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Abstract 

Depleted gas fields have been identified as potential targets for CO2 storage. In order 

to maximise storage capacity, a target field must be deep enough to ensure that the 

CO2 is in a dense phase (either liquid or supercritical). Accurate assessment of the 

storage capacity also requires an estimation of the amount of CO2 that can be safely 

stored beneath the reservoir seal which can be estimated in several ways. In this paper 

we develop a methodology to convert known pre-production gas column heights into 

CO2 column heights in order to estimate storage capacities. Several authors have 

correctly identified that the differences in interfacial tension and wettability act to 

reduce the threshold capillary entry pressure for CO2 compared to natural gas, 

consequently reducing column height estimates. However, under reservoir conditions 

the density of CO2 is substantially higher than natural gas so the buoyancy force on 

the seal for a fixed column height is much lower for dense phase CO2 increasing 

column height estimates; we investigate the effects of this trade off on storage 

estimates and apply it to a typical dataset, in this case the UK North Sea. 
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1 Introduction 
 

Depleted gas fields are good contenders for engineered CO2 storage, having 

both proven seals and well characterised geology. Assessment of the suitability of a 

field for CO2 storage requires the estimation of storage capacity. The most simplistic 

approach assumes volume-for-volume replacement, with a discount factor for water 

invasion into the storage zone [S Bachu and J Shaw, 2003].  

The physical properties of CO2 differ from those of hydrocarbon gas, so that 

there is the possibility that capillary seals which are secure for hydrocarbons will not 

be secure for CO2. A number of authors have highlighted that the differences in 

interfacial tension (IFT) and wettability between CO2 and natural gas act to reduce the 

threshold capillary entry pressure for CO2 compared to gas, reducing storage 

estimates [e.g. P Chiquet et al., 2007a; P Chiquet et al., 2007b]. However, for cases 

with good hydraulic connectivity to the aquifer, the full assessment of the storage 

capacity beneath a capillary seal also requires knowledge of the buoyancy drive 

exerted on the seal by the stored fluid. Since the density of dense phase CO2 is 

substantially greater than that of natural gas under reservoir conditions, a column 

height of CO2 exerts a lower buoyancy drive on the seal than the same column height 

of natural gas. Thus, the phase behaviour of CO2 counteracts the reduction in capillary 

entry pressure. This balance between entry pressures and buoyancy, and the 

conversion of gas column heights to CO2 column heights is the topic of this paper. 

Our approach is to take the known, pre-production column height of natural 

gas within a reservoir and use the known differences in material properties between 

the original gas and the stored CO2 to convert the pre-production natural gas column 

height to a safe CO2 column height. The advantage of this technique is that it does not 

require knowledge of intrinsic properties of the seal, such as the effective (maximum) 

pore throat radius, which are generally unknown and have very large uncertainties. It 

requires that the drive on production was primarily hydraulic so that we can assume 

the force on the seal due to the presence of CO2 can be expressed as buoyancy derived 

from displacing formation water. Our terminology is hence as follows:  

• Pre-production column height – the column height corresponding to the 

reserves of gas in the trap prior to extraction which may be capillary 

limited or may be limited by a spill-point or by gas supply in the case of 

an under filled field. 



• Maximal CO2 column height –This is the upper bound on the CO2 column 

height estimate and is calculated from the pre-production gas column 

height taking into account buoyancy and interfacial tension differences 

between natural gas and CO2, both properties that are relatively well 

characterised. Thus, this estimate is purely a function of the material 

properties of CO2 and natural gas. Where the natural gas field was 

capillary limited, the calculated maximal CO2 column height corresponds 

to the point where the buoyancy pressure of the CO2 equals (actually is 

infinitesimally less than) the entry pressure of the seal such that the seal 

would leak by capillary failure.  

• Safe CO2 column height - the maximal column height neglecting the 

mineralogical dependent effects of contact angles on the column height 

estimate. Depending upon the mineralogy of the seal, the inclusion of 

contact angles will reduce the column height estimate. This term has 

experimental, upscaling and theoretical uncertainties.  

• Column height conversion factor () – the ratio of the pre-production 

natural gas column height to the CO2 column height. In this paper a 

methodology is developed to calculate this value from typical 

hydrocarbon field data. Conversion factors of less than 1 indicate a 

reduction of the CO2 column height compared to the gas column height. 

This term can also be prefixed with safe or maximal to describe whether 

contact angles are taken or are not taken into account respectively. 

