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SUMMARY

Despite many decades of study, mitotic chromo-
some structure and composition remain poorly char-
acterized. Here, we have integrated quantitative pro-
teomics with bioinformatic analysis to generate
a series of independent classifiers that describe the
�4,000 proteins identified in isolated mitotic chro-
mosomes. Integrating these classifiers by machine
learning uncovers functional relationships between
protein complexes in the context of intact chromo-
somes and reveals which of the �560 uncharacter-
ized proteins identified here merits further study.
Indeed, of 34 GFP-tagged predicted chromosomal
proteins, 30 were chromosomal, including 13 with
centromere-association. Of 16 GFP-tagged pre-
dicted nonchromosomal proteins, 14were confirmed
to be nonchromosomal. An unbiased analysis of the
whole chromosome proteome from genetic knock-
outs of kinetochore protein Ska3/Rama1 revealed
that the APC/C and RanBP2/RanGAP1 complexes
depend on the Ska complex for stable association
with chromosomes. Our integrated analysis predicts
that up to 97 new centromere-associated proteins
remain to be discovered in our data set.

INTRODUCTION

As cells enter mitosis, chromosomes undergo a remarkable

series of physiological and structural transformations known as

chromosome condensation. This process involves individualiza-

tion of the chromosomal territories to create the characteristic

mitotic chromosome morphology and maturation of the kineto-
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chores so that chromosomes can align and segregate on the

mitotic spindle. Our understanding of the mechanisms under-

lying chromosome condensation is still fragmentary. These

processes can be fully understood only when all components

of mitotic chromosomes have been identified and functional

relationships between them determined. We have developed

a new approach that we term multiclassifier combinatorial pro-

teomics (MCCP) to do this.

The current list of mitotic chromatin proteins reported in pro-

teomic studies is surprisingly short. Early analyses described

62 and 79 proteins, respectively, in mitotic chromosome scaf-

folds (Morrison et al., 2002; Gassmann et al., 2005). A later study

identified > 250 proteins that bound to sperm chromatin in

Xenopus egg extracts in vitro, revealing the kinetochore protein

Bod1 (Porter et al., 2007). Other studies identified�240 proteins,

subsequently corrected to roughly 50 bona fide putative struc-

tural proteins (Uchiyama et al., 2005; Takata et al., 2007). In a tar-

geted study, 98 proteins were identified as shared in isolated

telomeres from wild-type and ALT cells (Dejardin and Kingston,

2009). Despite these efforts, currently available proteomics

reports miss a significant fraction of knownmitotic chromosomal

proteins, particularly kinetochore components.

Biochemical analysis of important chromosome substruc-

tures such as kinetochores is extremely challenging. The

kinetochore is one of the most complex cellular substructures

(Cheeseman and Desai, 2008), with over 120 constituents

described by a range of approaches (Earnshaw and Rothfield,

1985), including targeted proteomic studies (Obuse et al.,

2004; Foltz et al., 2006; Okada et al., 2006; Hori et al., 2008;

Amano et al., 2009). Biochemical dissection of kinetochores is

complicated by the fact that it is not known to what extent

the constituent protein complexes can be recovered in soluble

form from chromosomes with their relevant intermolecular

associations intact. As described here, those problems can

be circumvented by purifying and analyzing whole mitotic

chromosomes.
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Purifying large cellular structures or organelles free of con-

taminants is virtually impossible. Genuine components have

been distinguished from contaminants in such preparations by

subtractive (Schirmer et al., 2003) or quantitative (Foster et al.,

2003) proteomics by determining the difference between two

near-identical fractions, one enriched and the other depleted of

the target structure. In protein correlation profiling, a set of known

components was used to define a common intensity profile

across neighboringbiochemical fractions fromsucrosegradients

during purification of organelles and this was used to select other

proteins that show a similar profile (Andersen et al., 2003). These

methods do not recognize cellular background proteins that

adhere to the structure of interest due to nonspecific hydro-

phobic or electrostatic interactions. This type of contamination

is particularly relevant for vertebrate mitotic chromosomes.

In thepresent study,we identifiedapproximately4000polypep-

tides in highly purified chromosomes. We developed a statistical

approach for analysis of proteomic data to confirm which known

anduncharacterizedproteins from this long list are chromosomal.

An experimental test of our method led to the identification of 32

chromosomal proteins, including 13 kinetochore-associated

proteins.Key to our analysis is the innovative useof stable isotope

labeling with amino acids in cell culture (SILAC) (Ong et al., 2002),

plus development of a framework to integrate data from multiple

classifiers, including nonproteomic classifiers, to reveal proteins

of interest anddetermine functional relationshipsbetweenprotein

complexes in the context of whole chromosomes.
RESULTS

Identification of the Proteome of Isolated
Mitotic Chromosomes
We isolated mitotic chromosomes from chicken DT40 cells by

a refinement of the polyamine method (Lewis and Laemmli,

1982) (Figures 1A and 1B). These preparations are negative for

porin in immunoblots (Figure 1C), indicating that mitochondrial

contamination (common in chromosome preparations) is low.

