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hree-dimensional interpretation of magnetic and gravity anomalies using
he finite-difference similarity transform

aniela Gerovska1, Marcos J. Araúzo-Bravo2, Kathryn Whaler1, Petar Stavrev3, and Alan Reid4
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ABSTRACT

We present an automatic procedure for interpretation of mag-
netic or gravity gridded anomalies based on the finite-difference
similarity transform �FDST�. It is called MaGSoundFDST �mag-
netic and gravity sounding based on the finite-difference similar-
ity transform� and uses a “focusing” principle in contrast to de-
riving multiple clusters of many solutions as in the widely used
Euler deconvolution method. The source parameters are charac-
terized by isolated solutions, and the interpreter obtains parallel
images showing the horizontal position, depth, and structural in-
dex N value. The underlying principle is that the FDST of a po-
tential field anomaly becomes zero or linear at all observation
points when the central point of similarity �CPS� of the transform
coincides with a source field’s singular point and a correct N val-
ue is used. The procedure involves calculating a 3D function that
evaluates the linearity of the FDST for a series of N values, using
a moving window and sounding the subsurface along a vertical
w
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L79
ine under each window center. We then combine the 3D results
or different N values into a single map whose minima determine
he horizontal position of the sources. The N value and the CPS
epth associated with each minimum determine the N value and
epth of the corresponding source. Only one estimate character-
zes a simple source, which is a major advantage over other win-
ow-based procedures. MaGSoundFDST uses only the mea-
ured anomalous field and its upward continuation, thus avoiding
he direct use of field derivatives. It is independent of the magne-
ization-vector direction in the magnetic data case. The proce-
ure accounts for a linear background of local gravity or magnet-
c anomalies and has been applied effectively to several cases of
ynthetic and real data. MaGSoundFDST shares common fea-
ures with the magnetic and gravity sounding based on the differ-
ntial similarity transform �MaGSoundDST� but is more stable
n estimating depth and structural index in the presence of ran-
om noise.
INTRODUCTION

The depth and shape of simple magnetic or gravity sources can be
stimated using Euler’s differential equation for homogeneous func-
ions in 2D �Thompson, 1982� and 3D �Reid et al., 1990� inverse
roblems. This approach, known as Euler deconvolution, involves
he data and their first-order derivatives in a system of linear equa-
ions in relation to the source coordinates. Each anomaly A�x,y,z� is
reated as the field of one singular point at M�x0,y0,z0�. Thus, Euler’s
ifferential equation takes the form
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here �A/�x, �A/�y, and �A/�z are the components of the anomaly’s
radient and n is the degree of homogeneity of A. The degree of ho-
ogeneity, a parameter indicative of the source geometry, is pre-

cribed �Thompson, 1982; Reid et al., 1990� or estimated �Stavrev,
997; Hsu, 2002; Gerovska and Araúzo-Bravo, 2003; FitzGerald et
l., 2004; Keating and Pilkington, 2004; Gerovska et al., 2005�.

arch 2010; published online 29 September 2010.
vsk@staffmail.ed.ac.uk; kathy.whaler@ed.ac.uk.
rcos.arauzo@mpi-mail.mpg.de.
ysics, Sofia, Bulgaria. E-mail: pstavrev@mail.bg.



t
a

w
f
d
a
t
2

t
d
w
—
s
t
l
h
t
m
i
s
fi
t

c
S
f
p
d
D
t
�
g
o

m
l
g
a
a
o
1
c
g
s
s
n

a
s
r
o
f
s
c
b

T

t
l
t

w
o
t
o
t
A

g

fi
a
m

I
fi
p

s
a
l
fi
C
t
c
t
g
�
S

b
c
o

w
o
o

a
o
e
a
c
t

L80 Gerovska et al.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

As an alternative to inversion for source parameters using equa-
ion 1, the definition equation for a homogeneous function �Courant
nd John, 1965�

f�tv1,tv2, . . . ,tvi, . . . ,tv j�� tnf�v1,v2, . . . ,vi, . . . ,v j�, �2�

here v� �v1,v2, . . . ,vi, . . . ,v j� is the full set of variables to which the
unction f shows the homogeneity and t is a coefficient, can be used
irectly for the same purpose. The wavelet transform �Boukerbout
nd Gibert, 2006; Fedi, 2007; Sailhac et al., 2009� and the similarity
ransform �Stavrev, 1997; Stavrev et al., 2006, 2009; Gerovska et al.,
010� are examples of the successful application of this approach.

Boukerbout and Gibert �2006� propose an inversion for locating
he sources along profiles detected by the Radon transform of grid-
ed data, based on calculating a series of complex analyzing Poisson
avelets �ridgelet transforms� — upward-continued analytic signals

for different dilation values. In turn, the dilation values corre-
pond to different continuation heights. The apex of the conical pat-
ern of the phase of the complex ridgelet transform determines the
ocation of the source. Fedi et al. �2009� propose a similar method;
owever, they form a redundant set of ridges of first-order deriva-
ives of the field. The continuous wavelet transform �CWT� esti-

ates size and direction of extended sources �for a review of CWT
nversion methods, see Sailhac et al., 2009�. Fedi �2007� introduces a
caling function as the derivative of the logarithm of the potential
eld with respect to the logarithm of the depth to form a transforma-

ion, the extreme points of which determine the source locations.
Stavrev �1997� and Stavrev et al. �2006, 2009� explain the physi-

al and geometric sense of equation 2 with respect to potential fields.
tavrev et al. �2006, 2009� use the finite-difference similarity trans-
orm �FDST� and the differential similarity transform �DST� to pro-
ose profile inversion algorithms for the location and structural in-
ex of 2D sources. They build upon the property that the FDST and
ST functions become linear or zero for correct values of the loca-

ion and the source’s degree of homogeneity n. Gerovska et al.
2010� present an automatic procedure, MaGSoundDST, to invert
rid-anomaly data for location and structural index of sources, based
n the DST.