The structure of this paper is to first develop the theory behind the calculation of 

CO2 column heights from gas column heights identifying a conversion factor, 

next we investigate the controls on that conversion factor, then a discussion 

informed by typical data and finished off with a discussion of some secondary, 

related effects. 

2 Column height conversion factor - capillary model 
Across a curved interface between two immiscible fluids a discontinuity in fluid 

pressure occurs as a consequence of the interfacial tensions at the interface. The 

capillary pressure, cP  is the difference in pressure between a non-wetting phase, nwp  

and a wetting phase, wp , 



wnwc ppP −=      .  (1) 

The seal is usually a very tight porous material, typically imbibed with water, 

beneath which the hydrocarbon or CO2 sits in a more porous and permeable reservoir 

rock. The threshold pressure, , marks the point above which the non wetting phase 

(here, the hydrocarbon gas or CO2) displaces the (typically) water phase that imbibes 

the seal; in terms of basic physics it is the value at which the pressure gradient in both 

phases becomes continuous. The pressure where a phase first starts to enter a caprock 

is referred to as the entry pressure  (limited by the largest pore throat at the reservoir-

caprock interface) and the pressure where a phase can travel through the entire 

thickness of the caprock is the breakthrough pressure and is generally slightly larger 

than the entry pressure (limited by the largest pore throat in the least resistance 

pathway through the caprock). We assume the capillary threshold pressure to be the 

limiting factor controlling the amount of stored natural gas or CO2 in the systems 

considered here. Other first order controls of a column height may include being filled 

to a structural spill point, formation reworking or that the trap is under-filled because 

of a finite supply of hydrocarbon charge. The threshold capillary pressure, 

 

Pc,th  is 

controlled by the surface tension between the two fluids (γ ), the contact angle in the 

wetting phase (i.e. water) with the caprock ( sealθ ) and reservoir ( resθ ) as well as the 

geometrical properties of the pore network in the seal and reservoir (described by pr  

and tr  or combined in an effective pore radius, R ), 

 

Pc,th = γ
cosθ seal

rt

−
cosθ res

rp

 

 
  

 

 
  ≈

γ cosθ
R

    . (2) 

where pr  and tr  are the pore and throat radii respectively. The contact angle arises as 

a surface chemistry effect and is therefore a function of the rock as well as the two 

phases; it is close to zero when the substrate is strongly water-wet. 

It follows that the threshold pressure, or displacement pressure, , in the non-

wetting phase is equal to 

 

Pw + Pc,th , where 

 

Pw  is the pressure in the water (or brine) 

phase, often equal to the hydrostatic pressure. 

 Since the limiting pore and throat radii are impossible to measure directly, a 

common way to proceed is to estimate the pore throat radii using a porosity-

permeability relationship [e.g. R R Berg, 1975; S Bloch, 1991; M R Rezaee et al., 

thP

thP



2006]. For example, an effective grain size, eD  can be calculated from core analysis 

using an empirical permeability equation such as ( ) 5.01.589.1 −= nkDe  [cm], where k  

is the permeability [mD] and n  is the porosity [percent] [R R Berg, 1975]. The pore 

and throat sizes can then be estimated using eD  and assuming a theoretical packing 

geometry. In a rhombohedral packing with perfect spheres 

 

rp = 0.5 × 0.414De and 

 

rt = 0.5 × 0.154De . Whilst this may practically be the only way forward for an 

exploration scenario, it is susceptible to large uncertainties in upscaling from sparse 

core samples to the whole reservoir and the predictive capability of any such 

empirical relationship is strongly limited by the calibration data. 

The buoyancy pressure exerted on the seal due to a column of height, h  of 

less dense fluid under hydrostatic conditions is simply given by, 

ghPb ρ∆=      . (3) 

Where ρ∆  is the absolute density difference and g  the acceleration due to 

gravity. 

Equating the pressures in Eqns (2) and (3), the capillary limited column 

heights for the gas/water can be expressed as, 

watergaswatergas
watergaswatergas hg

R //
// cos

ρ
θγ

∆=    . (4) 

We can construct the analogous equation for the CO2/water systems as for the 

gas/water system in (4), 

waterCOwaterCO
waterCOwaterCO hg

R /2/2
/2/2 cos

ρ
θγ

∆=   .  (5) 

The geological factor in equations (4) and (5) is the pore geometry, expressed 

in the term R . This is an unknown factor in almost all storage settings, but can now 

be simply removed from further consideration. Utilising the fact that both fluids 

interact with the same pore geometry, we can divide (4) and (5) to remove this term. 