Proteomic analysis (Cox and Mann, 2008; de Godoy et al.,

2008) of 250 mg of total chromosomal protein identified 4029

proteins in 28 functional categories (Figure 1D and Table S1

available online), including essentially all previously described

chromosomal proteins.

When vertebrate cells enter mitosis, the nuclear envelope

breaks down and chromosomes are newly exposed to cyto-

plasmic proteins, organelles and cellular membranes. Since

highly positively charged histones contribute �38% of the chro-

mosome mass and an equivalent amount is highly negatively

charged DNA, many charged nonchromosomal proteins exhibit

strong adventitious binding to chromosomes. These ‘‘hitch-

hikers’’ differ from conventional contaminants (e.g., mitochon-

dria), as they are physically associated with the chromosomes

before cell lysis and apparently cannot be separated by conven-

tional purification protocols. Thus, the 1331 cytoskeletal, cyto-

plasmic, mitochondrial, membrane and receptor proteins found

in our preparations, may be physically associated with chromo-

somes following nuclear envelope disassembly, but many not be

functionally relevant.
A Classifier Approach to Identify Genuine Mitotic
Chromosome Proteins
The presence of hitchhiker proteins complicates the definition

of what constitutes a ‘‘true’’ chromosomal protein, as well as

the design of biochemical control experiments. For example,

comparing mitotic to interphase chromatin is of limited use,

since the latter is shielded from the cytoplasm by the nuclear

envelope. In such a comparison, cytoplasmic hitchhiker proteins

would be scored as mitosis-specific chromosomal proteins.

Here, we describe an approach to study the complex chromo-

somal proteome that both identifies proteins that merit further

study and reveals functional relationships between all chromo-

somal proteins. We quantify the chromosomal association of

each protein in a series of quantitative proteomics experiments,

mostly using SILAC technology (Ong et al., 2002). Each experi-

ment provides an independent measure of a protein’s associa-

tion with mitotic chromosomes, which we term a ‘‘classifier.’’

Integration of the data obtained with all classifiers enables us

to detect patterns in the behavior of groups of proteins that

reveal shared membership in protein complexes as well as func-

tional dependency relationships.

The experimental protocols that define the five proteomic

classifiers are shown in Figure 1E and all classifiers are summa-

rized below.

Classifier I: Abundance estimation

To estimate the amounts of individual proteins inmitotic chromo-

somes, we used an established protocol (Rappsilber et al., 2002;

Ishihama et al., 2005, 2008) to calculate a scaled protein abun-

dance index based on the number of peptides observed and

the number of times that each peptide is observed (spectral

count) for each protein. This calculation and its validation are dis-

cussed in Extended Experimental Procedures.

In the conventional pie chart of Figure 1D, all proteins are

weighted equally, independent of their actual abundance in iso-

lated chromosomes. A more informative representation of chro-

mosome composition is obtained by normalizing each class by

its mass, obtained by multiplying the estimated abundance by

the predicted molecular mass of each protein (Figure 1F). As

expected, histones comprise the bulk of mitotic chromosomal

protein (48%). Overall 68% of the protein mass is annotated as

chromosomal.

Classifier II: Enrichment in Chromosomes

We expected core chromosomal components like histones or

structural proteins would be more abundant in isolated chromo-

somes than in cytoplasmic extracts. The reverse would be true of

background proteins. We therefore mixed isolated chromo-

somes from mitotic DT40 cells grown in light medium with an

equal mass of protein from post-chromosomal extracts of

parallel cultures grown with heavy SILAC medium (Figure 1E).

Classifier II was calculated as the ratio of light/heavy peaks for

each protein. Among the 20% most enriched proteins, chromo-

somal proteins outnumbered nonchromosomal proteins by 3 to

1. Conversely, among the 20% least enriched proteins, back-

ground proteins outnumbered chromosomal proteins 6 to 1.

Classifier III: In Vitro Exchange on Chromosomes

We ranked proteins based on their ability to stably bind to chro-

mosomes during an incubation in cytosol. A crude light chromo-

some fraction obtained by gentle centrifugation was mixed with
Cell 142, 810–821, September 3, 2010 ª2010 Elsevier Inc. 811



Figure 1. Proteomic Analysis of Mitotic

Chromosome Proteins

(A) Outline of chromosome isolation procedure.

(B) Silver-stained gel of isolated chromosomes.

(C) Immunoblot with markers for mitochondria

(porin) and chromosomes.

(D) The 28 classes of proteins found in chromo-

somes.

(E) Experimental designs to prepare samples

for determination of classifiers I (abundance), II

(enrichment in chromosomes versus post-chro-

mosomal extract), III (exchange onto chromo-

somes from post-chromosomal cytosol), IV

(dependency on SMC2/condensin) and V (depen-

dency on Ska3/RAMA1).

(F–J) (F) Estimated percentages of total chromo-

somal protein mass in the major classes of

proteins. Sample spectra used to calculate classi-

fier III (exchange) values for (G) Ribosomal protein

SA (a hitchhiker protein), (H) MAD2, (I) BUBR1

and (J) MAD1. Spectra are plotted as the peak

intensity (a measure of abundance) against the

mass divided by charge. Peaks of light peptides

from chromosomes are indicated by blue bars

and heavy peptides bound from cell extracts

during the incubation are indicated by red bars.

