a percentage of the total number of values in the initial decision variable
domains — the minimum, the maximum, and the average number of values
pruned from the domains over the 30 instances considered. As is apparent from
the graph and as expected, if we consider the minimum percentage of values
pruned by the two approaches, an algorithm enforcing GAC always achieves
a stronger pruning than one enforcing BC in the worst case. Furthermore, as
the maximum percentage of values pruned reported in the graph witnesses,
an algorithm enforcing GAC is able to achieve a much stronger pruning than
one enforcing BC in the best case. On average, the former always outperforms
the latter, by filtering on average up to 4.66% more values when 70% of the
decision variables are assigned.

Although it is clear, from our previous discussion, that an algorithm A en-
forcing a stronger level of consistency leads to more pruning in Algorithm 2
and Algorithm 3, it is not immediately seen if this brings an effective ben-
efit in terms of runtimes. Indeed, we can have four possible combinations: a
lightweight filtering algorithm, i.e. Algorithm 2, combined with algorithm A
enforcing a weak consistency, such as BC; or a memory intensive filtering al-
gorithm, i.e. Algorithm 3, combined with a GAC propagator A; or the two
possible intermediate options, that is Algorithm 3 in combination with BC and
Algorithm 2 in combination with GAC. We will now investigate this issue.

In what follows, once more we consider the PLSP problem in Fig. 5. Neverthe-
less, we now fix θ to 0.95 and we generate 50 sets of probability distributions
random variables di; this is done according to the same strategy previously
discussed. We solve each of these 50 instances by using two possible filtering
algorithms for the alldiff constraint: the algorithm enforcing GAC in [16] and
the algorithm enforcing bound consistency (BC) in [14]; each of these algo-
rithms is used in concert with Algorithm 2 and Algorithm 3. The variable
selection heuristic is the min domain strategy, the value selection heuristic
selects values from decision variable domains in increasing order.

Our computational experience is shown in Fig. 15. According to these results,
it is not straightforward to decide which consistency level should be used in
concert with one of the algorithms we proposed. When we consider an algo-
rithm A enforcing GAC, Algorithm 3 generally provides better performances
than Algorithm 2 over the test bed presented. Conversely, when we consider
an algorithm A enforcing BC, Algorithm 2 generally provides better perfor-
mances than Algorithm 3. In fact, Algorithm 2 in concert with BC seems to
provide the best performances; nevertheless, it fails to solve 3 over 50 instances
in the given limit of 1000 explored nodes. Conversely, if a GAC propagator is
employed, both Algorithm 2 and Algorithm 3 fail to solve only 2 instances,
but the runtime spent on each instance grows visibly.

40

value selection heuristic selects values in increasing order value selection heuristic selects values in decreasing order

value selection heuristic selects values in increasing order value selection heuristic selects values in decreasing order

ru
n

ti
m

e
 (

m
s
e

c
)

ru
n

ti
m

e
 (

m
s
e

c
)

e
x
p

lo
re

d
 n

o
d

e
s

e
x
p

lo
re

d
 n

o
d

e
s

Fig. 15. Plane landing scheduling problem. Comparison between Algorithm 2 and Algorithm 3 when different degrees of consistency
(GAC & BC) are enforced. Boxplots for runtimes and explored nodes over the 50 instances considered in our test bed. Runtimes are in
milliseconds, the limit for explored nodes is set to 1000. Two value selection heuristics are considered: increasing and decreasing order.
The y-axis is displayed in logarithmic scale.

41

In our experiments, we also considered a different value selection heuristic,
which selects values from decision variable domains in decreasing order. Un-
der this new heuristic strategy, computational times are sensibly impacted,
especially for the case in which A enforces BC in both Algorithm 2 and Al-
gorithm 3. Furthermore, if a BC propagator is employed, both Algorithm 2
and Algorithm 3 fail to solve 6 instances. Conversely, if a GAC propagator is
employed, both Algorithm 2 and Algorithm 3 fail to solve 4 instances. This
shows the importance of the use of an adequate heuristic strategy.

Our limited experience revealed that a more lightweight consistency (BC) may
payoff, if used in concert with Algorithm 2. Nevertheless, there is the risk of
observing high run times for “hard” instances. To overcome this issue, it seems
a viable strategy to use a GAC propagator in concert with Algorithm 3.