This gives us an expression for the CO2 column height as a function of the measured 

gas column height and physical/chemical properties of the fluid-rock systems. 

watergas

waterCO

watergas

waterCO

waterCO

watergas
watergaswaterCO hh

/

/2

/

/2

/2

/
//2 cos

cos
γ
γ

θ
θ

ρ
ρ

∆

∆
=  . (6) 

 This gives the conversion ratio for gas/water column heights to CO2/water 

column heights as, 



watergas

waterCO

watergas

waterCO

waterCO

watergas
COgas

/

/2

/

/2

/2

/
2/ cos

cos
γ
γ

θ
θ

ρ
ρ

ψ
∆

∆
=    . (7) 

 Thus, the conversion factor is a combination of the ratios of the density 

differences, contract angles and interfacial tensions for the gas/water – CO2/water 

systems. We discuss each of these key ratios in turn. 

2.1 Interfacial Tension (IFT) ratio  
At the reservoir/seal boundary, the IFT between the wetting and non-wetting 

fluids linearly increases the capillary entry pressure that must be overcome in order 

for the wetting fluid to invade the seal. The IFT for hydrocarbon/water systems has 

been used extensively for many years in the industry and has been extensively 

characterised. We use methane as an example here because it is at the upper limit of 

hydrocarbon IFTs and is thus provides a worst case scenario for the effects of this 

term. The IFT for CO2/water systems has not been investigated as extensively and 

consensus regarding its behaviour is only just starting to emerge [P Chiquet et al., 

2007b; Q Y Ren et al., 2000]. For both methane-water and CO2-water, the IFTs 

increase rapidly at low pressures but become increasingly stable with increasing 

pressure (Figure 1). As an approximation, we can take the ratio at 10MPa as 

representative of typical reservoir depths where 25/2 ≈waterCOγ  mN/m [P Chiquet et 

al., 2007b] and 50/4 ≈waterCHγ mN/m [A Danesh, 2007; Q Y Ren et al., 2000]. This 

gives an IFT ratio ~ 0.5. 

The effect of the IFT ratio term is to lower the capillary entry pressure for pure 

CO2/water systems by up to 50 % compared to the pure gas/water system [Z W Li et 

al., 2006]. Thus the effect of this term is to decrease the maximum column height of 

CO2 relative to the methane gas column height. 

The methane-water system that existed prior to CO2 injection may have 

contained significant CO2, and this must be accounted for in calculating the change in 

IFT due to CO2 injection. It has been experimentally demonstrated that in mixtures of 

CO2 and methane, higher proportions of CO2 reduce the IFT [Q Y Ren et al., 2000], 

consistent with the CO2 IFT being lower than that of methane. However, Chiquet et al 

[2007b] demonstrated that previous analysis of the CO2/water IFT values was biased 

towards lower values as previous workers had assumed an incorrect density for the 

CO2 saturated water phase. Figure 1 shows a compilation of data for the 

(CO2+CH4)/water system. We choose to linearly interpolate between the pure 



methane/water and CO2/water IFT values, consistent with this observation, since there 

is not sufficient data to do better .  

Thus we suggest a correction to the ratio that accounts for known amounts of 

CO2 in the original gas. We define the mol% of CO2 in the natural gas as 2COx  and 

CH4 as 4CHx . Using this we estimate the IFT of the natural gas / water system, 

( ) waterCHCOwaterCOCOwaterCHCHwaterCOCOwatergas xxxx /42/22/44/22/ 1 γγγγγ −+≈+≈  (8) 

Therefore, the ratio of the IFTs is given by 

( ) ( )

2

/2

/4
22

/42/22

/2

/

/2

2
1

1

1
1

CO

waterCO

waterCH
COCO

waterCHCOwaterCOCO

waterCO

watergas

waterCO

x

xxxx

−
≈

−+
=

−+
=

γ
γγγ

γ
γ
γ

  (9) 

The ranges of this ratio are from 0.5 if the natural gas was pure methane (i.e. 

02 =COx ) to 1 in the (unrealistic for our purposes) end member that the natural gas 

was initially pure CO2 (i.e. 12 =COx ). 

 

2.2 Density difference ratios  
The density difference ratio describes the relative difference in the buoyancy 

drive between the CO2/water and natural gas/water systems. Since buoyancy in the 

subsurface is generally derived from displacing formation water, this approach is 

appropriate for systems with good hydraulic connectivity to the aquifer. This 

buoyancy force provides the drive that must overcome the capillary entry pressure if 

the non-wetting fluid is to invade the caprock. The greater the buoyancy contrast, the 

stronger the drive.  

