
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Masking of earthquake triggering behavior by a high background
rate and implications for epidemic-type aftershock sequence
inversions

Citation for published version:
Touati, S, Naylor, M, Main, IG & Christie, M 2011, 'Masking of earthquake triggering behavior by a high
background rate and implications for epidemic-type aftershock sequence inversions' Journal of Geophysical
Research: Solid Earth, vol. 116, no. B3, B03304. DOI: 10.1029/2010JB007544

Digital Object Identifier (DOI):
10.1029/2010JB007544

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Geophysical Research: Solid Earth

Publisher Rights Statement:
Published in Journal of Geophysical Research. Copyright (2011) American Geophysical Union.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28963515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1029/2010JB007544
https://www.research.ed.ac.uk/portal/en/publications/masking-of-earthquake-triggering-behavior-by-a-high-background-rate-and-implications-for-epidemictype-aftershock-sequence-inversions(fa1da3f4-aed0-4510-8a3e-eb7b4d7aaf5d).html


Masking of earthquake triggering behavior by a high background
rate and implications for epidemic‐type aftershock
sequence inversions

S. Touati,1 M. Naylor,1 I. G. Main,1 and M. Christie2

Received 15 March 2010; revised 1 December 2010; accepted 17 December 2010; published 8 March 2011.

[1] We examine the effects of the spontaneous background event rate and aftershock
triggering characteristics on the temporal statistics of seismicity in the epidemic‐type
aftershock sequence model. Recent work has shown that the earthquake interevent time
distribution is generally bimodal: a superposition of a gamma component from triggered
aftershocks at short time intervals and an exponential component at longer intervals from
spontaneous events and the overlapping of independent aftershock sequences. The relative
size of these two components varies between catalogs, so there is no simple, universal
scaling; at the extreme of high spontaneous rate, e.g., in large regions, the high probability of
temporally overlapping aftershock sequences causes the exponential component to
dominate. Here we further explore the effects of both the spontaneous rate and the aftershock
triggering parameters. We show that the analytical theory of Saichev and Sornette
(2007), although valid under their assumptions, gives the impression of a more “universal”
behavior if used outside its stated range of applicability. We also show that within the
high‐overlap (high‐spontaneous rate) regime, a maximum likelihood inversion of the
model’s temporal parameters is both less accurate and biased; specifically, the background
rate is systematically overestimated. This has implications on the suitable range of region
sizes for which parameter inversion may be reliable and must therefore be taken into account
in any inversion for temporal variations in background rate in time‐dependent hazard
calculation.

Citation: Touati, S., M. Naylor, I. G. Main, and M. Christie (2011), Masking of earthquake triggering behavior by a high
background rate and implications for epidemic‐type aftershock sequence inversions, J. Geophys. Res., 116, B03304,
doi:10.1029/2010JB007544.

1. Introduction

[2] Over the past decade, much literature has been pub-
lished on the distribution of time intervals between successive
earthquakes in a recorded catalog [Bak et al., 2002; Corral,
2003, 2004; Davidsen and Goltz, 2004; Hainzl et al., 2006;
Shcherbakov et al., 2005; Molchan, 2005]. It has become
commonplace to model these interevent times using a single
gamma distribution, which has led some authors to propose
universality, extending from tectonic earthquakes [Bak et al.,
2002; Corral, 2003, 2004; de Arcangelis et al., 2008;
Lennartz et al., 2008] to rock fracture [Davidsen et al., 2007].
This idea follows from the observation that rescaling the data
by region size and magnitude cutoff [Bak et al., 2002] or the
mean event rate [Corral, 2003] causes the distribution curves
to collapse on top of one another. Analytical investigations
by Saichev and Sornette [2006, 2007] confirmed an approx-

imately universal form over the range of parameters consid-
ered typical. However, our recent work [Touati et al., 2009]
generalizes these observations beyond the data selection
criteria used by Saichev and Sornette and shows that the long
interevent times do not scale in a “universal” way from the
short ones. If the distribution is to be described as universal,
that term is only applicable in a different sense than originally
proposed [Bottiglieri et al., 2010].
[3] We start from the point of view that earthquakes are in

two broad categories: First, a spontaneous category, which
is usually an approximate Poisson process composed mainly
of “background” tectonically driven events, but likely also
includes contributions from other driving forces, e.g., fluids
as well as events that are triggered by other events below
the detection threshold. These events may be considered
independent of each other. Secondly, a triggered category,
consisting of events triggered by others through the time‐
dependent relaxation of the earth’s crust, and whose rate
follows the empirical Omori aftershock law. When con-
sidering interevent times, we are looking at temporal inter-
vals between pairs of events, which, it follows, are also of
two types: either the events are causally related (that is, part
of a common sequence of triggered events) or else they are
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unrelated and independent of each other. We refer to the
former as same‐sequence pairs and the latter as intersequence
pairs of events. Touati et al. [2009] showed that interevent
time distributions can take on a range of shapes from an
exponential form to a double‐peaked curve, depending on
the balance between aftershock production and the rate of
spontaneous background events; the gamma distribution is
thus an approximation, and universality does not strictly hold.
We presented a new understanding of the earthquake intere-
vent time distribution as an essentially bimodal mixture dis-
tribution, comprising the contributions from precisely the
two categories of event pairs described at the start of this
paragraph. Those same‐sequence events that happen to occur
consecutively in the catalog produce gamma‐distributed
interevent times, since the temporal decay of the aftershock
rate follows a power law. (If each sequence were left unin-
terrupted by further spontaneous events, the interevent time
distribution would also be a power law.) The occurrence
of intersequence events consecutively, on the other hand,
produces an exponential interevent time distribution, as
long as the different spontaneous seeding events from which
they arise are themselves a Poisson process, a reasonable
assumption in the case of stationary tectonic loading con-
ditions. Thus the observation of bimodal distributions in
earthquake data can be explained in terms of the peaks of
these two contributions being well resolved.
[4] In this paper we extend this analysis of interevent