See also Figure S1.
an excess of heavy post-chromosomal extract and incubated

to allow proteins to exchange at 14�C for 30 min (Figure 1E).

The chromosomes were then subjected to rigorous purification.

All heavy proteins identified must have bound to the chromo-

somes during the incubation in vitro. Classifier III is the light/

heavy ratio for each protein identified in this experiment.

The most stable chromosomal-associated proteins were

histones (average classifier III = 63), topoisomerase IIa (classifier
812 Cell 142, 810–821, September 3, 2010 ª2010 Elsevier Inc.
III = 61) and condensin I (average classi-

fier III = 59). Interestingly, condensin II

was more exchangeable (average classi-

fier III = 14). In contrast, the ratios for

�75% of ribosomal proteins were in the

range from 0.45 to 3.0 (Figure 1G), indi-

cating significant binding to chromo-

somes from cytosol during the incubation.

Although we sought to optimize purity

rather than preserve functionality of

chromosomes, the exchange experiment

revealed that at least one aspect of kinet-

ochore function was retained in purified

chromosomes. Similar to one recent

study (Kulukian et al., 2009), kinetochores

of the purified chromosomes can recruit

spindle checkpoint proteins Mad2, Bub3,

and BubR1 from cytosol (Figures 1H and

1I) but not Mad1 (Figure 1J).

Classifier IV: SMC2 Dependency

We used a conditional genetic knockout

of SMC2 in DT40 SMC2ON/OFF cells (Hud-

son et al., 2003) to compare the composi-
tion of mitotic chromosomes formed in the presence or absence

of condensin, which is required for structural integrity of mitotic

chromosomes. DT40 SMC2ON cells were cultured in SILACheavy

medium. To obtain chromosomes depleted of condensin, cells

grown in SILAClight medium were cultured with doxycycline for

30 hr to shut down SMC2 expression prior to the nocodazole

block (SMC2OFF). Equal numbers of mitotic cells from the two

different populations were mixed and mitotic chromosomes



Figure 2. Combining Classifiers Increases

Specificity

(A) The rank of all proteins observed for proteomic

classifiers I (abundance), II (enrichment), III (reten-

tion), IV (SMC2 dependency), V (Ska3/Rama1

dependency) and RF (combined random forest

ranking) is plotted as vertical color coded lines

(rug plots). Proteins are ranked from the highest

(left) to lowest values for each classifier. Centro-

mere proteins are indicated by longer bars

(indicated).

(B) Cumulative curves show that combining classi-

fiers by RF significantly increases the specificity

of identifying chromosomal proteins without com-

promising the completeness of the analysis.

(C) 2D scatter graph plotting classifiers I versus II

flanked by the relevant rug plots. Proteins most

enriched in chromosomes relative to cytoplasm

and proteins most abundant in chromosomes are

above and to the right, respectively. Each spot is

color-coded by category (Figure 1D).

(D) Zoom of the region indicated in (C) showing

members of the chromosomal passenger (CPC),

Mis12, Ndc80, Nup107-160 and Cohesin com-

plexes plus the constitutive centromere-associ-

ated network (CCAN) and anaphase-promoting

complex/cyclosome (APC/C).

(E) Enrichment for chromosomal proteins in the

region indicated in (C & D).

See also Figure S2.
isolated (Figure 1E). Classifier IV is the heavy/light ratio

(SMC2ON/SMC2OFF) for each of the proteins identified in this

experiment.

SMC2-depleted chromosomes contained 5.8% of the wild-

type level of SMC2. It is not possible to isolate chromosomes

from cultures completely lacking SMC2 as SMC2 is an essential

gene and dead cells do not accumulate in mitosis. These chro-

mosomes were similarly depleted of all condensin I and II

subunits.

Classifier V: Ska3/Rama1 Dependency

To demonstrate the targeted analysis possible with our

approach, we compared the association of kinetochore proteins

with chromosomes in cells with or without Ska3/Rama1/

C13orf3. Ska3/Rama1, which was identified in this analysis as

a chromosomal protein, was described in several recent publica-

tions (Daum et al., 2009; Gaitanos et al., 2009; Raaijmakers et al.,

2009; Theis et al., 2009; Welburn et al., 2009).

To obtain chromosomes depleted of Ska complex, we isolated

a genetic knockout of the Ska3/Rama1 gene (Figures S5A and

S5B). Ska3/Rama1�/� cells (homozygous knockouts are viable)

were grown in SILAClight medium (Figure 1E). Equal numbers of

Ska3/Rama1�/� and wild-type DT40 (cultured in SILACheavy

medium) mitotic cells from the two different populations were

mixed and mitotic chromosomes isolated. Classifier V is the

heavy/light ratio (wild-type/Ska3/Rama1�/�) for each protein

identified in this experiment.
Classifier VI: Domain Analysis

We added an additional nonproteomic classifier to our analysis

using the protein domains found in chromosomal and nonchro-

mosomal proteins (red/pink and green wedges in Figure 1D).