We demonstrate typical subsurface buoyancy depth profiles using two end-

member subsurface scenarios corresponding to different heat flow regimes and sub-

aerial and submarine conditions (Figure 2).  

We calculate pressure P , temperature T  and salinity sw  as a function of depth 

from defined surface pressure, temperature and salinity values and corresponding 

geothermal, hydrostatic gradients and salinity gradients. Salinity tends to increase 

with depth from sea water concentrations offshore and freshwater concentrations 

onshore [Moss, B. et al., 2003]; the salinity gradient is highest when salt layers are 



present in the subsurface (e.g. Southern North Sea). These profiles are then used to 

calculate how the phase properties of CO2, natural gas and water vary with depth. We 

define the depth, z  to be the distance beneath the surface, which corresponds to either 

the topographic elevation or the seafloor. In the submarine case, the surface pressure 

also includes the pressure exerted by the water above the seabed. 

These calculations are typically conditioned to initial reservoir conditions and 

neglect coupled processes associated with the injection of CO2 which requires a full 

reservoir simulation. They are useful for the rapid initial assessment of a wide range 

of storage scenarios and should be used in conjunction with geological and 

hydrodynamic information (such as the water drive) to identify which coupled 

processes will be important for each specific target. Thus this methodology provides a 

technique for the preliminary site assessment prior to a more complete analysis using 

reservoir simulations. 

We use standard calculations (See appendices) to determine the densities of the 

fresh (where 0=sw ) and saline formation water, ),,( sw wTPρ ,  the produced gas 

(assuming a specific gravity of 0.65 and a compressibility factor of 0.85), 

),,( gasgas MTPρ  and the injected CO2, ),(2 TPCOρ . The form of the density profiles 

all trade off between increases in pressure that tend to increase densities and increases 

in temperature which tend to decrease densities. We assume that the density will be 

fairly constant in the column which is reasonable when CO2 persists in the dense 

phase or for relatively short column heights; for a full treatment on real data this 

assumption can be relaxed by integrating over an actual column. We neglect the 

effects of dissolution of CO2 in the formation water as the small increase in saturate 

brine density is second order to the main effects described here. 

The CO2 vapour pressure curves are plotted with pressure-temperature pairs 

through the subsurface in Figure 2(a,b). In Case 2, where the pressure-temperature 

path crosses the vapour pressure curve, a phase transition from the gas to liquid 

phases is predicted at depths less than ~300m below the seabed (the depth 

corresponding to the critical pressure for CO2); this is higher than would be expected 

for a sub-aerial case because of the higher surface pressure which is site specific 

because of the dependency upon the water depth. For a range of realistic 

parameterisations, the density in the supercritical phase actually increases with 

shallower depths, acting to decreasing the buoyancy drive. In contrast, in Case 1 



which corresponds to higher heat flow and lower surface pressure (sub-aerial) the 

pressure-temperature path does not intersect the vapour pressure curve and the 

predicted CO2 densities correspond to a smooth trajectory from the supercritical 

density to gas densities over a much wider depth range always increasing the 

buoyancy drive.  

In contrast to the CO2 density profiles, the natural gas and water density profiles 

(Figure 2i,j) are better behaved as they are in more stable regions of their respective 

phase spaces. The formation water density is considerably less variable with typical 

values in the range 960 – 1030 kg/m3 for fresh water and upto 1200 kg/m3 for saline 

water with 25 % weight percent of salt dissolved.  

Using these density profiles we calculate the density differences (Figure 2g,h) 

and density difference ratios (Figure 2i,j) which is the key controlling ratio that 

characterises the relative buoyancy drive 

2/2

/

COwater

gaswater

waterCO

watergas

ρρ
ρρ

ρ
ρ

−

−
=

∆

∆
 

Whilst we chose end-members here, it should be noted that relatively subtle 

changes in the thermal and pressure regimes propagate through to a significant 

differences in the density difference profiles (Figure 2g,h), and corresponding 

predictions of the buoyancy drive. In the subsurface, the density of CO2 is always 

greater than that of typical natural gas compositions. Since waterCO /2ρ∆  is lower than 

watergas /ρ∆ ; the density difference term in the conversion factor increases the potential 

CO2 column height. The density difference ratio is always greater than ~2 when CO2 

is in the dense phase and greatest when the pressure-temperature profile produces a 

phase change. The density of liquid phase CO2 is nearly always higher than that in the 

supercritical phase, so we expect the safe CO2 column height to be greater for 

subsurface conditions that encourage a phase change in the depth profile, i.e. cooler 

(lower surface temp and geothermal gradients) and submarine (higher surface 

pressure). 