time distributions. We start by describing the epidemic‐type
aftershock sequence (ETAS) model (section 2), a stochastic
model utilized throughout the paper in which aftershock
triggering is viewed as a multigenerational branching pro-
cess. We then show the effect of the spontaneous event rate
on the temporal statistics in section 3. We test our results
against the analytical model for earthquake interevent times
of Saichev and Sornette [2007] and confirm that the latter
is applicable within its stated assumptions, i.e., only at
higher interevent times; at low interevent times inappropriate
extrapolation of their model would produce an overestimate
of occurrence, and give a false impression of broader‐band
universal scaling. In section 4 we demonstrate the relevance
of our paradigm to real data and show the relationship
between seeding rate in the ETAS model and region size in
real data. We then explore the interaction between the effects
of the triggering parameters and the seeding rate in section 5.
We show that the effect of any changes in the branching
parameters is diminished as the seeding rate is increased; in
other words, seismicity that is characterized by an exponen-
tial interevent time distribution has a high redundancy in
terms of the effective triggering parameters. This simple
observation sparked by our understanding of the interevent
time distribution turns out to have deep consequences for the
inversion of temporal ETAS parameters, in that significantly
less accurate results are obtained for higher seeding rates (as
in larger or more tectonically active regions). We point out
the implications for the possibility of detecting a varying
background rate.

2. ETAS Model

[5] The ETAS model is a stochastic point process model
based on well‐known empirical laws of earthquake occur-
rence. The process is seeded by spontaneous, commonly

called “background,” events, occurring as a Poisson process
in time with constant rate m, to represent steady state tectonic
driving. Aftershocks may then be triggered by all events;
the aftershock rate n(t) decays as a power law in time after a
sizable event according to the Omori law

n tð Þ ¼ K

cþ tð Þp ; ð1Þ

where K, c and p are constants and t refers to time. The
number of aftershocks produced depends exponentially
on the magnitude of the parent event. Each event’s magni-
tude is selected independently from the Gutenberg‐Richter
distribution,

logN ¼ a� bm; ð2Þ

where N is the number of events in a given time period
with magnitude ≥ m, and a and b are constants. There is a
lower threshold magnitude m0; there may or may not be an
upper magnitude cutoff. The ETAS conditional intensity
function l is a function of time and of the history of the
process Ht at time t:

� tjHtð Þ ¼ �þ K
X
i:t<ti

exp � mi � m0ð Þð Þ t � ti þ cð Þ�p; ð3Þ

where ti are the times of the past events and mi are their
magnitudes. Thus, the five ETAS parameters are m, the
spontaneous event rate; c, p andK, the Omori law parameters;
and a, the productivity parameter. Because we cannot dis-
tinguish a priori between foreshocks, main shocks and
aftershocks, the model regards all events as capable of trig-
gering further events. Thus, each spontaneous event may
result in a cascade of nested aftershock sequences known as a
“global” aftershock sequence [Helmstetter and Sornette,
2002].
[6] An alternative parameterization which we will use

is obtained by making the substitution A = K/cp:

� tjHtð Þ ¼ �þ A
X
i:t<ti

exp � mi � m0ð Þð Þ 1þ t � ti
c

� ��p

: ð4Þ

For the spatiotemporal ETASmodel, the conditional intensity
varies with spatial coordinates x and y in such a way that the
total conditional intensity for the entire region is equal to the
temporal‐only ETAS conditional intensity (equation (4)).
Spatial clustering of aftershocks is accounted for by a spatial
kernel fi (x − xi, y − yi), one implementation of which is

fi x� xi; y� yið Þ ¼ q� 1ð Þd2 q�1ð Þ

� x2 þ y2 þ d2½ �q ; ð5Þ

where d and q are parameters [Hainzl et al., 2008].
[7] A useful quantity which we will make use of in this

paper is the branching ratio, defined as the average number
of aftershocks generated by each event, which is obtained by
integrating A exp(am)(1 + t

c)
−p over both times and magni-

tudes from 0 to ∞, and is given by

n ¼ Ac

p� 1

�

� � �
: ð6Þ
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The parameter m, being the average frequency of spontaneous
events, has no effect on aftershock generation; it instead
represents the average rate at which aftershock sequences
are initiated and so determines the temporal overlap extent
of separate sequences. It represents the roughly stationary
component due mainly to tectonic loading, and we show
in this paper that it may be identified as a proxy for region
size. We first show the effect of m on the interevent
time distribution and then consider the effects of the other
parameters.

3. Bimodality and the Seeding Rate

[8] To demonstrate the effect of the seeding rate parameter
m on the interevent time distribution for the ETAS model,
we simulate synthetic earthquake catalogs of 100,000 events
each, for four different values of m, and plot histograms of the
interevent times t (Figure 1). We plot both the logarithm of
the count in logarithmic bins, which optimally shows the
bimodality, and the more usual probability density function
(PDF) obtained by normalizing the counts by the bin widths,
which tends visually to mask the bimodal form of the data
[Touati et al., 2009]. The effect of plotting a simple histogram
is merely to increase the slope by 1 with respect to the
equivalent PDF plot [Bonnet et al., 2001, Figure 2b].
[9] The origin of the histogram shape and its variation

with m becomes clear when we superpose the two subsets of
data arising from the two categories of event pairs (Figure 1,
left). We henceforth refer to same‐sequence and inter-
sequence intervals, following our stated convention for
the event pair categories giving rise to these intervals. In
increasing the seeding rate, more earthquake sequences
overlap within the data set; the interevent times thus become
dominated by those exponentially distributed ones arising
from intersequence event pairs (see Figure 2), and the over-
all distribution becomes unimodal and exponential‐like. The
same‐sequence interevent time distribution becomes trun-
cated at shorter interevent times due to the typical sequence
being interrupted earlier in its progression (note the change
in scale of the t axis between the different plots).
[10] Figure 1 (right) shows comb diagrams of the events