As a takeaway message, we aim to emphasize that Algorithm 3 tends to use
a significant amount of memory, if the number of scenarios is large; in such
cases it should be avoided. On the other hand it is the ideal choice for highly
combinatorial problems involving a small number of scenarios. Algorithm 2
has low memory requirements and provides competitive performances when
used in concert with a BC propagator and a good value and variable selection
heuristics.

9.4 Scalability

We finally conducted further experiments on a single-stage SKP comprising 10
objects. 125 instances have been generated for this problem by using the same
strategy discussed in Section 8; that is by generating uniformly distributed ran-
dom values for the probability mass functions of the random profits, weights,
and by varying θ and C as discussed. Since each of the 10 objects has 2 possi-
ble profits and 2 possible weights, the total number of scenarios is 220. Choco
could not build the scenario based model for any of the 125 instances due to
out-of-memory exceptions. The total amount of memory assigned to the VM
was the default value for Java 1.6, i.e. a minimum of 2MB and a maximum
of 64MB. The reader should also be aware that it does not make sense to
use Algorithm 3 when the number of scenarios is large; for this reason we did
not conduct experiments involving this algorithm. In contrast, Algorithm 2
managed to solve 115 of the 125 instances. The mean solution time was 51
minutes, the max solution time was 3.24 hours, the median time to solution
was 19 minutes. The mean number of explored nodes was 28.5, the max num-
ber of explored nodes was 140, the median number of explored nodes was 14.
These latter experiments demonstrate the scalability of our approach in the
number of scenarios.

42

10 Related Works

A thorough review on hybrid CP/AI/OR approach for decision making under
uncertainty is given in [10]. Closely related to our approach are [18,20,19,17].
In these works ad-hoc filtering strategies for handling specific chance con-
straints are proposed. However, the filtering algorithms presented in both
these works are special purpose, incomplete, and do not reuse classical prop-
agators for conventional constraints. Other search and consistency strategies,
namely a backtracking algorithm, a forward checking procedure [23] and an
arc-consistency [1] algorithm have been proposed for SCSPs. But these present
several limitations and cannot be directly employed to solve multi-stage SC-
SPs as they do not explicitly feature a policy tree representation for the solu-
tion of a SCSP. Further extensions to cope with problems involving branching
and with multi-objective decision making were discussed in [6]. These exten-
sions only require a minor modification of the original framework. Finally,
efforts that try to extend the classical CSP framework to incorporate uncer-
tainty have been influenced by works that originated in different fields, namely
chance-constrained programming [7] and stochastic programming [5]. The Prob-
abilistic CSP [8] represents the first attempt to include random variables, and
thus uncertainty, within the CP framework. To the best of our knowledge
the first work that tries to create a bridge between Stochastic Programming
and Constraint Programming is by Benoist et al. [3]. The idea of employing
a scenario-based approach for building up constraint programming models of
SCSPs is not novel, since Tarim et al. [21] have already used this technique
to develop a fully featured language — Stochastic OPL — for modeling SC-
SPs. Nevertheless, unlike our approach, the technique in [21], as well as the
existing scenario-based reformulation techniques in stochastic programming
[5], introduce a significant number of auxiliary binary variables that hinder
the search process and that impact the space requirements for both constraint
and mathematical programming solvers, respectively. Our work proposes an
orthogonal approach to solving SCSPs that do not rely on binary variables
and that can easily be integrated with the compilation approach of [21] and
with the cost-based filtering techniques in [20] to improve performances. In
real-world SCSPs, domains of random variables are typically large and the
policy tree tends to explode. We believe that for these problems one has to
either: develop a special purpose filtering techniques, if optimality is of con-
cern (see e.g. [18,19]); or adopt some scenario reduction method such as those
discussed in [21] (i.e. Latin Hypercube Sampling, Dupacova reduction etc.) to
limit the size of the policy tree in the respective SCSP. In [?], we proposed two
novel tools — “Sampled SCSP” and (α,ϑ)-solutions — that allow a decision
maker to enforce likelihood guarantees on the quality of the solution obtained
when a scenario reduction technique is applied to bound the size of the policy
tree. These scenario reduction approaches can be used in problems featuring
non-independent random variables and can be applied in synergy with the

43

filtering algorithms discussed in our paper. Alternatively, one may apply the
heuristic approach discussed in [?,?], which is based on evolutionary search.