Since the typical minimum for the IFT ratio is 0.5, the buoyancy term should 

always at least counteract the decrease in column height due to the IFT effect for 

regions where CO2 is in the dense phase. 

Understanding the variation in CO2 density with depth is key to determining 

the conversion factor and the degree to which the decreased buoyancy compensates 



for the lower IFT in the CO2/water system. Factors which increase the likelihood of 

being in a phase change regime are; lower geothermal gradients, lower surface 

temperatures and higher surface pressures, i.e. moving the well head pressure and 

temperature towards the top left in Figure 2 (a,b). Factors which decrease the 

likelihood of being in a phase change regime are; higher geothermal gradients, higher 

surface temperatures and lower surface pressures. The density of CO2 at depths 

corresponding to pressures and temperatures near either the vapour pressure curve or 

the critical point will be subject to very high uncertainties and propagate through to 

high uncertainties in the conversion factor.  

 

2.3 Contact angle ratio  
The contact angle is the angle at which a liquid/vapour interface (here either 

hydrocarbon/water or CO2/water) meets the solid surface (the surrounding rock). 

Contact angles arise from surface chemistry effects. This effect cannot be easily 

eliminated because the interaction of natural gas with a specific rock mineralogy does 

not necessarily act as a proxy for how CO2 will behave; scaling from mineral scale 

experiments to core scale to reservoir scale is difficult. We need to know the contact 

angles for both the CO2/water and gas/water systems for a given mineralogy in order 

to make the best estimate. CO2 wettability is a complex story and a clear picture has 

not yet emerged as to the importance of wettability effects [Chiquet et al., 2007a ; 

Hildenbrand et al., 2004; Li et al., 2005; Yang et al., 2008]. 

The quantity of interest is the ratio of the cosines of both contact angles, which is 

hard to constrain precisely, but will be 1~
cos
cos

/

/2

watergas

waterCO

θ
θ

. Given an initial water wet 

gas/water system, it will be less than 1. 

Since there is a range of uncertainty in the contact angle of the CO2/water system, 

we prefer to report a range of conservative (termed “safe”) and optimistic (termed 

“maximal”) values. The uncertainty in this term is significantly less than the 

uncertainty in the pore radius term R  which contained order of magnitude 

uncertainty. 

In the presence of the hydrocarbon phase, many minerals will generally be water 

wet giving a contact angle of 0o giving a contribution to the denominator of the ratio 

of 

 

cos(θgas / water ) = cos(0) =1. The use of this value provides the maximal CO2 column 



height conversion factor. The presence of dense phase CO2 has been shown to alter 

the water-wettability of various organic materials present in the subsurface, such as 

coal, resulting in an increase in the contact angle. Many seals are more-or-less 

organic-rich mudrocks (e.g. 5-10% organic content for the Kimmeridge Clay [S 

Brown, 1984]) so that the behaviour of this component of the rock is of potential 

importance. 

In contrast, laboratory studies of contact angles [P Chiquet et al., 2007a] backed 

up by breakthrough studies [A Hildenbrand et al., 2004; S Li et al., 2005] suggest that 

the presence of mica and quartz, minerals commonly present in shaley caprocks, 

reduce the contact angle (  respectively). Espinoza and 

Santamarine [2010] look at contact angles in a range of systems; they show that for 

the contact angles are relatively pressure independent on quartz (  

and 

 

cosθbrine /CO 2 ≈ 0.77) and calcite (

 

cosθwater /CO 2 ≈ cosθbrine /CO2 ≈ 0.77). Since these 

angles were measured on pure samples, and real rocks are composed of a range of 

minerals, they too provide a conservative estimate for estimation of the safe CO2 

column height conversion factor. The scaling of contact angles from a single mineral 

to multi-mineral reservoir is a non-trivial problem. 

A CO2 storage study for the Rousse depleted gas field in France [N. Tonnet et al., 

2010] has analysed slices of the calcite and quartz rich caprock substrate, which is 

low in mica, and show it to remain water wet in the presence of CO2.  

A close look at the work by Chiquet et al. (2007a) shows that the water-

wettability of quartz is barely altered in the presence of dense phase CO2, as opposed 

to light phase CO2  (see Fig. 8 in Chiquet et al., 2007a), whereas the contact angle 

values obtained with mica indicate that mica is becoming less water-wet when the 

CO2 gets denser (i.e., pressure increases), even though there seems to be a strong 

dispersion in the contact angle values (see Fig. 7 in Chiquet et al., 2007a). With mica, 

less definitive conclusions were drawn in a subsequent study by the same laboratory 

[Shah et al., 2008a]. 