This made use of bioinformatic analysis in order to segregate

chromosomal from nonchromosomal proteins, but importantly

did not consider a protein’s relevance to mitosis. We counted

how often each domain was observed in chromosomal and

nonchromosomal proteins and assigned it this frequency as

a score (Table S2). Classifier VI was then determined for each

protein based on the sum of its domain scores.

Multiclassifier Combinatorial Proteomics
Traditional one-dimensional analysis (e.g., sorting the various

proteins according to their value for each classifier) was of

limited utility, as the data lacked a clear boundary between chro-

mosomal (red/pink in Figure 2A) and nonchromosomal proteins

(green in Figure 2A) for each classifier (Figure 2A and Figures

S2A–S2E).

By contrast, when classifiers were combined, our ability

to identify chromosomal proteins was vastly improved. For

example, an enrichment of centromeric or chromosomal pro-

teins relative to nonchromosomal proteins was obtained when

classifiers I (abundance) and II (enrichment) were plotted

(Figures 2C–2E). The clustering of protein complex subunits

in this plot (Figure 2D) reflects both their relative stoichiometry
Cell 142, 810–821, September 3, 2010 ª2010 Elsevier Inc. 813



(x axis), and the similar degree towhich subunits in a complex are

all present either on or off chromosomes (y axis). Members of the

APC/C, Ndc80 and Mis12 complexes form closely knit clusters.

It is important to note that this was achieved in the context of

entire chromosomes and without requiring solubilization of the

complexes.

We used random forest (RF) analysis, a machine learning

approach, to progress beyond two-dimensional analyses and

integrate the information present in all proteomics classifiers.

This analysis offered two powerful benefits. First, it enabled us

toworkwith data sets that containmissing values. This is a signif-

icant advantage in proteomics studies where not every protein is

observed in every experiment, as seen in Figure 2A and Fig-

ure S2F. Second, RF analysis allowed us to use any descriptor

of our proteins as a classifier and integrate it into our overall

analysis. Here, we also included a bioinformatic analysis of the

distribution of protein domains in our analysis distinguishing

chromosomal from nonchromosomal proteins (classifier VI).

In brief, RF is a decision tree analysis that separates data sets

into ‘‘true’’ and ‘‘false’’ groups. The decision trees are trained on

defined data sets and randomly built to optimize the separation

between them. Analysis of the experimental data set then occurs

by running each protein through all trees and adding up its overall

RF score (i.e., the fraction of trees that scored it as ‘‘true’’). RFs

perform much better on training data than application data, so

their performance is evaluated by ten-fold cross-validation.

The training data are split into random sections of 90% for

training and 10% for evaluation, so that successively the entire

set is used for evaluation. Here, the two training data sets chosen

were ‘‘nonchromosomal’’ (green wedges in Figure 1D) and

‘‘chromosomal’’ (red + pink wedges in Figure 1D), and the RF

score for a given protein is the fraction of trees that scored it

as ‘‘chromosomal.’’

RF analysis readily discriminated chromosomal from nonchro-

mosomal proteins. In the RF rug plot of Figure 2A, which repre-

sents the ranked list of proteins generated by RF analysis, the

left side is predominantly red, while the right side is predomi-

nantly green. To reach the 500th chromosomal protein on the

RF-ranked list only 229 nonchromosomal proteins are included

(Figure 2B). In contrast, 410-671 nonchromosomal proteins

would be included when considering ranked lists from individual

classifiers. Note that the RF-based sorting was done on the

complete data set, including proteins that failed to be observed

with some classifiers. Therefore, adding information from addi-

tional experiments did not decrease the number of proteins

covered.

The advantage of combining classifiers can be statistically

expressed by ROC curves (Figure S3A), with increased area

under the curve (AUC) for our combined analysis when com-

pared to each of the individual classifiers (AUCRF(cI-V) = 0.81,

AUCscI-V = 0.41-0.76). The combined classifiers assigned 88.8%

of our gold standard, the 125 centromere proteins, correctly as

chromosomal, at the cut-off that minimizes misassignment of

chromosomal versus nonchromosomal proteins. This specificity

was further improved when bioinformatic domain analysis (cVI)

was integrated with our proteomic classifiers (AUCRF(cI-VI) =

0.97; identification of the first 500 chromosomal proteins yields

17 nonchromosomal proteins, Suppl. Figures S3B and S3C,
814 Cell 142, 810–821, September 3, 2010 ª2010 Elsevier Inc.
proteins lacking known domains are excluded from this boost,

Figure S3D). Now, 92.4% of the centromere proteins were

assigned as chromosomal. In summary, RF analysis provides

us with a tool for productively combining the outcomes of our

individual proteomics classifier experiments and further empow-

ering our analysis by including data from other sources.

If results of a random forest based on the five proteomic clas-

sifiers plus the bioinformatics-based classifier VI were plotted

against those from the initial random forest analysis (Fig-

ure 3A), a near-perfect separation of the training data was

achieved. Only a single chromosomal protein of the training set

and two nonchromosomal proteins were misassigned when

placing manually a separation line.

Using ten-fold cross-validation, we found that 118 centromere

proteins positioned right and only 7 left of the separation line

(Figure 3B). This compares to 14 and 9 centromere proteins

being missed when using the one-dimensional ranked lists by

classifiers I-V and I-VI, respectively. Accepting the line as a

threshold returns known centromere proteins with a yield of

94.4% and all other chromosomal proteins with 93.1% success.