11 Conclusions

We proposed a generic filtering algorithm (Algorithm 1) for global chance
constraints. This algorithm is parameterized with conventional propagators
for the corresponding deterministic version of the global chance constraint.
By using our novel modeling approach, we obtain significantly more compact
model formulations than the state-of-the-art approach in [21].

We extended the generic filtering algorithm in two ways in order to obtain
two incremental variations: a lightweight version (Algorithm 2) as well as a
memory-intensive one (Algorithm 3). We performed an extensive experimen-
tal study on three benchmark problems: two stochastic constraint satisfac-
tion problems and a stochastic constraint optimization one. This experimental
study revealed that:

• by using the non-incremental filtering we outperform the state-of-the-art
approach in [21] in terms of pruning and runtimes;
• the incremental versions of the filtering algorithm are computationally more
efficient than the non-incremental filtering;
• Algorithm 2 and Algorithm 3 are in principle incomparable with each other,
since the efficiency of both is strictly influenced by the consistency level
enforced by algorithm A; and
• when the number of scenarios grows, the proposed approach is more scalable
than the state-of-the-art approach in [21].

Future work may investigate opportunities offered by the integration of cost-
based filtering techniques for solving stochastic constraint optimization prob-
lems such as the stochastic knapsack (see e.g. [20]). Another important future
direction is the investigation of how sampling techniques may improve scala-
bility and efficiency of our approach.

Appendix I

We discuss a filtering strategy for handling constraint expressions involving
expected values (Section 8.3.1).

Consider a constraint x = E[〈exp〉], where x is a real valued decision variable,
whose domain is stored as an interval with real valued upper and lower bounds.

44

Techniques for handling propagation and search involving real valued decision
variables are discussed in [2]. A filtering algorithm that enforces bounds con-
sistency on this constraint is shown in Fig. 4. The algorithm simply evaluates

Algorithm 4: Filtering Expected Values

input : 〈exp〉; PT ; x.
output: Bound consistent x.

begin1

UB ← 0;2

LB ← 0;3

for each p ∈ Ψ do4

UB ← UB + Sup(〈exp〉↓p) · Pr{arcs(p)};5

LB ← LB + Inf(〈exp〉↓p) · Pr{arcs(p)};6

Sup(x)← UB;7

Inf(x)← LB;8

end9

two values: UB and LB. UB denotes an upper bound for the expected value
of 〈exp〉, LB denotes a lower bound for the expected value of 〈exp〉. It should
be noted that the algorithm operates by exploiting the structure Ψ of the pol-
icy tree. Therefore it takes implicitly into account the stage structure of the
problem while computing the expected value of a given expression. For this
reason, the algorithm will correctly evaluate expected values both in a single
or multi-stage case. Furthermore, more complex objective functions can be
easily implemented by incorporating the required expression 〈exp〉 — for in-
stance max(

∑k
i=1 ωixi− c, 0) in the case of penalty costs for buying additional

capacity — in the filtering strategy discussed in Fig 4.

References

[1] T. Balafoutis and K. Stergiou. Algorithms for stochastic csps. In Frédéric
Benhamou, editor, Principles and Practice of Constraint Programming, CP

2006, Proceedings, volume 4204 of LNCS, pages 44–58. Springer, 2006.

[2] F. Benhamou and L. Granvilliers. Continuous and interval constraints.
In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of Constraint

Programming, chapter 16. Elsevier, 2006.

[3] T. Benoist, E. Bourreau, Y. Caseau, and B. Rottembourg. Towards
stochastic constraint programming: A study of online multi-choice knapsack
with deadlines. In Toby Walsh, editor, Principles and Practice of Constraint

Programming, CP 2001, Proceedings, volume 2239 of LNCS, pages 61–76.
Springer, 2001.

45

[4] C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. The complexity of reasoning
with global constraints. Constraints, 12(2):239–259, 2007.

[5] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer
Verlag, New York, 1997.

[6] L. Bordeaux and H. Samulowitz. On the stochastic constraint satisfaction
framework. In SAC ’07: Proceedings of the 2007 ACM symposium on Applied

computing, pages 316–320, New York, NY, USA, 2007. ACM.