Here, we present an automatic 3D inversion procedure called
agnetic and gravity sounding based on the finite-difference simi-

arity transform �MaGSoundFDST� for interpreting magnetic and
ravity data grids. Finite-difference similarity transforms are gener-
ted from a set of central points of similarity �CPS�, distributed along
regular 3D grid under the measurement surface, for a set of degrees
f homogeneity n. As in other methods �e.g., Fedi and Rapolla,
999�, the ambiguity of the determined source parameters is de-
reased by using a priori information, the assumed depth of the CPS
rid. The FDSTs are sensitive to the distance between a CPS and the
ource. The CPS and the n value that give a minimum value of the re-
pective FDST indicate the source’s position and shape. The tech-
ique accounts for a linear background in the data.

The MaGSoundDST �Gerovska et al., 2010� algorithm includes
n automatic technique to obtain a single solution for each assumed
ource. We apply the same technique to an objective function de-
ived from the FDST, which allows for better noise rejection while
btaining one estimate per simple source by projecting a set of 3D
unctions onto a 2D horizontal surface. Thus, we avoid numerous
purious solutions per single simple source that are characteristic of
onventional Euler deconvolution techniques and other window-
ased methods.
METHOD

heory

The potential fields used in applied geophysics can be described in
erms of affine geometry. In a 3D affine space, the transform of simi-
arity is a linear transform of Cartesian coordinates under the equa-
ions

x�� tx� �1� t�a, y�� ty� �1� t�b,

z�� tz� �1� t�c, �3�

here �x,y,z� for a 3D potential field indicates the coordinates of the
bservation points and the source points. In equation 3, �x�,y�,z�� are
he coordinates of their respective similar images, �a,b,c� are the co-
rdinates of a CPS C, and t is a coefficient of similarity. The similari-
y transform can be applied to magnetic or gravity anomalies
�x,y,z�. For a coefficient of similarity t � 1 and a parameter n,

A��x�,y�,z��� tnA�x,y,z� �4�

ives the direct similarity transform A� of A.
The normalized FDST for an anomaly A �Stavrev, 1997� is de-

ned as the difference D between the similarly transformed field A�
t point P� and the original field A in the same point P��x�,y�,z��, nor-
alized by t�1, i.e.,

D�x�,y�,z���
A��x�,y�,z���A�x�,y�,z��

t�1
. �5�

n equation 5, A�x�,y�,z�� is the upward continuation of the original
eld A�x,y,z� or a measured field �e.g., from airborne surveys� at
oint P��x�,y�,z��.
The FDSTs are sensitive to the distance between the CPS and the

ource. Their amplitudes decrease as the distance between the CPS
nd the source decreases �Stavrev et al., 2006�. Some of the frequent-
y used interpretation models of magnetic and gravity sources create
elds with one singular point M�x0,y0,z0�. In these cases, if a CPS
�a,b,c� coincides with the singular point M�x0,y0,z0�, and n is equal

o the degree of homogeneity of the anomalous field, then D�P�� be-
omes zero at all points P��x�,y�,z�� �Stavrev, 1997�. Thus, the posi-
ion of the source point M and the source shape, indicated by the de-
ree n��N �N is structural index, introduced by Thompson
1982��, can be recognized by a vanishing FDST function �see
tavrev et al., 2006�.
The observed field F usually contains a local anomaly A and a

ackground B, i.e., F�A�B. Within A, the background B can be a
onstant or a linear field: B�x,y,z����ux�vy�wz. The FDST
perator �equation 5� is a linear operator; hence,

DF�x�,y�,z���DA�x�,y�,z���DB�x�,y�,z��, �6�

here DF is the FDST of F, DA is the FDST of A, and DB is the FDST
f the linear B. The term DB�x�,y�,z�� remains a linear function of the
bservation-point coordinates.

If a CPS C�a,b,c� coincides with the singular point M�x0,y0,z0� of
n anomaly A, then DA�x�,y�,z���0, and DF�x�,y�,z�� takes the form
f a planar surface DB�x�,y�,z��. Thus, the inversion of A in the pres-
nce of a linear B is implemented by a search for the CPS position
nd the degree n that flattens out the FDST of F. When the data in-
lude a linear background, then the background of the upward-con-
inued field also will be linear.
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Along with the systematic noise from the deviations of the data
rom the accepted interpretational model accounted for by MaG-
oundFDST, the observed field F may contain random noise. If the
um of the systematic and the random noise is denoted by O�x,y,z�,
hen F�A�B�O and

DF�x�,y�,z���DA�x�,y�,z���DB�x�,y�,z���DO�x�,y�,z�� .

�7�

he influence of random noise on the estimates is inherently de-
reased by the use of upward continuation in the FDST. The FDST of
easured fields does not include field derivatives, but it can be ap-

lied to any data set of calculated or measured derivatives for the re-
pective degree of homogeneity.

stimating the linearity of the FDST function

Estimating the linearity of the FDST function is analogous to esti-
ating the linearity of the DST as described in MaGSoundDST

Gerovska et al., 2010�. The linearity of an FDST surface D along the
bservation points within a window W �Figure 1� is assessed by the
esidual dispersion after a linear regression:

qD
2 �a,b,c;n�� �j�1�� D

2 �1�K2� . �8�

ere, j is the number of observation points, � D
2 is the dispersion, and

is the generalization of the correlation coefficient of the D surface
o the 3D case:

K�
1

�j�1�� D� x� y
�
i�1

j

�Di�Dave��xi��xave� �

� �yi��yave� �, � D
2 �

1

j�1 �
i�1

j

�Di�Dave�2.

he values Dave, xave� , and yave� are the average values of the D function
nd of the x�- and y�-coordinates in the frame of the window W� at the
ontinuation level z��h �see Figure 1� and where � x

2� �1 / � j�1��
�i�1

j �xi��xave� �2 �similarly for � y
2�.