in a 1000‐event subset of each catalog, along with a cumu-
lative count of the events, giving further visual illustration of
the effect. As m is increased there is clearly less variability in
the temporal occurrence of events, and the cumulative count
becomes a smooth increasing function of time. This is in line
with an exponential‐like distribution of interevent times. The
stepped cumulative distribution at low m, on the other hand, is
characteristic of well‐resolved aftershock sequences.
[11] To put this in the context of previous reported results,

first we note that several studies motivated by the work of
Corral [2003] have selected, from real earthquake data sets
and experimental data sets, periods showing short‐term sta-
tionarity in the event rate. (Short‐term “stationary” periods
emerge by chance in any data set, when there is a local
absence of large events which would cause the event rate to
change rapidly. In the longer term, of course, all tectonically
driven regimes can be considered stationary.) This require-
ment allows a straightforward rescaling of the data by the
mean event rate, but it appears that as a side effect, the data
selection procedure generally results in a histogram similar to

the m = 1 case in Figure 1, which approximates a “universal”
gamma distribution. Thus, an apparently benign and other-
wise quite reasonable filter for apparently “stationary”
periods tunes the search to regimes where there is suffi-
cient overlap of aftershock sequences to blur the underlying
bimodality.
[12] Second, we consider the analytical PDF of Saichev

and Sornette [2007], who report that the previously dis-
cussed universality is merely approximate and relies on a
value of p close to (but greater than) 1. From our point of
view, a smaller p value would certainly reduce the appearance
of bimodality by reducing the power law decay exponent
of the same‐sequence distribution (see section 5), although
we would suggest that there are additional alternative ways
of observing a single power law, such as by controlling the
effective overlap level through data selection. We compare
our simulations with the analytical formulation of Saichev
and Sornette [2007, equation (36)]) in Figure 1 (middle),
which shows the data in the more commonly used format of
a normalized PDF rescaled by the mean event rate. We note
that there is a divergence between the theoretical and simu-
lated curves at interevent times comparable to c and smaller,
due to the clearly stated key assumption t � c in their deri-
vation. At high m this assumption becomes more limiting due
to the average interevent time shortening toward c, reducing
the bandwidth over which the distribution function is valid,
and giving the false impression of a more universal form if
the range of applicability is mistakenly overlooked. Thus we
present here a generalization of the work by these authors
and Corral, extending the analysis beyond data sets that
appear stationary in the short term, or have p close to 1, and
extending the bandwidth of interevent times below c.
[13] We can further elucidate the relation between Saichev

and Sornette’s [2007] theory and our understanding by
plotting its two components separately: first, �(x, m), which
is the exponential probability of observing no events in the
rescaled time interval x = l(m)t; and second, the other
component, which comes from the twice differentiation of
�(x, m) in obtaining the interevent time PDF. Figure 3 shows
that �(x, m) corresponds to the exponential intersequence
component of the distribution. This follows from the fact
that �(x, m) is concerned with the longest observable intere-
vent times, contingent on both the spontaneous rate and
aftershock production pattern. In differentiating twice with
respect to time, the constant background rate component of
the exponent is eliminated and the effect of the aftershocks is
revealed in the other component: the same‐sequence power
law decay is captured along with a shallower power law
leading toward the intersequence peak.
[14] Finally, we note that the universality of Bottiglieri

et al. [2010] relies on being able to compensate for the vari-
ation of m through a corresponding variation in c, thereby, as
we understand it, maintaining a roughly constant overlap
extent between the separate aftershock sequences in the cat-
alog. This is generally not the case in selecting real data,
particularly in catalogs of different spatial extent, as we
show next. To summarize our contribution so far, we replace
the universality paradigm, which has been shown both
by Saichev and Sornette [2007] and by Bottiglieri et al. to be
of limited scope, with an intuitive, physically motivated
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Figure 1. The effect of varying the ETAS parameter m on (left) the interevent time histogram, with sub-
distributions for correlated (red triangle) and uncorrelated (green cross) event pairs superposed; (middle) the
normalized PDF rescaled by the mean event rate, plotted along with the analytic solution of Saichev and
Sornette [2007]; and (right) the time series and cumulative event count for a sample of 1000 events. The
value of c (chri) is indicated by a dotted vertical line in the histogram (PDF) plots, which represents a lower
limit of Saichev and Sornette’s solution’s range of applicability. The higher m is, the more exponential the
interevent time distribution and the smoother the cumulative event count increase. Values of m used were as
shown; other ETAS parameters were held fixed at A = 10, a = 1, c = 0.01, p = 1.2; 100,000 events were
simulated in each case.
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paradigm based on the classification of interevent times as
either same‐sequence or intersequence intervals.

4. Seeding Rate and Region Size

[15] We now turn our attention to real data from the
worldwide Preliminary Determination of Epicenters (PDE)
catalog, and demonstrate that the ETASmodel is, in principle,
a valid description of seismicity even on large spatial scales,
with the parameter m acting as a proxy for the size of the
region.
[16] We choose data between 1 January 1969 and 1 January

2005 and apply a minimum cutoff magnitude of 5.0. The
catalog is complete over this time period and magnitude
range, as indicated by the absence of any roll‐off in the
magnitude‐frequency relation toward smaller magnitudes.
We first select events belonging to a circular region centered
on 130° longitude and 0° latitude. This position is arbitrary
but is in the most active seismic region, giving us a max-
imal amount of data. By varying the radius of this circle,
we can tune the number of events included to correspond
to the variation in m in Figure 1; that is, approximately
a tenfold increase in the event rate at each radius increase.
(We cannot simply increase the area tenfold to create an
analogy with Figure 1, since earthquake occurrence is highly
inhomogeneous.)
[17] We must remove all events below magnitude 5.0 due

to incompleteness of the catalog. Figure 4 shows the result;
the error bars shown are based on 95% confidence limits of
a binomial error distribution. Since the apparent branching
ratio decreases as the magnitude threshold is raised [Sornette

and Werner, 2005], the relatively high magnitude threshold
would be expected to significantly reduce the same‐sequence
component and the appearance of bimodality in the intere-
vent time distribution. However, we still find clear indication

Figure 3. Saichev and Sornette’s [2007, equation (36)]
analytical PDF, along with its two components: the expo-
nential �(x, m) and the other term which results from twice
differentiation of �(x, m). ETAS parameters were m = 0.1,
A = 10, a = 1, c = 0.01, p = 1.2.