In contrast, 83.1% of nonchromosomal proteins are rejected.

Thus, the classifier approach is sufficiently powerful to suggest

chromosomal proteins from among hitherto uncharacterized

proteins.

Identification of New Chromosomal Proteins
To test the predictive power of our RF analysis, we cloned and

tested the location in mitosis of 50 previously uncharacterized

proteins including 15 without known domains: 34 predicted to

be and 16 predicted not to be on chromosomes in mitosis.

Reasoning that important proteins would be conserved, we

expressed GFP-tagged human homologs of these chicken

proteins in U2OS cells. Remarkably, 30 of 34 cloned proteins

from the chromosomal region were confirmed as chromosomal,

contrasting with only 2 of the 16 predicted ab initio to be

nonchromosomal. This confirms the power of our analysis and

indicates a success rate of 88%, with 44 of 50 tagged proteins

localizing as predicted. Of 50 newly cloned proteins, 13 were

associated with kinetochores in mitosis, 12 had a more general

distribution on mitotic chromosomes and 7 others were peri-

chromosomal, a class whose new members we propose to

term chromosome periphery proteins (cPERPs A-G) (Figures

S4B–S4G and Table S3). The chromosome periphery (perichro-

mosomal layer) is enriched in ribosomal and nucleolar hitchhiker

proteins, and is of unknown function (Van Hooser et al., 2005).

The new centromere proteins all appeared to localize to the

outer kinetochore, relative to CENP-C and HEC1 as standards

(Figures 4B–4J, Figure S4A). In keeping with established nomen-

clature, we propose to name these proteins CENP-Y, CENP-Z

and CENP-27 through CENP-33. Beyond ‘Z’, the 26th letter of

the basic modern Latin alphabet, we propose to designate the

new proteins with numbers starting with CENP-27.

Functional Analysis of New Kinetochore-Associated
Proteins
We focused our initial functional analysis on kinetochore

proteins. Clustering analysis (Gentleman et al., 2004) allowed

us to combine data for proteins identified by all classifiers, and



Figure 3. Random Forest Analysis Predicts New Proteins of Interest

(A) Separation of the two training sets (color-coded groups from Figure 1D) by

RF analysis. The line provides optimal separation of the two training sets.

x axis: RF analysis of classifiers I–V; y axis: RF analysis of classifiers I–VI,

including the bioinformatic domain analysis.

(B) Positions of previously known centromere proteins from ten-fold cross-

validation.

(C) Position of cloned proteins and remaining uncloned proteins in the same 2d

analysis.

(D) Classification of newly cloned proteins from regions to the left and right of

the dividing line, respectively.

See also Figure S3.
look for informative groupings. This revealed a striking tendency

for functionally related proteins to form clusters, as exemplified

by members of the NDC80, CPC, Nup107-160 and APC/C
complexes (Figure 4). Interestingly, our clustering sorted

CENP-27 as a component of the APC/C. This was confirmed

and the protein named APC16 in three recent reports (Hutchins

et al., 2010; Kops et al., 2010; Hubner et al., 2010). To further

test the predictive value of cluster analysis for proteomic data

sets, we examined two kinetochore proteins in greater detail.

Ska3/Rama1 and Functional Analysis of Kinetochore

Subcomplexes

C13orf3 was located adjacent to Ska2 in the cluster analysis.

This protein now known as Ska3/Rama1 has been suggested

to be involved in microtubule attachment to kinetochores (Gaita-

nos et al., 2009; Raaijmakers et al., 2009; Welburn et al., 2009) or

coordination of the spindle checkpoint response (Daum et al.,

2009; Theis et al., 2009). We analyzed the kinetochore proteome

in the presence or absence of Ska3/Rama1 (defined as classifier

V) in order to determine the role of this protein in kinetochore

structure (Figure 5).

A map of the Ska3/Rama1 locus in DT40 is shown in Figures

S5A and S5B, together with a targeting strategy for inactivating

the gene. The Ska3/Rama1 gene is not essential for life in DT40

cells (Figure S5C). However, these cells struggle to achieve

a normal chromosome alignment, and show a �33 increase in

mitotic index (Figure S5D and S5E), a �33 increase in the

percentage of apoptotic cells and a �6x increase in the number

of bi-nucleated cells.

Proteomic analysis of isolated chromosomes revealed that

loss of Ska3/Rama1 was accompanied by the loss of Ska1 and

Ska2. Loss of the Ska complex caused no systematic changes

in the chromosomal association of proteins of the constitutive

centromere-associated network (CCAN), Knl-1/Mis12/Ndc80

(KMN), Mis18, Ndc80, CPC, and Nup107-160 kinetochore sub-

complexes. However, striking changes were seen in the levels

of the APC/C, RanBP2/RanGAP1, spindle checkpoint, Rod/

Zw10/Zwilch (RZZ), and dynein/dynactin complexes. We con-

firmed that the RanBP2/RanGAP1 complex is indeed depleted

from kinetochores when Ska3/Rama1 is deleted in HeLa cells

(Figure S5F and S5G). Attempts to confirm the specific kineto-

chore depletion of the APC/C were uninformative, as we were

unable to reproducibly obtain kinetochore staining for the

APC/C in HeLa cells using four independent antibodies.