The estimator qD gives the minimal deviation of the FDST func-
ion D from its linear approximation in the frame of W�. When qD

0 for W, then DF�x�,y�,z�� is a linear function of the horizontal co-
rdinates. In the presence of noise, qD has a nonzero minimum, re-
ecting the residual standard deviation of the random noise O. The
stimator of linearity qD can be normalized by the residual standard
eviation qF of the anomaly F. Thus, the corresponding normalized
elative standard deviation Q is

Q�a,b,c;N��
qD�a,b,c;N�

qF
. �9�

he qF in equation 9 is calculated by

qF
2 �

1

j�1 �
i�1

j

�Fi��Fave� �2, �10�

here Fave� is the average value of the upward-continued data F� in
.
�
Asmaller value of Q corresponds to a more linear FDST function.
he normalized estimator Q attains small values around the extreme
oints of the anomalous field near the horizontal position of the
ource’s singular point, where qF has high values and qD has small
alues because DF�x�,y�,z�� is close to zero. The estimator Q increas-
s with distance from the singular point; where the value of qD is
igh, the anomalous field intensity is small and the standard devia-
ion qF is also small. Thus, the distribution of Q facilitates the selec-
ion of reliable results from the inversion procedure.

mplementing the interpretation method

MaGSoundFDST probes the half-space under the observations
or a series of assumed structural indices N using a moving window

to produce the FDST estimator-of-linearity measure field
�a,b,c;N�. The procedure closely follows that of MaGSoundDST

Gerovska et al., 2010�. Three maps are compiled from the 3D func-
ions Q�a,b,c;N�. We compile a 2D map Q�Qmin� that combines all
ubsets of 3D functions Q�a,b,c;N� into a 2D function by obtaining
ne Qmin value for each vertical probing line at each horizontal loca-
ion �a,b�. The local minima of the Q�Qmin� map determine the hori-
ontal positions of the sources. The values of N and the CPS depth c
orresponding to each local minimum of the Q�Qmin� map give the
tructural index and depth of the sources, mapped as N�Qmin� and
�Qmin�, respectively.
MaGSoundFDST requires several inputs: the CPS grid, moving

indow size, height of the upward continuation, and a set of struc-
ural indices. The CPS grid spacing and the number of probe points
long the vertical line under each window center �a,b� should cover
he anticipated depths of the sources. To detect the sources, the size
f the window in the two horizontal directions needs to be at least

z = 0

W'

W

z

x

C z = c

P'

y

P

z' = –h

igure 1. Similarity transformation of the data in the window W at
evel z�0 to the upward-continuation level at z���h from a probe
PS C at depth z�c. The similarity transform A� at level z� is equal

o the value of the anomaly A in the intermediate point P, multiplied
y tn according to equation 4. The coefficient of similarity is t

CP� /CP, where CP� and CP are the distances between the point
and points P� and P, respectively. The field A at P is obtained

hrough spline interpolation of the data at the original grid points.
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wice the estimated depth to the sources. Window sizes can be varied
o find the optimal value, taking into account the main wavelength of
he inverted anomaly or set of anomalies. Currently, MaGSound-
DST uses a constant window size for all CPS, but it could be im-
roved through an adaptive window, i.e., by increasing the window
ize with deeper CPS. The height of the upward continuation h, i.e.,
he level at which the FDST D is calculated, should be near or less
han half of the depth to the supposed sources �Stavrev et al., 2006�.
he set of structural indices are integers or nonintegers �to account

or finite dimensions of the sources� between 0 and 3 for magnetic
nomalies and �1 and 2 for gravity anomalies. Non-integer struc-
ural indices within these ranges will give better resolution of the es-
imates from the inversion.

Once the parameters are selected, MaGSoundFDST calculates the
pward-continued field, A�x�,y�,z��, at a height h over the whole data
rid in the frequency domain using the transfer function V�kx,ky�

e�h�k�, where k� �kx
2�ky

2�1/2 and where kx and ky are wavenum-
ers in the x- and y-directions, respectively �Blakely, 1995�.

Next, MaGSoundFDST starts working in a window mode. The
imilarity transform A��x�,y�;N� is obtained for each W� with center
a,b� �see Figure 1�. The value A��x�,y�� depends on the choice of the
entral points of similarity, which are distributed along the vertical
ine through the window’s center and serve as probe points in esti-

ating the FDST for the different n��N. The direct similarity
ransform A� at the regular grid point P� is equal to the value of the
nterpolated anomaly A at the intermediate point P, multiplied by tn,
ccording to equation 4. In this case, the coefficient of similarity is t