Figure 2. Illustration of the effect of seeding rate: when changing the seeding rate from (top) low to
(bottom) high, distinct aftershock sequences, shown in different colors and line patterns, are initiated more
frequently; this is effectively a translation of the sequences along the time axis, without compression.
(Figure 2 (bottom) spans a shorter time to avoid the need for further sequences to be introduced.) Thus, a
higher overlap between the aftershock sequences causes more of the interevent times to result from inter-
sequence event pairs.
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of bimodality at smaller region sizes, with a transition to
a unimodal form as the region size grows, just like in an
ETAS model with increasing m.
[18] It would be an oversimplification for most modeling

purposes to regard global seismicity as a single ETAS
parameterization, and we are not promoting such an idea.
However, the use of the whole world presents a clear

end‐member case that catalogs of progressively smaller
regions generally tend away from, and Figure 4 shows that
this end‐member case is at least qualitatively comparable
to simply using a high m in the ETAS model. The effective
parameters of seismicity are not constant with respect to
space, yet we can say that the global averaging of the effec-
tive parameters through this interevent times analysis pro-
duces identifiable bimodality as expected by the simple
ETAS model. Stacking together seismicity of different
Poissonian seeding rates through the concatenation of smaller
regions should not worry us because the sum of several
Poisson processes will be yet another Poisson process. The
point here is to illustrate our paradigm for examining intere-
vent times, and to demonstrate that the transition from
bimodality to unimodality with an increasing m has some
genuine physical meaning in terms of the region size, and
hence that the often subjective choice of what constitutes
a “region” can strongly condition the model parameters.
[19] We can use curve fitting to demonstrate that the decay

in the interevent time distribution at large t is exponential at
all region sizes, which further supports the comparison with
ETAS. It is convenient to note two points: first, when plotting
exponentially distributed data as a logarithmic histogram
without normalization, there is a peak; analytically, the x
value at which this peak occurs is 1/l, where l is the expo-
nential parameter. Secondly, in the case of ETAS interevent
times, the peak in the underlying intersequence component
coincides with a peak in the overall distribution (Figure 1).
We therefore assume that we can fit an exponential distri-
bution to the latter portion of the histogram simply by reading
off the peak value of interevent time. The red curves in
Figure 4 result from this fitting; in each case, the fit is visually
convincing, and so we consider these fitted exponentials to
represent the inferred contribution from intersequence events,
with a possible amplitude adjustment in the larger region
cases. (Note, however, that we cannot infer the spontaneous
event rate from this component of the distribution because
the intersequence component arises from both aftershocks
and spontaneous events; see section 5.) It is also clear from
Figure 4 that the additional contribution from same‐sequence
event pairs exists, and grows more prominent as the region
size is decreased.
[20] We may question whether the unimodal, exponential‐

like distribution observed for the largest region can be
explained by the fact that in such a large spatial area, we are
combining data from different seismic regions, with differ-
ent effective triggering parameters and spontaneous rates,
resulting in a Poisson process through this mixing. A second
approach to check this is to repeat the analysis with mixed

Figure 4. The effect of varying the spatial window size
on the interevent time histogram, for the PDE catalog from
1 January 1964 to 1 January 2005. Red line shows the expo-
nential fit for the background event pairs, based on the peak
value, as described in the text. The smaller the region size
is, the greater the deviations from this exponential distribu-
tion at short interevent times, indicating a greater number
of dependent event pairs occurring sequentially. Circular
regions centered on 180° longitude and 0° latitude were used.
A minimum magnitude cutoff of 5.0 was applied to ensure
catalog completeness.
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data at all region sizes. This additionally allows us to use the
events from the whole globe and avoid such large counting
errors in the histograms.
[21] We split the earth into two‐dimensional spatial cells of

equal size. It is most convenient to use, as cell boundaries,
only those great circles that are lines of constant longitude or
latitude; that is, the equator, and various lines of longitude.
The interevent times are generated for each cell separately,
and then a histogram is produced after concatenating data
from all cells, with the procedure repeated for different cell
sizes. The results of this are shown in Figure 5 (left). There is
remarkably clear bimodality at smaller region sizes, despite
the inevitable smoothing due to the mixing of data from
different cells. This confirms that mixing of data alone cannot
explain the exponential‐like distribution of interevent times
coming from large regions. Incidentally, Figure 5 (right)
shows a similar plot for a regional catalog (Southern Cali-
fornia Earthquake Center (SCEC), using events between
1 January 1984 and 1 December 2000, up to longitude 245°,
and magnitudes above 2.2) broken into rectangular cells of
(approximately, on the curved Earth surface) equal area; for
the whole region (i.e., 1 cell) the form is similar to that for the
PDE catalog split into 64 cells, and so Figure 5 (right) shows
a kind of continuation of the spatial shrinking with the
result that the same‐sequence peak grows more dominant.
[22] We can conclude, then, that in a large region, the vast

majority of interevent times come from unrelated, inter-
sequence event pairs, and infer that the effective m increases
with region size. This means m is in effect not a material
parameter at the regional scale, since an arbitrary choice of
region size can reduce or increase its value. In principle its
spatial density function may be more representative as a
material parameter that varies with tectonic region, but less so
with region size.
[23] Although the interevent time distribution becomes

more exponential‐like as region size is increased, this is not

to say that large regions have a lower effective branching
ratio. It would seem to be obvious that the branching ratio in
a large region cannot be lower than that of the smaller spaces
of which it is composed; certainly in our ETAS analogue,
we do not vary the branching ratio in altering m; we know
that the clustering in the catalog has merely become “hidden”
due to an increased proportion of intersequence event pairs
occurring sequentially. However, as we show in section 5,
inversion of ETAS parameters can give the false impression
that the branching ratio decreases with increasing region size.
[24] Spatial information can be used to overcome the