We conclude that combining genetic and SILAC analysis

provides a powerful new method for analysis of multicomplex

protein superstructures.

A Protein Involved in Chromosome Alignment

and Spindle Organization

A second new kinetochore-associated protein, CENP-32/

C9orf114, was sorted on our kinetochore cluster diagram next

to CLASP1 and CLASP2, two paralogues known to be involved

in the regulation of microtubule dynamics. Like CLASPs,

CENP-32/C9orf114mapped to the outer kinetochore (Figure 6A),

and its depletion caused a significant accumulation of cells in

later prometaphase (Figure S6A) with misaligned chromosomes

(Figure 6B). These cells frequently had bipolar spindles, however

60% of those spindles exhibited remarkable abnormalities

where centrosomes appeared to have detached from the poles

(Figures 6C and 6D and Figure S6B). In one remarkable case,

the centrosomes appeared at the midzone of a bipolar spindle

(Figure 6C9-12).
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Figure 4. Cluster Analysis and Imaging of New Kinetochore Proteins

(A) Heat map and cluster dendrogram for 101 centromere-associated proteins identified by all 5 proteomic classifiers. Known complexes are color-marked (see

bottom) and show a tendency to cluster in this analysis. Kinetochore proteins identified in this study are also marked (stars).

(B–J) Localization of GFP-tagged kinetochore-associated proteins (panels 2) relative to DNA detected with DAPI (panels 1) and CENP-C (panels 3 in [B]–[D], [F]–

[H], and [J] or ACA (panels 3 in [E] and [I]). Insets show merged images with blow-ups of representative kinetochores (GFP-novelCENP, green and CENP-C or

ACA, red).

See also Figure S4.
DISCUSSION

Multiclassifier Combinatorial Proteomics
The approach described here for analysis of the proteome of

vertebrate mitotic chromosomes can be used to study any
816 Cell 142, 810–821, September 3, 2010 ª2010 Elsevier Inc.
complex proteome. The key approach of combining classifier

data can in principle be expanded indefinitely and can include

nonproteomics data sets such as the bioinformatic protein

domain analysis used here. Other classifiers that could

be used in the future include microarray, protein interaction



Figure 5. Ska3/Rama1 Dependency for Chromosomal Association

and Analysis of CENP-27/APC16

Kinetochore proteins with increased abundance on chromosomes in the

absence of Ska3/Rama1 are shown with blue bars and proteins with

decreased abundance are shown with red bars. Note covariance of protein

complexes. See also Figure S5.
(e.g., two hybrid screens or pull-down), protein phosphoryla-

tion, and localization data and, indeed, data from any experi-

mental approach in which the proteins of interest are sorted

systematically.

We first showed that plotting pairs of classifiers against one

another improved our ability to delineate potential chromosomal

proteins. As that approach could not be generalized when the

number of classifiers exceeded three, we adopted a random

forest (RF) analysis approach. This allowed us to integrate infor-

mation from all classifiers into decision trees on which known

and unknown proteins could be classified. Importantly, RF anal-

ysis handles missing values systematically. This is crucial when

not every protein is observed in every experiment. In contrast,

cluster analysis, which has been used both in this study and in

other recent work (Theis et al., 2009; Neumann et al., 2010),

can only integrate data for proteins that have a value for every

classifier.

Integrity of the Isolated Chromosomes
Our methods focused on optimizing the purity of the chromo-

somes. Thus, our list of proteins is likely to represent theminimal,

stably associated components of mitotic chromosomes. None-

theless kinetochores of isolated chromosomes retain some

function, as judged by their ability to recruit components of

the mitotic checkpoint complex from cytoplasm. This may be

because chromosomes were isolated from nocodazole-treated

cells, with kinetochores actively engaged in spindle checkpoint

signaling.

New Insights into Kinetochore Functional Organization
Remarkably, although no biochemical enrichment for centro-

meres was performed, our data set contained all known centro-

meric subcomplexes, with peptides from 125 reported cen-

tromere proteins (eight present as multiple isoforms) (Table S1).

We identified all members of the CCAN, KMN, Mis12 and Mis18

complexes and all members of the RZZ complex except Zwint

(which is not yet annotated in the chicken genome). Our success

in identifying centromere and telomere proteins may be

explained because 66 of the 78 chicken DT40 chromosomes

are microchromosomes whose purification provides a natural

enrichment for centromeres and telomeres since the chromo-

some arms are so short.

We combined genetics with whole proteome analysis in order

to identify complexes and structural dependencies in their

‘‘native environment’’ (e.g., kinetochore proteins in actual kinet-

ochores). Chromosomes lacking Ska3/Rama1 were depleted for

the entire Ska complex, confirming that these three proteins are

interdependent for chromosome binding. Similarly, depletion of

key condensin subunit SMC2 caused a loss of all seven subunits

of the condensin I and II complexes from chromosomes. Impor-

tantly, this analysis did not require tagging of any proteins or

attempts to solubilize functional complexes from large subcel-

lular structures.