CP� /CP, where CP� and CP are the distances between the probe
oint C and the points P� and P, respectively �see Figure 1�. Once
��x�,y�;N� is available, the FDST D�x�,y�;N� within W� is obtained
sing equation 5. The estimator of linearity Q�a,b,c;N� of
�x�,y�;N� is then calculated, following equations 8–10.
From the series of 3D functions Q�a,b,c;N�, MaGSoundFDST

ompiles a Q�Qmin��x,y� map by finding each minimum �only in the
ertical direction� of Q�a,b,c;N� at each horizontal position �a,b� for
ll structural indices N and all depths c. That is, Q�Qmin��x,y� is a
ap of Qmin�Qmin�a,b��min

c,N
Q�a,b,c;N� �see Gerovska et al.,

010�. Then the local minima Q�Qmin�min of the Q�Qmin� map are esti-
ated. A Qmin is accepted if it is less than one, i.e., the residual stan-

ard deviation qD of the FDST is smaller than the residual standard
eviation qF of the original field because the FDST should be flatter
han the original anomaly �see equation 9�. This acceptance level
ould be set lower to accept only the most precise, best-constrained
stimates. The minima of the Q�Qmin� determine the horizontal posi-
ions of singular points of the sources. The patterns of the anomalies
f the Q�Qmin� map may help define the shape of the horizontal pro-
ections of complex sources such as intrusive sills, effusive flows,
ubes, and veins.

MaGSoundFDST applies a refinement procedure, proposed in
erovska et al. �2010�, and obtains solutions at any point in R3, as
pposed to the discrete minima defined by the CPS grid positions.
he refinement involves interpolating a best-fitting ellipsoid of con-
tant Q from the Q values of all one-point-radius, nearest-CPS-grid
eighbors from the 3D function Q�N� to which the discrete solution
elongs. The center of such an ellipsoid defines the refined source lo-
ation. The coordinates of these new refined Q minima are the esti-
ated locations of the simple sources.
Optionally, MaGSoundFDST produces two additional maps,

�Qmin� and Z�Qmin�, which may help determine the horizontal
hapes of sources �for details, see Gerovska et al., 2010� but are not
lways necessary. The N�Qmin� and Z�Qmin� maps are obtained by
nding the structural index and the CPS depth corresponding to each
alue of the Q�Qmin� map.
As another option, MaGSoundFDST can automatically eliminate

hose minima of Q�Qmin� that coincide with points of the �a,b� prob-
ng set where the windows encompass a field with low gradient. In-
ersion using data in such windows is unstable and the results are un-
eliable. Recognizing such points �a,b� is based on the value of qF in

with the center at �a,b�. If qF is less than a threshold �qF�min �deter-
ined by testing�, then the minimum of Q�Qmin� at �a,b� should be

ejected. We find a suitable �qF�min to be 75% of the maximum �qF�max

f qF. Note that qF is window-size and field-gradient dependent
Gerovska et al., 2010�.

RESULTS

odel tests

We applied MaGSoundFDST to three different model data sets to
emonstrate different features of the technique. The first example is
he field of a magnetized sphere whose center does not coincide with
CPS grid point. This shows that MaGSoundFDST works success-

ully on magnetic field data, is robust to random noise, and can esti-
ate source coordinates correctly using the refinement option. The

econd simple example, inverting the gravity field of a spherical
ass, demonstrates that MaGSoundFDST works well with gravity

ata from simple sources in the presence of a linear background. The
hird example is the inversion of magnetic data from five sources
ith interfering fields. It demonstrates how each singular point is
redicted by a unique estimate and shows the influence of the up-
ard-continuation height on the solution resolution.
The first example is a noise-corrupted magnetic model data set of

0�38 points, generated by a spherical source with its center at
x0�4.85, y0�4.65, z0�0.85� km and having an induced magneti-
ation with an inclination of 45° and declination of 0°. The CPS
a,b,c� set has a 3D grid spacing of 0.25�0.25�0.25 km and six
ertical probing points. The moving window size is 21�21 points
5�5 km�. The threshold value for qF was 980 nT, which is 75% of
qF�max. The upward-continuation height h is 0.3 km.

We contaminated the source field A with zero-mean Gaussian dis-
ributed random noise in the 10–15-dB signal-to-noise ratio �S/N�
ange �S /N�10 log10�� anomaly /� noise��, where � denotes standard
eviation in 1-dB increments. We simulated 100 replicates for each
/N; the statistics of the perturbations of Q�Qmin�min and its respec-

ive parameters �a,b,c,N� determined by MaGSoundFDST are pre-
ented in Table 1. The perturbation analysis shows that MaGSound-
DST is robust for S/N as low as 10 dB. We have also performed
oise analysis with the MaGSoundDST method �Gerovska et al.,
010� for the same S/N range and the same replicates as for MaG-
oundFDST; the results are presented in Table 2. The comparison
etween Tables 1 and 2 shows the better response to random noise of
aGSoundFDST when estimating the depth and structural index of

he spherical source. MaGSoundDST performs better at determining
he source’s horizontal position because the FDST calculation in-
olves upward analytical continuation, whereas the DST calculation
nvolves horizontal derivatives. Thus, the two methods respond dif-
erently to random noise.
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able 1. Results from the noise analysis for the spherical-magnetic-source (x0�4.85,y0�4.65,z0�0.85 km) case for
aGSoundFDST. Mean � and standard deviation � of Q„Qmin…min and the respective estimated parameters a, b, c, and N for

ifferent S/N noise-contaminated signals based on 100 noise replicates per S/N.

/N
dB�

�Q�Qmin��min a
�km�

b
�km�

c
�km�

N

� � � � � � � � � �

0 0.06 0.06 4.68 0.28 5.00 2.00 0.69 0.21 2.36 0.94

1 0.04 0.06 4.73 0.26 4.87 1.46 0.74 0.18 2.57 0.82

2 0.03 0.04 4.79 0.19 4.87 1.08 0.79 0.13 2.77 0.64

3 0.02 0.03 4.82 0.12 4.75 0.72 0.82 0.07 2.92 0.39

4 0.01 0.01 4.84 0.07 4.71 0.59 0.84 0.02 2.98 0.20

5 0.01 0.00 4.85 0.01 4.64 0.01 0.85 0.00 3.00 0.00
able 2. Results from the noise analysis for the spherical-magnetic-source (x0�4.85,y0�4.65,z0�0.85 km) case for
aGSoundDST. Mean � and standard deviation � of Q„Qmin…min and the respective estimated parameters a, b, c, and N for

ifferent S/N noise-contaminated signals as in Table 1, based on 100 noise replicates per S/N.