temporal overlapping of aftershock sequences in decluster-
ing techniques, since triggering probability decreases rapidly
with distance [Huc and Main, 2003]. These techniques pro-
vide a way of categorizing intervals as same‐sequence or
intersequence for real data, to further investigate the rele-
vance of our ETAS‐based paradigm. Zaliapin et al. [2008]
presented a method for analyzing the spatiotemporal clus-
tering within a catalog and using this information to decluster.
They define a relationship (“distance” nij) between one event
and a later event in terms of the time and space interval
between the events; an event’s nearest neighbor is then
defined as the event for which this nij value is minimal. They
find that for ETAS catalogs, the values fall naturally into two
clusters; one for same‐sequence aftershocks, which occur
close in space and time to each other, and another for inter-
sequence events which are more separated in space and time.
This observation of bimodality, in the clusters and their
marginal distributions, complements very well our interevent
times analysis above.
[25] Figure 6 (top left) shows space and time components

of the simple nearest‐neighbor distance defined as nij = rt,
for a spatial ETAS simulation (using the kernel (5)). In
Figure 6 (right), we show a histogram of the time com-
ponents, that is, the time interval to the nearest neighbor for
each event. We can label each interval as same‐sequence or

Figure 5. The effect of varying the spatial window size on the interevent time histogram (left) for the PDE
catalog from 1 January 1964 to 1 January 2005 and (right) for the SCEC catalog from 1 January 1984 to
1 December 2000. In the case of more than one spatial cell, the plots were generated by mixing interevent
times from the cells as described in the text. A minimummagnitude cutoff of 5.0 (2.2) was applied to ensure
catalog completeness for the PDE (SCEC) data.
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intersequence based on which cluster it falls into, as deter-
mined by setting a dividing line as shown in Figure 6 (left)
and superpose histograms for these categories. The interevent
time histogram is shown as a dashed line for comparison.
Note that the intervals to the nearest neighbors are in general
different from the interevent times, as the nearest neighbor
may not be the next event in time if there is a later event that is
closer in space. The intervals to the nearest neighbors there-
fore contain a higher proportion of same‐sequence relation-
ships, which is evident from the extended power law segment,
particularly at longer intervals for which there are no intere-

vent times. The division between the clusters is somewhat
arbitrary, and inevitably overlap of the clusters will lead to
mislabeling of some intervals, but a clear power law is
recovered nonetheless.
[26] Figure 6 (bottom) repeats this analysis for the South-

ern California Earthquake Center (SCEC) catalog. The two
clusters overlap to a greater extent, likely due to variations in
the seismicity parameters throughout the region and also the
inappropriateness of the hypocentral distance for aftershocks
of large events, and so mislabeling of intervals is a bigger
problem, but a clear power law can nevertheless be seen in the

Figure 6. (left) Space (r) and time (t) distances to the nearest spatiotemporal neighbor for each event of
(top) a spatial ETAS simulation and (bottom) a Southern California catalog. The first 2000 events of each
catalog only are shown. (right) Histogram of time intervals to the nearest neighbor (solid black line). Same‐
sequence and intersequence event pairs are superposed in red triangles and green crosses, respectively, clas-
sified according to which cluster they fall into as defined by the dividing lines shown in Figure 6 (left). The
straightforward interevent time histogram is also shown by the dashed black line. Note that the intervals are
not identical, as the spatial information allows more same‐sequence events to be selected as nearest neigh-
bors despite not being sequential in time alone. ETAS parameter values used are m = 0.01, A = 5, a = 1, c =
0.01, p = 1.2, d = 2, q = 1.5; SCEC events between 1984 and 2000 ofmagnitude 2.2 and abovewere selected.
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histogram of intervals labeled as same‐sequence. This further
confirms that our interpretation of the interevent time distri-
bution and the origins of bimodality are relevant for real data.
A possible practical application of the technique would be
to obtain the power law exponent in the histogram as a
means of inverting p through its relationship with this expo-
nent (see Helmstetter and Sornette [2002] for details of the
relationship).
[27] Having established the effect of the spontaneous rate

m and its connection with region size, we now proceed to
explore the effects of the triggering parameters and the
interaction between this and the seeding rate.

5. Distinguishability as a Function of Seeding
Rate

[28] While m determines the occurrence rate of “global”
aftershock sequences as whole entities and clearly plays an
important role in the temporal statistics, different aftershock
generation parameters also make an impact on the statistics.
The relative proportions of same‐sequence and intersequence
intervals in the series, and the bimodality or otherwise of the
interevent time distribution, depend on both these aspects.
[29] The global aftershock sequence has been shown

analytically to exhibit a double power law decay in the event
rate, with a smooth transition between these two regimes
[Helmstetter and Sornette, 2002], as opposed to the single
power law for the “local” aftershock sequence (the non-
recursive Omori law). The exponents of the two power law
segments are 1 − � for early times and 1 + � for later times,
where � = p − 1. The effect of changes in p on the event rate
of the global aftershock sequence is quite dramatic as shown
in Figure 7 (left), which is produced by stacking simulated
aftershock sequences.
[30] This effect on the power law exponent propagates

through to the interevent times, altering the exponent in
the same‐sequence component of the interevent time distri-
bution. Figure 7 also shows a histogram of the interevent
times generated from the simulated aftershock sequences in
Figure 7 (right). Note that in the absence of further seeding
events, the power law decay in this distribution component

has, in principle, no upper cutoff; in practice, it is truncated
at a point dependent on the temporal length of each simula-
tion run, which was arbitrarily set. We can see here that the
requirement for p to be small in order to observe an apparently
universal gamma distribution [from Saichev and Sornette,
2007] works by ensuring a shallow power law and thus
reducing the appearance of bimodality.
[31] When ETAS parameters are inverted for a real catalog,