[7] A. Charnes and W. W. Cooper. Deterministic equivalents for optimizing and
satisficing under chance constraints. Operations Research, 11(1):18–39, 1963.

[8] H. Fargier, J. Lang, R. Martin-Clouaire, and T. Schiex. A constraint satisfaction
framework for decision under uncertainty. In Philippe Besnard and Steve Hanks,
editors, UAI ’95: Proceedings of the Eleventh Annual Conference on Uncertainty

in Artificial Intelligence, August 18-20, 1995, Montreal, Quebec, Canada, pages
167–174. Morgan Kaufmann, 1995.

[9] B. Hnich, R. Rossi, S. A. Tarim, and S. D. Prestwich. Synthesizing filtering
algorithms for global chance-constraints. In Ian P. Gent, editor, Principles and
Practice of Constraint Programming - CP 2009, 15th International Conference,

CP 2009, Lisbon, Portugal, September 20-24, 2009, Proceedings, volume 5732
of Lecture Notes in Computer Science, pages 439–453. Springer, 2009.

[10] B. Hnich, R. Rossi, S. A. Tarim, and S. D. Prestwich. A survey on cp-ai-
or hybrids for decision making under uncertainty. In M. Milano and P. Van
Hentenryck, editors, Hybrid Optimization: the 10 years of CP-AI-OR, volume 45
of Springer Optimization and Its Applications, pages 227–270. Springer, 2011.

[11] H. Jeffreys. Theory of Probability. Clarendon Press, Oxford, UK, 1961.

[12] M. Kutz, K. Elbassioni, I. Katriel, and M. Mahajan. Simulatenous matchings:
Hardness and approximations. Journal of Computer and System Sciences,
74(5):884–897, 2008.

[13] F. Laburthe and the OCRE project team. Choco: Implementing a cp kernel.
Technical report, Bouygues e-Lab, France, 1994.

[14] A. Lopez-Ortiz, C-G. Quimper, J. Tromp, and P. Van Beek. A fast and simple
algorithm for bounds consistency of the all different constraint. In IJCAI’03:

Proceedings of the 18th international joint conference on Artificial intelligence,
pages 245–250, San Francisco, CA, USA, 2003. Morgan Kaufmann Publishers
Inc.

[15] Robert McGill, John W. Tukey, and Wayne A. Larsen. Variations of box plots.
The American Statistician, 32(1):12–16, 1978.

[16] J.-C. Regin. A filtering algorithm for constraints of difference in csps. In
Proceedings of the 12th National Conference on Artificial Intelligence, Volume

1. Seattle, WA, USA, July 31 - August 4, pages 362–367. AAAI Press, 1994.

46

[17] R. Rossi, S. A. Tarim, and R. Bollapragada. Constraint-based local search
for computing non-stationary replenishment cycle policy under stochastic lead-
times. INFORMS Journal on Computing, XXX(X):xxx–xxx, forthcoming.

[18] R. Rossi, S. A. Tarim, B. Hnich, and S. Prestwich. A global chance-constraint
for stochastic inventory systems under service level constraints. Constraints,
13(4):490–517, 2008.

[19] R. Rossi, S. A. Tarim, B. Hnich, and S. Prestwich. Computing Replenishment
Cycle Policy under Non-stationary Stochastic Lead Time. International Journal
of Production Economics, 127(1):180–189, 2010.

[20] R. Rossi, S. A. Tarim, B. Hnich, and S. D. Prestwich. Cost-based domain
filtering for stochastic constraint programming. In Peter J. Stuckey, editor,
Principles and Practice of Constraint Programming, CP 2008, Proceedings,
volume 5202 of LNCS, pages 235–250. Springer, 2008.

[21] S. A. Tarim, S. Manandhar, and T. Walsh. Stochastic constraint programming:
A scenario-based approach. Constraints, 11(1):53–80, 2006.

[22] John W. Tukey. Exploratory Data Analysis. Addison Wesley, 1 edition, January
1977.

[23] T. Walsh. Stochastic constraint programming. In Frank van Harmelen, editor,
European Conference on Artificial Intelligence, ECAI’2002, Proceedings, pages
111–115. IOS Press, 2002.

47