/N
dB�

Q�Qmin�min a
�km�

b
�km�

c
�km�

N

� � � � � � � � � �

0 0.93 0.03 4.85 0.02 4.65 0.02 0.50 0.01 2.00 0.00

1 0.86 0.03 4.85 0.01 4.65 0.02 0.54 0.10 2.11 0.31

2 0.80 0.02 4.85 0.01 4.65 0.02 0.64 0.16 2.42 0.50

3 0.73 0.02 4.85 0.01 4.65 0.02 0.79 0.11 2.86 0.35

4 0.68 0.02 4.86 0.01 4.65 0.01 0.83 0.06 2.97 0.17

5 0.63 0.02 4.85 0.01 4.65 0.02 0.84 0.01 3.00 0.00
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Figure 2. Model gravity data set caused by a sphere
�point mass� and linear background, and MaG-
SoundFDST results. �a� Gravity field F�A�B,
where A is the field of the sphere with a center at
�20, 20, 9� km, marked with a cross, and B�2
�0.1x�0.2y is the linear background. �b�
Q�Qmin�. �c� N�Qmin�. �d� Z�Qmin�. The estimates for
the source’s horizontal location are marked with
open stars �N�2�.
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The second model example is a gravity data set caused by a spher-
cal source �Figure 2a� with its center at �x0�20, y0�20, z0�9�
m, having a 5-km radius and a 1-g /cm3 density contrast. The input
ata grid is sized as 40�40 points �40�40 km�. A linear back-
round B�2�0.1x�0.2y has been added to the source anomaly.
e applied MaGSoundFDST with a window size of 21�21 points

20�20 km�. The CPS grid has a 3D grid spacing of 1�1�1 km
nd 15 vertical probe points. For an upward-continuation height h

2 km, MaGSoundFDST returns the correct horizontal position
20,20� km, depth 9 km, and structural index two for Q�Qmin�min

0.0024. The maps Q�Qmin�, N�Qmin�, and Z�Qmin� for the set of
tructural indices tested �N��1, 0, 1, and 2� are given in Figure
b-d.

The third model example is the inversion of synthetic data gener-
ted by five magnetic bodies with fields interfering somewhat to pro-
uce a linear or nonlinear background within certain windows. This
s the same model used to test the Euler deconvolution method based
n the DST by Gerovska and Araúzo-Bravo �2003� and MaG-
oundDST by Gerovska et al. �2010�. The five bodies comprise two
pheres, a sill, a vertical dike, and a pipe, characterized by 10 singu-
ar points �Figure 3a, Table 3�.

The input data grid measures 150�150 points. MaGSoundFDST
as applied for a CPS �a,b,c� set with a 3D grid spacing of
.25 � 0.25 � 0.1 km, a window measuring 11�11 points
2.5�2.5 km�, and 40 vertical probe points. Three upward-continu-
tion heights h were used: 0.12, 0.25, and 0.5 km. The continuation
eight 0.25 km, which proved to be the most suitable to estimate the
arameters of the simple sources correctly, produced 10 solutions.
he coordinates and structural indices of the spheres, pipe, and verti-
al dike were estimated correctly, with two additional solutions for
he pipe and the dike. The two singular points detected for the sill

odel S2 are indicated by the numbers 1 and 4 in Figure 3a.
This model example confirms the results of the 2D case study

Stavrev et al., 2006�, which recommends a continuation height less
han half the depth to the sources. In the five-body case, the depth to
op of the shallowest sources S2 and S3 is 1 km; hence, an h of
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igure 3. Model magnetic data set caused by five
odies: S1 and S5 �spheres�, S2 �sill�, S3 �vertical
ike�, and S4 �pipe�. �a�Anomalous magnetic field;
b� Q�Qmin� on a logarithmic scale; �c� N�Qmin�; �d�
�Qmin�. The inversion uses an upward-continua-

ion height h of 0.25 km and window size of 11�11
rid points �2.5�2.5 km�. The lower half-space is
robed up to a depth of 4 km along 40 points. The
stimated singular-point structural indices are
arked in �b� with red spheres and in �c� and �d�
ith red squares �N�1�, stars �N�2�, and hexa-
ons �N�3�. The estimates with N�0 do not cor-
espond to real sources and are automatically fil-
ered out.
.5 km or smaller should be suitable. A height of 0.12 km leads to
oo many estimates, and 0.5 km leads to too few.An upward-contin-
ation height of 0.5 km detects only singular point 4 of the sill,
hereas h�0.12 km detects three of its singular points �1, 2, and 4�,
ut 1 and 2 have incorrect structural indices �N�2 instead of 1� �see
able 3�.
Maps Q�Qmin�, N�Qmin� and Z�Qmin� for an upward-continuation

eight of 0.25 km are shown in Figure 3b-d. Two of the singular
oints of source S2 are not detected with minima of Q�Qmin� because
f the proximity of the other two singular points and of the dike. The
ccuracy of the estimate is similar to that of the Euler deconvolution
rocedure based on the DST �Gerovska and Araúzo-Bravo, 2003�
nd to that of MaGSoundDST �Gerovska et al., 2010�.An advantage
ver the DST-based Euler deconvolution procedure is that here we
void the process of reducing many spurious solutions to one esti-
ate corresponding to each source.