events below the completeness threshold are first removed,
and then the unjustified assumption is implicitly made that the
completeness threshold mc coincides with the smallest pos-
sible event m0. Triggering relationships that exist between
events on either side of the detection threshold are thus hidden
by the removal of the small events. Sornette and Werner
[2005] have shown that this unavoidable false assump-
tion results in a renormalized set of parameter values and an
underestimation of the true branching ratio. The upshot of
this is that the magnitude threshold mc can be thought of as a
tuning dial for the effective branching parameters; the higher
it is set, the lower the apparent branching ratio is. (It of course
alters the effective spontaneous event rate also.)
[32] We now examine the effects of these two aspects,

seeding and aftershock generation, together. We combine a
selection of different branching parameterizations with first, a
low m value and, second, a high m value, and we simulate full
catalogs to determine the combined effect.
[33] The histograms of interevent times for the low‐m cat-

alogs (Figure 8, left) are all bimodal. We see that the vari-
ability between global aftershock sequences carries through
to the full catalogs, causing the shapes of the curves for low m
to differ significantly from each other. Perhaps counter
intuitively, the position and height of the second (exponen-
tial) peak also varies with the branching parameters, even for
constant m; this is because it reflects the event rate within the
average sequence at the time where overlap occurs, and so
does not depend only on the spontaneous rate.
[34] The histograms in Figure 8 (right) are derived from the

high‐m simulations and represent extreme examples where
the power law is no longer visible. This is a consequence of
the significant overlapping of aftershock sequences as dis-
cussed in section 3. By contrast with the low‐m case, it is hard

Figure 7. The effect of varying the ETAS parameter p on (left) the average global aftershock sequence
(event rate against time) and (right) the distribution of interevent times t within the sequence (average his-
togram). Other parameters were held fixed at m = 0.01, a = 1.1, c = 0.01 and A = 5. IET, interevent time.
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to distinguish between the sets of parameters used for the
high‐m simulations besides a shift of the distribution along
the t axis. Each curve could conceivably be created by a wide
range of sets of parameter values, because the effect of the
branching is “hidden.”
[35] This point is underlined when we look at normalized

and rescaled versions of these histograms (Figure 9), as is
typically done when looking for universal data collapse [e.g.,
Corral, 2003]. Strong data collapse is observed at high m,
confirming that in that regime, the different parameterizations
of the model result in interevent time distributions that are

described by the same underlying function (an exponential).
No such data collapse is observed at low m, though visually
this may seem an attractive interpretation from noisier (real)
data.
[36] This strongly suggests that the uncertainty in all

parameters varies systematically with the actual value the
parameter m takes relative to the others. We will now pro-
ceed to confirm this transition toward indistinguishability
in branching characteristics as m increases, through mea-
surements of the accuracy of ETAS parameter inversions.

Figure 9. Normalized PDFs rescaled by the mean event rate, using the data from Figure 8. Variation at low
m becomes a data collapse at high m.

Figure 8. Histograms of interevent times t from ETAS simulations of 100,000 events each, created using
five different parameterizations, coupled with (left) a low m and (right) a high m; different shapes at low m
become very similar shapes at high m. Other ETAS parameter values are as stated in legend, with unstated
values defaulting to A = 10, a = 1.1, c = 0.01, p = 1.2, b = 1 and mc = 0.
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[37] It is common to analyze earthquake catalogs by
inverting ETAS parameters from the catalog using the max-
imum likelihood method. The log likelihood for a point
process is given by

log L ¼
X
i

log� tijHtð Þ �
Z

� tjHtð Þdt; ð7Þ

where l is the conditional intensity function, ti refer to times
of events, and Ht is the history of the process at the time t

[Harte, 1998]. Optimization is typically performed by mini-
mizing the negative log likelihood with a Newton‐type
algorithm.
[38] In this study, we invert ETAS parameters for synthetic

catalogs generated by the ETAS model; unlike with real data,
we can use our knowledge of the input parameter values to
evaluate how well the inversion algorithm performs under
various circumstances. We first test the algorithm on a syn-
thetic catalog of 50,000 events created using typical ETAS
parameters. Rather than invert parameters for the whole
catalog, we divide it into samples of a particular number of
successive events, and invert for each sample. This can then
be repeated using different sample sizes, giving a spread of
values and corresponding standard errors from which we
can determine the sample size required to give an accurate
inversion.
[39] Figure 10a shows, for each sample size, two types of

mean error: first, the standard error, which is the square root
of the appropriate diagonal entry in the approximate covari-
ance matrix, averaged across all inversions; and secondly, the
mean absolute difference between the inverted value and
the true value, ∣x − x*∣ (where x represents a parameter). The
mean of ∣x − x*∣ is generally just below the mean standard
error, indicating that on average the standard error is a rea-
sonable estimate of the actual error. Throughout much of the
range of sample sizes, a power law relationship between error
and sample size is apparent. The exponent is similar for all
parameters; the curves are vertically offset in proportion
to the values of the parameters. However, for c and p, both
types of error are highly elevated for small sample sizes. The
inversion procedure is failing to converge for some few
samples and getting “lost,” which is greatly influencing the
average error. In practice these inversion results would of
course be rejected, but we include them here to show that they
exist, and clearly don’t exist at larger sample sizes. This
is presumably because, in a small sample of events, the
temporal decay of the aftershock rate is highly uncertain
and could be fit by a wide range of pairs of values in these
parameters which have a clear covariance. At large sample
sizes, variability in the error curve increases, simply due
to obtaining fewer samples from the catalog over which to
compute the average.
[40] Figure 10b shows the fraction of inverted values

that are correct within their standard error as a function of
sample size. This is best understood as ameasure of how good
the standard error estimates are. At large sample sizes, for
all parameters, around two thirds of the inversions produce
values with error bounds which contain the true value. The
algorithm is therefore producing a standard error comparable
to one standard deviation, which is the 67% confidence limits.
At smaller sample sizes, however, the curves separate out,
with the error estimate being particularly incorrect for m
(too low) and c and p (too high). This separation of the
parameters is consistent across similar inversions carried out
with other synthetic catalogs (not shown), and can be
understood in terms of under sampling of background events
(for the inversion of m) and of limited duration aftershock
sampling (since c and p concern the temporal dimension of
aftershock occurrence).
[41] Figures 10a and 10b indicate that a sample size of