In addition to these primary effects of depletion, loss of Ska3/

Rama1 also caused a significant secondary depletion of the

APC/C and RanBP2/RanGAP1 complexes from chromosomes

but had no consistent effect on most other kinetochore proteins.

Importantly, all members of the secondary-depleted complexes
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Figure 6. Initial Characterization of CENP-32

(A) Localization of GFP-CENP-32 (panel 2, green) in the kinetochore relative to DNA (panel 1, blue) and CENP-C (panel 3, red).

(B) CENP-32 RNAi causes problems with chromosome alignment. DNA, red; CENP-C, green; microtubules, white.

(C) CENP-32 RNAi causes detachment of centrosomes from bipolar spindles. DNA (panels 1,5,9,13), blue; pericentrin (panels 2,6) or g-tubulin (panels 10,14),

green; a-tubulin (panels 3,7,11,15), red.

(D) Quantitation of spindle phenotypes following CENP-32 RNAi.

(E) Schematic representation of domain architectures for new kinetochore proteins tagged in this study (drawn to approx. scale). The locations of domains are

according to Pfam and SMART family databases (Letunic et al., 2004; Finn et al., 2010), complemented by REP web server analysis (Andrade et al., 2000).

The localization of the PEHE domain has been assigned from (Marı́n, 2003). Phyletic distributions of proteins are indicated in blue, yellow, green and violet

for Metazoa, Fungi, Plantae and Archaea, respectively. CENP-35 has been truncated. Abbreviations: BCNT, Bucentaur or craniofacial development protein;

Fbox, cyclin-F motif; G-Patch, Glycine-rich nucleic binding domain; JmjC, jumonji C domain; LRR, Leucine-rich repeats; Nua4, Nucleosomal acetyltransferase

of H4; OB, Oligonucleotide/oligosaccharide Binding; PEHE, Pro-Glu-His-Glu conserved region; PHD, Plant HomeoDomain; RA, Ras associated (RalGDS/AF-6)

domain; SPOUT, spoU and trmD RNA methyltransferase; WD40, WD/beta-transducin repeats; Zf-AD, Zinc finger-associated domain; and Zf-C2H2, Classical

zinc finger Cys(2)His(2).

See also Figure S6.
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also behaved coordinately. Our results (e.g., the behavior of

CENP-27/APC16 as a component of the APC/C) confirm the

utility of single protein depletion analysis for the identification

of protein complexes and determination of their mutual interde-

pendencies for association with chromosomes.

Our data suggest that the Ska complex may provide a docking

site for the APC/C in the outer kinetochore. Alternatively, sumoy-

lation by RanBP2 may have a role in APC/C binding to chromo-

somes. The RanBP2-RanGAP1 complex is known to be involved

in kinetochore-microtubule interactions and localization of

several spindle checkpoint proteins (Joseph et al., 2004). We

note that among the recent spate of publications on Ska3/

Rama1, our observations appear to support a role in integration

and regulation of the spindle checkpoint response (Daum et al.,

2009; Theis et al., 2009).

Our whole-proteome analysis revealed that Cdc20 behaved

like a member of the APC/C and was distinct from other compo-

nents of the spindle checkpoint pathway with respect to its Ska

complex dependency. Spindle checkpoint components asso-

ciate with one another in cytoplasm as a mitotic checkpoint

complex (MCC), containing BubR1, Bub3, Cdc20 and Mad2.

Our data suggest that once the MCC associates with chromo-

somes, Cdc20 stably associates with the APC/C.

What Classes of Kinetochore Proteins Remain
to Be Discovered?
We identified 13 kinetochore-associated proteins among previ-

ously uncharacterized proteins and, as discussed below, we

predict that many more remain to be described. We therefore

askedwhether there is any functional relationship between these

new proteins. That is, what sorts of kinetochore proteins had

been missed in the many previous genetic and biochemical

screens? An interesting answer has emerged.

Since the new kinetochore proteins were identified solely

based on their occurrence in chromosomes, they could poten-

tially represent a wide range of functions. Nevertheless, it is

striking that five of the new centromere proteins (namely,

CENP-28, �29, �31, �35, and �36) are subunits of complexes

that modify and/or bind histones (Figure 6E). Yeast orthologs

of two of these proteins (namely, CENP-28/C1orf149 and

CENP-29/CFDP1) contribute to NuA4 histone acetyltransferase

(HAT) and SWR1 ATP-dependent chromatin remodelling com-

plexes, respectively. These complexes are known to share com-

ponents (Wu et al., 2005) and together stimulate the exchange of

histone H2A for H2A.Z, following acetylation of H2A or H4 (Altaf

et al., 2010). A third centromere-associated protein, CENP-36/

MSL1v1, is necessary for the activity of MOF, another HAT, on

nucleosomal H4 (Li et al., 2009). Finally, CENP-31/PHD6 and

CENP-35/PHF2 each contain PHD (plant homeodomain) zinc

fingers, which are usually associated with chromatin-mediated

transcriptional regulation. The PHD of CENP-35, which also

contains a JmjC (likely histone demethylase) domain, appears

to be required for demethylation of H3 at the promoters of ribo-

somal RNA genes (Wen et al., 2010).