ishop test data set

The complex Bishop 3D basement model provides magnetic data
ets that test new inversion techniques and compare their perfor-
ance �Reid et al., 2005; Williams et al., 2005; Salem et al., 2008;
edi et al., 2009�. The realistic basement model is derived from real

opographic data for a portion of the volcanic tablelands area north
f Bishop, California, U.S.A. The topography has been upscaled by
factor of 30 in three dimensions and then shifted in depth such that

he structures are below the surface with depths of approximately
.1–9.3 km. This topographic surface forms the top of a magnetic
asement layer. Various depths to the base of the magnetic layer have
een used to approximate a passive margin setting �G. Flanagan,
ersonal communication, 2009�. The magnetic field was calculated
or each model using various values for the inclination and a total
eomagnetic field of 50,000 nT. Williams et al. �2002, 2005� use the
agnetic response of a basement with constant magnetic suscepti-

ility in their study on the performance of grid Euler deconvolution
ith and without 2D constraints. Reid et al. �2005� and Fedi et al.
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2009� use the same depth model but with some arbitrary additional
usceptibility boundaries to represent basement lithologic changes
r intrusives.

We used the Bishop 5x data set with geomagnetic inclination of
5° and the base of the magnetic basement layer coinciding with the
oho discontinuity �Figure 4a�. Forward calculations of the mag-

etic field were performed using GM-SYS-3D from Northwest Geo-
hysicalAssociates Inc. �U.S.A.� using default extrapolation param-
ters. Our test data grid had 670�634 points with a spacing of
.6 km in the two horizontal directions. We did not need to reduce
he data to the pole as in Williams et al. �2005� because the results
rom the MaGSoundFDST procedure were not affected by the mag-
etization vector direction. The lower half-space was tested along 20
robe points with a spacing of 0.6 km, equal to the grid spacing. We
pplied a window size of 13�13 points �7.2�7.2 km�. The height
f upward continuation was 0.3 km. The solutions for simple sourc-
s and the three maps generated by MaGSoundFDST for structural
ndices 0, 0.5, 1, and 2 �no solutions obtained for N�3� clearly out-
ine the boundaries of seven basement areas with different magnetic
usceptibilities �Figures 4b-d and 5�. Also outlined are vertical
oundaries between the basement and the sedimentary cover, i.e.,
ontrasts resulting from the basement relief.

Figure 6a presents the residuals between the estimated and the
rue depths to the top of basement versus the true basement depths.A
roup of residuals, those with the highest positive values corre-
ponding to each true depth, form a line �marked in red in Figure 6a�
hat corresponds to a group of solutions with depth equal to or near
2 km, the maximum depth covered by the CPS grid. We attribute

able 3. Real „x0,y0,z0,N… and estimated „a,b,c,Nest… parameter
agnetic anomalies in Figure 3a. The threshold value for Q is

.25, and 0.12 km. Dashes mean no solution was obtained for
ocations with no real sources but where a solution was obtain

ource
SP x0

�km�
a

�km�
y0

�km�
b

�km�

km� 0.5 0.25 0.12 0.5 0.25 0.1

1
phere

1 17.5 17.6 17.6 17.6 17.5 17.4 17.4 17

* * * — — 17.3 * — — 20

2
ill

1 25 — 24.8 24.9 10.5 10.1 10

2 25 — — 24.8 13.5 — — 13

3 27 — — — 13.5 — — —

4 27 26.7 26.7 26.7 10.5 10.4 10.4 10

3
ike

1 22.5 22.5 22.5 22.5 19 18.8 18.7 18

2 22.5 22.5 22.5 22.5 31 31.3 31.3 31

* * * 22.5 22.5 22.5 * 28.1 27.8 28

4
ipe

1 8 7.8 7.8 7.8 25 25.0 25.0 25

* * * 9.7 9.8 9.8 * 25.0 25.0 25

2 15.25 15.2 15.2 15.2 25 24.6 25.0 24

5
phere

1 10 10.0 10.0 10.0 10 9.9 9.9 9
hese solutions to a boundary effect and exclude them from further
nalysis using the MaGSoundFDST option as a filter.

We continue our analysis with only the out-of-the-line 460 solu-
ions. The solution residuals �Figure 6a� show variability in relation
o the true top of the magnetic basement depths �Figure 5�. Usually
e associate magnetic susceptibility contacts and step structures
ith structural indices 0 and 0.5. In the Bishop model’s magnetic
ata case, a comparable number of solutions with N�0 have residu-
ls within the range ��2,2� km and outside this range. Almost all of
he solutions with N�0.5 are within the range ��2,2� km, which in
he Bishop model’s example proves them most reliable as an esti-

ate of the depth to the top of the magnetic basement. Williams et al.
2005� pick out a structural index of 0.5 as the optimum single value
o get the best average fit to the Bishop model data using their choice
f Euler deconvolution algorithm. But that particular algorithm re-
uires an a priori assumption of the structural index, and the error
istogram is very wide. It is well known in practice with real geology
hat if an N value must be assumed, 0.5 gives the best overall fit with
imple Euler deconvolution — but it is a very broad best fit. With

aGSoundFDST, we derive the best structural index, feature by fea-
ure.