1000 events is able to support the inversion of parameters

Figure 10. (a) Comparison of mean standard error e (red,
solid line) with mean absolute difference between the true
value x and its inverted estimate x* (blue, dashed line) for
each parameter x as a function of sample size, for inversions
of ETAS parameters from a synthetic ETAS catalog. (b) Frac-
tion of inverted values for which the true parameter value is
within the bounds of the inverted value plus/minus the stan-
dard error, as a function of sample size. The ETAS parameters
used to create the catalog were m = 0.07, A = 5, a = 1.1, c =
0.01, p = 1.1.
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with acceptable error estimates. We use this sample size to
now explore the effect of the bimodality or otherwise of the
interevent time distribution on the invertibility of parameters,
by performing inversions on synthetic catalogs with different
m values. Each catalog is created with 100000 events, which
are then divided into 100 samples of 1000 successive events
each; parameter values are inverted for each sample. Rather
than start each inversion off at some common set of initial
parameter values, we eliminate the possible effect of initial

proximity to the solution, which would not otherwise be
constant, by starting each inversion off at the true solution.
[42] Figure 11a shows the two types of error again, this time

as a function of m, at constant sample size. They are again
averaged over the 100 samples for each catalog. Both types of
error increase with m, particularly steeply in the case of the
error in inverted m. The error in c and p also increases dra-
matically for larger m, similarly to the case for small sample
sizes in Figure 10.
[43] In Figure 11b the fraction of inverted values that are

correct within the standard error, for all parameters, is around
two thirds for low m as our previous inversion exercise led us
to expect for a sample size of 1000. As m is increased, how-
ever, the fraction of values correct within error starts to
deviate from this value, indicating that just as for small
sample sizes, large m values produce inversions with inac-
curate error estimates. The pattern of separation across the
parameters is identical to the small sample sizes case, with the
estimated error being too low for m and too high for c and p.
[44] In order to establish beyond doubt that the parameter

estimations are truly converging, we recorded the values of
the estimates at each iteration, along with the gradients of the
log likelihood function, for 12 of the samples at each value of
m. Figure 12a shows an example for the lowest value of m,
which is representative of the pattern observed in every
inversion for that m value. The log likelihood gradients go
toward zero and the parameters, which start out at their true
values, do not wander far from those values. This confirms
that the iteration procedure has converged.
[45] At high m, there were two distinct scenarios in the

examples. The first and most common scenario, occurring in
9 out of 12 inversions, was similar to the situation for low m
and is shown in Figure 12b. The log likelihood gradients
similarly tend toward zero, and the parameter values take only
small steps toward the end of the inversion, although they
have moved far from their starting points in some cases. This
situation also represents convergence, albeit toward a false
solution. The second scenario is where the inversion termi-
nates due to the maximum step size being exceeded on one
parameter (Figure 12c), although the log likelihood gradients
are also very low. We can infer that the likelihood surface is
nearly flat in one dimension, leading that parameter rapidly
away from the true value. This cannot be classed as conver-
gence; however, it is a situation that only occurs at high m,
which is an important observation.
[46] The differences in the inversion outcomes as m is

varied are consistent with the fact that as m is increased, the
overlapping of aftershock sequences causes earthquake
occurrence in the catalog to look more like a Poisson process
in time (Figure 1), which hides the effect of the branching
parameters on the time series (Figure 8). We suggest that this
makes the origin of each event more ambiguous, and pro-
foundly, we see here that this is reflected in poor inver-
sion success. Even with a catalog produced by, and thus
perfectly described by, the ETAS model, and with the ability
to start the inversion at the true solution, luxuries that real
data does not afford us, the error is still significant for high m
and the error estimates produced by the inversion are sig-
nificantly incorrect.
[47] The situation may be improved with new more accu-

rate inversion methods such as the expectation maximiza-
tion (EM) method of Veen and Schoenberg [2008], but our

Figure 11. (a) Comparison of mean standard error e (red,
solid line) with mean absolute difference between the true
value x and its inverted estimate x* (blue, dashed line) for
each parameter x as a function of the true u value, for inver-
sions of ETAS parameters from four synthetic ETAS catalogs
of different m (see the corresponding interevent time distribu-
tions in Figure 1). (b) Fraction of inverted values for which
the true parameter value is within the bounds of the inverted
value plus/minus the standard error, as a function of the true
m value. Other ETAS parameters were held fixed at A = 10,
a = 1, c = 0.01, p = 1.2. Inversions were started at the true
solution.
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primary concern is to test current standard practice and point
out where and why it fails. These issues may also apply to
alternate techniques, since, as we have illustrated, in princi-
ple, finding independent events in data where many after-
shock sequences overlap is inherently problematic, so any
improvement is unlikely to be first order.
[48] To illustrate the potential consequences of under-

estimating the error, we consider the following example.
Hainzl and Ogata [2005] inferred fluid signals in Vogtland
earthquake data in terms of a varying seeding rate, by
performing a series of ETAS inversions on the data using a
moving time window. Here we test the alternate hypothesis
that an apparent variation in m may be observed in synthetic
ETAS catalogs with constant seeding rate, purely as a con-
sequence of overlapping aftershock sequences.
[49] We repeat their analysis using synthetic catalogs,

comparing the lowest and highest m values used in our
inversion accuracy analysis. Like Hainzl and Ogata [2005],
we invert only for m while holding all other parameters fixed
at their true values, a procedure which might reasonably be
expected to produce very reliable estimates of m. We use, in
each case, a window size (in days) calculated to give an
average of 400 events per window, which is the approximate