Why were these proteins not discovered earlier as kineto-

chore-associated? One likely explanation is that they may have

essential functions in other chromatin regions as well. Thus,

mutations might have pleiotropic phenotypes not recognized
as specific for mitosis. Furthermore, their association might

depend on a fully assembled kinetochore and thus be lost

when attempting other than whole chromosome analysis.

Characterization of a Kinetochore Protein
CENP-32 is required both for chromosome alignment and for

association of the centrosomes with the poles of the bipolar

spindle during metaphase. This latter phenotype is very similar

to an unusual spindle morphology phenotype seen in Drosophila

cells following depletion of the CLASP homolog Mast/Orbit

(Maiato et al., 2002). Indeed, in our analysis, CENP-32 clusters

with CLASP1 and CLASP2. A yeast homolog of CENP-32 inter-

acts with CBF5, an enzyme involved in the posttranscriptional

modification of rRNA, that was shown to bind to budding yeast

centromeres andmicrotubules (Jianget al., 1993). Bioinformatics

analysis suggests thatCENP-32 is amemberof theSPOUT family

of methyltransferases but is atypical in possessing a possible

RNA-binding OB fold inserted into its catalytic domain (Tkaczuk

et al., 2007). It is tempting to speculate that CENP-32 may func-

tion at kinetochores by interacting with an as-yet unknown RNA.

How Complex Is the Kinetochore?
MCCP analysis allows us to predict howmany more kinetochore

proteins remain to be identified in our data set. In the plot of

Figure 3, where the chromosomal proteome is displayed in two

dimensions, we found 35% of novel tagged proteins from region

R and 6% from region L to associate with the kinetochore during

mitosis. These regions have 224 and 287 as-yet uncharacterized

novel proteins, respectively. Assuming no bias in the proteins we

cloned, this suggests that approximately 97 more kinetochore

proteins remain to be discovered. Taking into account the 13

kinetochore-associated proteins confirmed in our work, this

roughly doubles the currently known protein complexity of the

kinetochore during mitosis, confirming it as one of the most

complex cellular substructures.

Conclusions
Multiclassifier combinatorial proteomics and the data sets

described here open the door to the identification of all functional

components of mitotic chromosomes despite the adventitious

binding of cellular background proteins during mitosis. Further-

more, MCCP can be extended by adding additional classifiers

to delineate protein complexes and define functional dependen-

cies between them in the context of intact mitotic chromosomes.

This will serve both as a starting point for systematic determina-

tion of the full range of functions involved in mitotic chromosome

segregation, and as a basis for the development of detailed

structural and functional interaction maps of key chromosomal

subdomains. MCCP should also prove useful for the analysis

of other cellular structures that lack defined boundaries, e.g.,

membrane associated complexes like the post-synaptic density.

EXPERIMENTAL PROCEDURES

Preparation of Mitotic Chromosomes

DT40 cells were incubated with Nocodazole for 13 hr, resulting in a mitotic

index of 70%–90%. Mitotic chromosomes were isolated in the polyamine-

EDTA buffer system optimized for chicken DT40 cells (Lewis and Laemmli,
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1982). 19.3 OD260 units were obtained from pooling the material of four inde-

pendent preparations totaling 7.5 3 109 DT40 cells and solubilized in SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer.
Preparation of Chromosome-Free Mitotic Cell Extracts

Nocodazole blocked DT40 cells were dounce-homogenized under hypotonic

conditions. Mitotic chromosomes were removed by centrifuging the superna-

tant twice at 10,000 x g and discarding the pellets to prepare a cell extract free

of chromosomes.

To measure the ratios between chromosomal and nonchromosomal

proteins, SILAC based mass spectrometry was performed with 150 mg of

labeled cell extract from 7.03 106 cells and 150 mg of nonlabeled proteins con-

tained in isolated chromosomes from 2.0 3 109 cells.

To measure the exchange ratio, we isolated mitotic chromosomes from

roughly 1.0 3 109 cells. Mitotic chromosomes were pelleted after centrifuging

at 3000 3 g and mixed into 10 ml cell extract that were made from 3.0 3 108

cells. This mixture was incubated at 14�C for 30min. Finally, we re-isolated the

chromosomes as described above.
Mass Spectrometric Analysis

Proteins were separated into a high and a low molecular weight fraction by

SDS-PAGE, in-gel digested using trypsin (Shevchenko et al., 2006), and frac-

tionated into 30 fractions each using SCX. The individual SCX fractions were

desalted using StageTips (Rappsilber et al., 2003) and analyzed using

LC-MS on a LTQ-Orbitrap (Thermo Fisher Scientific) coupled to HPLC via

a nanoelectrospray ion source. The six most intense ions of a full MS acquired

in the orbitrap analyzer were fragmented and analyzed in the linear ion trap.

The MS data were analyzed using MaxQuant (Cox and Mann, 2008) and

proteins identified by searching MS and MS/MS data using the MASCOT

search engine (Matrix Science, UK). For more details, see the Extended Exper-

imental Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and five tables and can be found with this article online at doi:10.

1016/j.cell.2010.07.047.
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