Confronted with the wide range of residual values for a structural
ndex of zero, we took a closer look at the relief of the Moho disconti-
uity �Figure 7a�. Over the Bishop model’s area, the Moho disconti-
uity approximates roughly a plain dipping north-northwest; thus, it
s generally deeper in the areas where the depth to the top of the base-

ent is small and shallower where the depth to the basement top is
arge. We found a relation between the regression line of the residu-
ls of the solutions produced by MaGSoundFDST and the regression

e singular points (SP) of the five bodies causing the
The heights h of the upward analytical continuation are 0.5,
ven source and corresponding height h. Asterisks mark

0

m�
c

�km�
N Nest Q�Qmin�min�104

0.5 0.25 0.12 0.5 0.25 0.12 0.5 0.25 0.12

3.0 3.0 3.0 3 3 3 — 4 3 2

— 2.8 — * — — 1 — — 31

— 0.9 1.6 1 — 1 2 — 184 15

— — 1.5 1 — — 2 — — 192

— — — 1 — — — — — —

1.2 1.2 1.2 1 1 1 1 40 67 63

0.8 0.8 0.8 1 1 1 1 5 5 4

0.8 0.8 0.8 1 1 1 1 6 7 5

0.8 0.8 0.8 * 1 1 1 5 7 5

.5 1.5 1.5 1.5 2 2 2 2 2 3 3

0.9 1.0 1.0 * 1 1 1 24 32 28

.5 1.6 1.5 1.6 2 2 2 2 22 28 18

1.9 1.9 1.9 3 3 3 3 11 12 9
s of th
one.

the gi
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.7 *
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.8 1
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ine of the Moho discontinuity depth versus the depth to top of base-
ent �Figure 7b�. The slopes of the two regression lines are similar,
0.8 and �0.7, which shows that MaGSoundFDST is somewhat

ensitive to the depth to the Moho.
We applied Euler deconvolution with an unprescribed structural

ndex �Gerovska andAraúzo-Bravo, 2003� to the same data set using
he same window size as in MaGSoundFDST, acceptance parameter
.00005 and no clustering. For this strict acceptance parameter, we
btained 4830 solutions with a structural index between 0 and 2.12,
ean of 0.1, and standard deviation of 0.1. The residuals between

he estimated and true depths to the basement from the DST-based
uler deconvolution are shown in Figure 6b. The DST-Euler method

esiduals show similar variability to those of the MaGSoundFDST
ethod �Figure 6a�. When comparing the solution residuals of the
ST-based Euler method without clustering and those of the MaG-
oundFDST, we should note that a group of solutions of the DST-
ased Euler method without clustering represents one simple source.
n contrast, MaGSoundFDST produces one solution per detected
ource. In geologic settings similar to the Bishop model, the two pro-
edures can complement each other because the DST-Euler solu-
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igure 4. �a� Bishop model’s total magnetic anomaly data and M
�Qmin��0.001 in the white areas. �c� N�Qmin�. �d� Z�Qmin�. The ac
reen circles �N�0�, crosses �N�0.5�, squares �N�1�, and pentag
ions are of a more statistical, generalized character, whereas MaG-
oundFDST is more definitive in determining the source depth and
tructural index in relation to the estimated source’s horizontal loca-
ion.

olyarovo-Voden magnetic anomaly, southeast Bulgaria

The Strandza intrusive zone in southeast Bulgaria outcrops south
f the Burgas volcano-plutonic zone amid the Late Cretaceous com-
lexes of the Strandza and Sakar Mountains. It is 150 km long west-
orthwest–east-southeast and 35 km wide. The intrusive bodies are
oncentrated in three subzones parallel to the main faults in the
trandza Mountains. The predominant direction of the magnetic
nomaly axes is west-northwest–east-southeast and rarely, north-
ortheast–south-southeast. These directions coincide with the main
ault structures that have controlled magmatic processes in the zone.

The Bolyarovo-Voden magnetic anomalous zone, which we
hose for MaGSoundFDST analysis, is a magnetic manifestation of
art of the Strandza intrusive zone and covers three almost parallel
ows of anomalies: Bolyarovo in the north, Voden in the middle, and
harkovo in the south �Figure 8a and b�. The Voden anomaly is
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eakly manifested in the interference strip between the more intense
eighboring anomalies, of which Sharkovo reaches 3000 nT �Figure
a�. The Bolyarovo series of anomalies has lower mean intensity
�1000 nT� but is wider. The minima of the three anomalies accom-
anying the anomalous maxima are in the northern direction, indica-
ive of normal magnetization of the disturbing bodies. The three
nomalous zones of different amplitudes can be distinguished easily
n the magnitude magnetic anomaly map on logarithmic scale
Stavrev and Gerovska, 2000; Gerovska and Araúzo-Bravo, 2006�.
tavrev and Raditchev �1998� performed 2.5D modeling on the

hree anomalies �Figures 8a and f�. They deduced that the upper sur-
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igure 5. MaGSoundFDST estimates for the source locations
arked with red circles �N�0�, green crosses �N�0.5�, yellow

quares �N�1�, and turquoise stars �N�2�, size proportional to
he source depth. The symbols are underlain by a contour map of the
opography of the basement from the Bishop model �in grayscale�
nd by the outlines of the regions with different magnetic suscepti-
ility �in dark blue�.
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igure 7. �a� Depth to the Moho discontinuity for the Bishop model. �
o top of basement �true depth� and through the residuals between the
or the MaGSoundFDST estimates for the Bishop 5x model.
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igure 8. Bolyarovo-Voden magnetic anomaly, southeast Bulgaria, and MaGSoundFDST results. �a� Anomalous vertical magnetic component
eld. �b� Magnitude magnetic anomaly �Gerovska andAraúzo-Bravo, 2006� on a logarithmic scale. �c� Q�Qmin�. �d� N�Qmin�. �e� Z�Qmin�. The es-

imated source structural indices are marked in by red squares �N�1�, stars �N�2�, and hexagons �N�3� with numbers corresponding to the
ources in Table 4. �f� Results from 2.5D magnetic modeling of profileA–B in �a� �after Stavrev and Raditchev, 1998�.
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aces of the Sharkovo and Bolyarovo bodies are close to the earth’s
urface and reach 3- and 5-km depth, respectively. The middle,
oden body lies at a depth greater than 0.5 km and reaches 3 km in
epth. At depth, the Voden and the Bolyarovo bodies come into con-
act �Figure 8f�.