mean number of events in Hainzl and Ogata’s windows;
although the full seismic history is included in l (t∣Ht) in
equation (7), the sum and integration are performed only over
the time window. Hainzl and Ogata do not specify the step
size, but we make the step size equal to the window size so
that each point in the graph represents a completely different
sample with no overlap. Figure 13 shows the results of this
series of inversions. The error bars shown are, in this case,
two standard errors (i.e., two standard deviations, or 95%
confidence limits).
[50] At both values of m, a variation in the inverted m values

occurs, which mirrors the variation in the overall event rate
as in Figure 7 ofHainzl and Ogata [2005]. The actual number
of spontaneous background events in each time window,
divided by the window length, is shown as a dotted line,
which (unsurprisingly) remains in the vicinity of the true m
value and does not vary to the same extent as the inverted
values. We would therefore interpret these type of inversion
results with caution, and accept that while there may be good
reason to reject a single ETAS parameterization for the
Vogtland swarm data based on the additional analysis of
Hainzl and Ogata, particular parameter values for an ETAS
inversion cannot be regarded as too reliable.

Figure 12. Parameter estimates (as a fractional difference from the initial, true value) and log likelihood
function gradient at each iteration of an inversion for (a) one of the samples of the lowest m value from
Figure 11, and (b and c) one of the samples of the highest m value. Likelihood gradient is not shown for
the first three iterations where it fluctuates strongly. Toward the final iterations, parameter estimates are
stable and gradients go to zero for Figures 12a and 12b, although in Figure 12b the parameter values have
moved further from their (true) starting values. In Figure 12c the inversion terminated with excessively large
steps being taken in one parameter, so this inversion failed to converge, although the final gradients are near
zero.
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[51] In addition, we notice that for our high‐m simulation,
the inverted value is consistently and significantly above the
true value, showing that a bias is introduced in the inversion
due to highly overlapping aftershock sequences. This is
all the more surprising given that it is a one‐dimensional
inversion with all other parameters forced to be correct. We
understand this as further confirmation that aftershocks are
being mistaken for spontaneous seeding events due to the
overlapping of sequences and the consequent destruction
of their temporal signature. This effect naturally entails an
underestimation of the branching ratio. In Figure 7 of Hainzl
and Ogata [2005], the inverted m values for the case where all
parameters are allowed to vary is consistently higher than

those values where only m is inverted. This too is suggestive
of the overestimation of m we have shown can happen when
aftershock sequences overlap.
[52] In summary, we have demonstrated clearly that the

ETAS maximum likelihood inversion scheme, under specific
(high) values of the seeding rate, produces a bias in the
inverted seeding rate (and hence in the branching ratio also),
and an underestimate of its uncertainty. For a finite recorded
period, catalog size can be adjusted by varying the size of the
included region; this, however, is akin to varying the effec-
tive m, and so it must be borne in mind that while increasing
the amount of data tends to improve the inversion success,
the effect of increased temporal overlapping of aftershock

Figure 13. Circles with error bars show a series of inversions of m, holding all other parameters fixed at
their true values, from (top) a low‐m and (bottom) a high‐m synthetic catalog. In each case the window size
was calculated to give an average of 400 events per window, and the windows do not overlap. Variation in
the inverted values follows the variation in the event rate, demonstrating that an apparent variation in seed-
ing rate can spuriously occur from a catalog with a constant seeding rate. Additionally, m is overestimated
when the true seeding rate is high due to temporal overlapping of aftershock sequences.

TOUATI ET AL.: MASKING OF EARTHQUAKE TRIGGERING B03304B03304

14 of 16



sequences has the opposite effect. We suggest that the
absence of discernible bimodality in the interevent time dis-
tribution is likely to preclude accurate inversion of temporal
ETAS parameters. Studies which seek to demonstrate a
varying background rate must establish that the variation lies
outwith the substantial error bounds caused by overlapping
aftershock sequences; triggering is a difficult null hypothesis
to reject.

6. Conclusions

[53] We have explored, within the framework of the ETAS
model, the effects of the spontaneous event rate and the
aftershock triggering parameters on the earthquake interevent
time distribution. We have shown, using data from the PDE
and SCEC catalogs, that this is fundamentally a bimodal
distribution, and that the degree of observable bimodality
depends on the region size of the data set. Our ETAS analysis
demonstrates that the bimodality can be explained in terms of
two populations of interevent times: those originating from
same‐sequence and intersequence event pairs, respectively.
These populations depend on the extent of temporal overlap
of separate aftershock sequences, and so the dependence of
the distribution shape on region size is essentially a depen-
dence on seeding rate. This observation forces us to reject the
hypothesis proposed in earlier literature of a universal scaling
law for earthquake interevent times: the small interevent
times, which are dominated by same‐sequence aftershocks,
do not generally scale to the large ones, although the distri-
bution may be seen to approximate a universal gamma form
under the constraints of visually stationary periods, low p
values and interevent times much greater than c. Our analysis
thus represents a generalization of Corral’s [2003, 2004] and
Saichev and Sornette’s [2006, 2007] work, taking it beyond
these constraints.
[54] The statistics of the ETAS model are a realistic rep-

resentation of real data, even for large region sizes, which are
outside of the model’s typical range of application, although
inversion of parameters for large regions is problematic.
Large regions occupy a high‐spontaneous‐rate subset of
parameter space, in which the interevent time distribution
becomes unimodal and exponential‐like due to the temporal
overlapping of aftershock sequences; parameterizations
within this high‐overlap regime have a high redundancy in
terms of the shape of the distribution. As a result of this,
maximum likelihood inversion of parameters from the sim-
ulated catalogs becomes less successful as the spontaneous
event rate is increased, with mean parameter estimates across
realizations becoming further away from the true value, and
standard errors becoming less reliable and on average larger.
The spontaneous rate is also systematically overestimated
within this high‐overlap regime. This introduces new chal-
lenges in determining both the reliability of parameter in-
versions from real data and the suitable range of region sizes
for which temporal ETAS parameter inversion may be suc-
cessful, as well as in the ability to detect significant temporal
variations in parameters such as the spontaneous rate, for
example in time‐dependent hazard calculations.
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