The most conservative approach is to assume that the seal was completely water 

wet in the presence of the hydrocarbon and to use the most extreme reduction factor 

of 0.7. The most optimistic approach is to assume that the caprock will remain 

completely water wet, corresponding to a contact angle ratio of 1.0. Here we report 

the results of calculations for both scenarios.  

85.0cos,66.0cos ≈≈ θθ

 

cosθwater /CO 2 ≈ 0.93



3 Southern North Sea Example 
We have applied this analysis to gas fields from the UK Southern North Sea, as a 

uniform publicly available dataset is available that includes gas expansion factors that 

are not otherwise commonly published, and chemical analyses of the gas [I L Abbotts, 

1991]. The fields all contain dry gas, with methane contents of 91 – 95 mol %, and 

CO2 contents of 0.4 – 1.2 mol % (Table 1).  The seal in this instance is the Zechstein 

halite, so that capillary leakage is impossible, and the column height ratios would not 

need to be calculated in as real-life assessment of storage capacity. However, it does 

provide a realistic reference dataset for global submarine reservoir conditions that are 

also relevant to a number of cases where capillary leakage is the limiting factor; 

results on commercial datasets where capillary leakage is likely to be the limiting 

control are comparable. A histogram of the maximal and safe column height ratios 

calculated for these data is shown in Figure 3 for all the fields with sufficient 

information (Table 1).  

The maximal column height ratios, neglecting contact angle changes, are all 

greater than 0.995 and less than 2. When experimental contact angles are included, the 

safe conversion factors are in the range of 0.7 – 0.92; the exceptions being the North 

and South Sean fields. In the latter, the predicted CO2 densities are higher than other 

fields because the CO2 is in the liquid phase with a density that is substantially higher 

than the supercritical CO2 in the higher pressures and temperatures examples.  

The conversion factor is more sensitive to changes in the CO2 density than the 

gas density because the density difference between the CO2 and water is smaller. The 

fields with the poorest conversion factors correspond to hot, low pressure reservoirs 

where the CO2 is less dense, such as Ravenspurn South. 

The above analysis indicates that the results of this assessment are crucially 

dependant upon the wetting behaviour of minerals in a CO2-rich setting. It is 

suggested that more research is required in this field.  

Where the conversion factor is confidently assessed as greater than 1, a further 

assessment of the structural geometry of the traps could be performed to assess 

whether any extra storage volume would be gained by an increased column height, i.e. 

filling any under-filled structures to spill point, subject to pressure increase limitations 

that are outwith the scope of this paper. If the safe column height conversion factors 

are taken to be the more realistic of the values calculated here, then this leads to a 

reduction in the CO2 storage volume estimate of the fields. In geometrically complex 



reservoirs, each trap requires individual assessment to calculate the storage capacity 

with the safe CO2 column height. 

In order to calculate the safe and maximal column heights, we multiply the 

conversion factors by the pre-production gas column height. Where the gas column 

was capillary limited, the CO2 column heights are also capillary limited. However, the 

pre-production column height might not have been capillary limited. In an under filled 

gas field, the derived CO2 column height will be a lower estimate of the true capillary 

limited capacity. Similarly, where the gas field is actually limited by a structural spill 

point, the derived CO2 column height will also be a lower estimate. 

This analysis has not taken into account irreversible invasion of water during the 

production phase which does not affect the estimate of the safe column height since 

buoyancy is purely derived from the vertical extent of a connected stringer of the 

buoyant fluid within the reservoir. However, the irreversible water saturation does 

affect the assessment of capacity, which is beyond the scope of this paper. Capacity is 

reduced by the irreversible invasion of water since it decreases the proportion of pore 

space available for CO2 compared to what was available for the initial gas in place.  

4 Second order factors 
 

4.1 Effect of brine salinity on IFT 
Thus far, we have not considered the effect of brine salinity on the IFT, the data 

in Figure 1 was for low salinity cases. The effects of brine salinity on measurements 

of IFT and wettability for the geological storage of CO2 have been investigated by 

several authors [Aggelopoulos, 2010; Chalbaud et al., 2009; Espinoza and 

Santamarina, 2010; Massoudi and King, 1975]. They came to several important 

conclusions. Firstly, the basic form of the IFT curve is controlled primarily by the 

density difference between the CO2 and brine. Further, increasing salinity linearly 

shifts the IFT curve to higher values at around a gradient of 1.3 mN/m per molal salt 

concentration. For salt concentrations above 30g/L of NaCl they found that the 

induced IFT increase was outwith experimental error. 