We applied the MaGSoundFDST method to the vertical compo-
ent data grid from the Bolyarovo-Voden magnetic anomalous zone
Figure 8a�, using a CPS set with a 3D grid spacing of 0.25�0.25

0.1 km and a window of 19�19 points �4.5�4.5 km�. The lower
alf-space was probed down to a depth of 4 km with an upward-con-
inuation height of 0.1 km. The inversion results are shown in Figure
c-e. The source estimates for the Sharkovo anomaly — 2, 6, 7, 8,
0, 11, 12, and 15 — show structural indices of three and depth to the
enter varying from 1.4 to 1.9 km �Figure 8, Table 4�. Estimates 6
nd 24 are confirmed by 2.5D modeling �Figure 8f�. The shallow
arts of the Bolyarovo anomaly sources are detected by estimates 23

able 4. Estimated parameters a, b, c, and Nest of magnetic
eld sources causing the Bolyarovo-Voden anomaly,
outheast Bulgaria. The source numbers correspond to those
n Figure 8c-e.

ource
umber

N a
�km�

b
�km�

c
�km�

�Q�Qmin��min

0 3.0 12.2 0.2 0.18

3 3.5 11.1 1.9 0.32

0 3.4 3.5 1.0 0.19

3 4.3 16.2 2.0 0.24

3 4.4 15.5 1.9 0.20

3 5.3 7.5 1.4 0.09

3 5.3 10.9 1.6 0.16

3 5.5 9.8 1.7 0.12

3 6.0 15.4 1.7 0.31

0 3 6.0 12.0 1.6 0.14

1 3 6.6 3.3 1.8 0.32

2 3 6.6 5.4 1.8 0.18

3 3 6.5 15.4 1.5 0.28

4 3 6.6 17.0 1.2 0.19

5 3 7.0 10.0 2.1 0.21

6 3 7.9 17.0 2.2 0.41

7 0 8.4 3.6 0.1 0.28

8 0 9.2 6.2 0.2 0.52

9 0 9.4 11.5 0.9 0.11

0 0 9.2 15.2 0.2 0.23

1 0 10.1 3.3 0.2 0.38

2 0 9.7 13.9 1.6 0.34

3 0 11.4 10.8 0.2 0.17

4 2 11.8 9.4 1.9 0.10

5 0 12.4 8.6 0.2 0.09

6 1 12.5 17.0 1.2 0.15

7 3 12.9 15.0 1.6 0.08

8 3 13.8 4.2 1.9 0.10

9 2 14.4 12.5 1.5 0.10
nd 25, with a structural index of zero and depth of 0.2 km. Esti-
ates 24 and 28 with a structural index of three detect the center of

he sources with depth of 1.9 km. The estimates for sources 27
N�3� and 29 �N�2� have depths of 1.6 and 1.5 km, respectively.
he Voden anomaly estimates 18 and 21 have N�0 and depth of

ust 0.2 km.

CONCLUSIONS

The MaGSoundFDST procedure is based on the linearity of the
DST, and its calculation requires upward continuation of the field
a noise-suppressing procedure� or a field measured at two different
bservation levels. MaGSoundFDST accounts for a linear back-
round in the anomalous field; therefore, it performs well in the pres-
nce of interfering fields. It produces a unique solution for each sim-
le source, which is a major advantage over other window-based
ethods. The procedure is implemented here for regular data grids

ver an uneven surface, but its theoretical basis allows implementa-
ion for irregular data points obtained over uneven surfaces.

MaGSoundFDST and MaGSoundDST share several features —
ence, the similar names. Both sound the subsurface for simple mag-
etic and gravity sources using the theory that a 3D sounding func-
ion has a minimum at the point where a source exists. In the MaG-
oundFDST case, this function is an estimator of linearity of the
DST function; in MaGSoundDST, it is an estimator of linearity of

he DST. The estimator of linearity of the FDST and that of the DST
re calculated similarly, as the normalized residual dispersion after
inear regression of the FDST and the DST, respectively. The calcu-
ation of the 3D functions, the estimators of linearity of FDST and
ST, is based on the theory that the FDST and DST become linear or

ero when a source exists at or near the probed point and the correct
tructural index for the source is used. The two procedures combine
he 3D functions — the estimator of linearity of FDST and the esti-

ator of linearity of the DST for different values of the structural in-
ex into three maps, defining the horizontal location, depth, and
tructural index of the sources — using the same focusing principle.
lthough discrete locations of the subsurface are probed, the loca-

ions of the sources are interpolated to intermediate points using a
ommon refinement procedure.

The results from both procedures are not influenced by a linear
ackground, an improvement over standard Euler deconvolution,
hich accounts only for a constant background in the measured

nomalies. The difference between MaGSoundFDST and MaG-
oundDST is in the way the FDST and DST are defined and hence
alculated. The FDST is the difference between the measured field
nd an upward-continued field, so it requires an upward continuation
f the field and an appropriate upward-continuation height. In con-
rast, the DST needs the first-order derivatives of the measured
nomalies. MaGSoundFDST shows better stability than MaG-
oundDST in the presence of random noise when estimating the
epth and structural index of sources.
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