This effect alone has the potential to increase the IFT in saline formations at depths 

where CO2 would be in the dense phase by ~4-5 mN/m making the ratio, 

6.05/3
/4

/2 =≈
waterCH

brineCO

γ
γ

 



compared to ~0.5 for the pure water case. However, increasing salinity can also 

increases the IFT for light hydrocarbon/water systems [e.g. Cai et al., 1996], which 

would moderate the potential increase. The effect of brine salinity on the IFT ratio is 

therefore generally a second order feature. 

A comprehensive description of the effect of brine salinity on the hydrocarbon/brine 

IFT is a complicated problem due to the diversity of the composition of hydrocarbon 

phases. The salinity of the brine increases the IFT between the brine and either a gas 

or non-polar oil. However, polar fractions such as resins and asphaltenes may contain 

groups that tend to decrease the IFT. The magnitude of these effects will be on the 

same order as the effects CO2 saturation in the brine. 

Yang et al. (2005) measured the dynamic contact angle between CO2, brine and crude 

oil systems. They noted that the measured dynamic IFT rapidly decays to a constant 

value explained by the absorption of CO2 molecules and the reorientation of water 

molecules at the interface. CO2 dissolution is also a factor with the crude oil. The 

IFTs are slightly lower in the presence of CO2. These effects are pressure and 

temperature dependent.  

4.2 Generalisation to sour-gas systems 
 

Thus far, this paper has concentrated on the geological storage of CO2 in a 

depleted field which contained either a pure hydrocarbon mixture or a hydrocarbon + 

CO2 mixture. Now we include a brief discussion on how this system can be 

generalised to include H2S in the predominantly CO2 injection stream. Technically, an 

acid gas is any gas that contains significant amounts of acid gases such as CO2 or H2S; 

a sour as is a natural gas that specifically contains significant amounts of H2S. Many 

of the fields yet to be developed contain sour gas and the disposal of H2S is 

problematic. The conventional process is to separate the sulphur using the Claus 

process but, as well as several environmental challenges regarding this process, the 

production of sulphur by this mechanism is already in excess of world demand. An 

alternative way to deal with the H2S is to reinject it into the subsurface, potentially 

mixed with CO2, as part of a CCS project which is the context we are interested in 

here. Here we explore briefly how the terms of Eqn (7) would be altered by the 

presence of H2S. 



The wettability alteration induced by H2S has been investigated on several 

substrates [Shah et al., 2008a]; it was found that with quartz and a caprock sample no 

significant wettability alteration was observed. With a mica substrate the water 

wettability was moderately altered in the presence of gaseous H2S, and drastically in 

the presence of dense (liquid) H2S. 

 The density of H2S+CO2 mixtures has to be considered in place of the density of 

pure CO2 in the density difference ratio; data and models exist for predicting this 

density [e.g., C. E. Stouffer et al., 2001]. 

In order to estimate the impact of H2S on CO2 storage in a depleted gas field, 

we need to be able to assess the impact of H2S on the IFT of gas mixtures. Pure H2S 

has a lower IFT than either methane or CO2 at approximately 20% of the pure 

methane value. It has been shown that we can estimate the IFT of mixtures including 

H2S, by generalising the gas/water IFT estimation (Eqn 8) [Shah et al., 2008b], 

( ) waterCHCHCOSH

waterCHCHwaterCOCOwaterSHSHwatergasMixture

xxx
xxx

/4422

/44/22/22/

5.02.0 γ

γγγγ

++≈

++≈
   (10) 

As before, the influence of the IFT from different components is dependent 

upon the mole fraction of that component in the multi-component mixture. Thus the 

impact of the addition of a finite number of moles of H2S on the IFT of the mixture is 

dependent on the absolute number of moles of the other components through the 

calculation of mole fractions.  

We consider the implications for the range of likely storage scenarios 

involving a sour gas stream. There are a number of different sour-gas injection 

scenarios relevant to CO2 storage; (i) injection of pure CO2 into a field which initially 

contained a sour gas, (ii) injection of a CO2 + H2S mixture into a field which initially 

contained low amounts of H2S, and (iii) injection of a CO2 + H2S mixture into a field 

which initially contained a sour gas. 

4.2.1 Case (i): The initial gas in place was sour 
The IFT of the initial gas in place would be lower than for a pure hydrocarbon 

gas resulting in the pre-production column height being lower than it would have been 

for a purer hydrocarbon, assuming that the capillary entry pressure of the seal was the 

limiting factor in determining the pre-production column height. Essentially, the 

reduced seal performance due to the presence of H2S is recorded in the pre-production 

column height. For a known gas composition, the IFT of this pre-production mixture 



can again be estimated using Eqn 10 and applied in Eqn 6 to convert the sour pre-

production column height to a pure CO2 column height. Where a pure CO2 stream is 

injected into a sour gas reservoir, we can expect larger column heights of CO2 than 

would have been predicted using the pure methane IFT for the initial gas in place, 

again assuming that the capillary entry pressure of the seal was the limiting factor in 

determining the pre-production column height. 

4.2.2 Case (ii): A sour CO2 stream is injected in a field that did not initially 
contain sour gas 
This is the simplest case to consider. The IFT of a CO2+H2S injection mixture, 

with a known composition, can be calculated using Eqn 10. This IFT can then be used 

to find the column height conversion factor Eqn 7 and estimate the new column 

height. The estimated maximum CO2 column height will be reduced compared to 

injecting pure CO2, again assuming that the capillary entry pressure of the seal was 

the limiting factor in determining the pre-production column height.  

4.2.3 Case (iii): Where a sour CO2 stream is injected into a sour gas reservoir 
Here we need to estimate both the injected sour CO2 IFT and the produced 

sour gas IFT. The magnitude of the ratio of these IFTs will determine whether there 

will be a net increase or decrease in column height compared to non-sour case. The 

calculation of the IFT relies on knowing the mole fraction of each component, which 

must be assessed on a case-by-case basis. 

Here we present one specific case to demonstrate the non-linear trend in IFT 

ratio with depth that emerges as a consequence of the non-linear equations of state. 

We consider the case where we extract H2S from a produced gas and 100 % of this 

H2S is re-injected within the injection gas, and assuming 100 % efficient volume for 

volume replacement of total gas within the reservoir; this conserves the molar 

concentration of H2S. The produced gas is composed purely of CH4 and H2S. First we 

need to calculate the total number of moles per unit volume of H2S in the produced 

gas under reservoir conditions, 
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The injection stream is a single phase composed purely of CO2 and H2S and is 

assumed to have the same number of moles of H2S per unit volume under reservoir 

conditions as were present in the produced gas, so that 100 % of the produced H2S is 



re-injected. Assuming any density change in the injection stream due to the presence 

of H2S is negligible, the mole fraction of H2S in the injection stream can be calculated 
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These two equations are non-linearly related due to the effect of the density of 

CO2 and CH4 at reservoir pressure and temperature. In figure 4 we explore this non-

linear relation as a function of depth using the two scenarios presented earlier in 

Figure 2 to define the subsurface pressure and temperature trends.  

We calculate the mole fraction of H2S in the injection stream for mole 

fractions in the produced gas of 0.01, 0.02, 0.05 and 0.1 using Eqns (11) and (12) over  

2 km depth range. These are plotted in Figure 4a where the diagonal dashed lines 

show lines of equivalence between gas compositions where 

injected
subsurface

produced
subsurface IFTIFT =  in black and 

injected
subsurface

produced
subsurface IFTIFT 2=  in red; the latter being equivalent to the non 

sour case presented earlier in this paper where the IFT of pure CO2 was noted to be 

half that of pure CH4 which is confirmed by this line of equivalence passing through 

the origin where there is no H2S in either stream.  

In the inset in Figures 4a and b we zoom in on the data and add contours of 

constant depth. In both cases the mole fraction in the injection stream initially 

decreases with depth before increasing again, reflecting the trade off in density 

variations between CO2 and methane with depth (Figure 1). This is shown more 

clearly in Figures 4c and d where the mole fraction of H2S in the injection stream is 

plotted as a function of depth (solid line) compared to the mole fraction of H2S in the 

produced gas (dashed line) for the same range of H2S contents in the produced gas.  

Having calculated the mole fraction of H2S in both the produced and injected 

streams as a function of depth, we can use Eqn 10 to find the ratio of the IFTs in the 

injected and produced gasses, which is required to determine the column height 

conversion factor (Eqn 7). In this example, mole for mole conservation of H2S in the 

produced and injection streams assuming a total volume for volume replacement of 

the gasses produces a weak increase in the IFT ratio tending to increase column 

heights. 

Note that the case of large proportions of H2S requires a full calculation of the 

density of the mixture, which remains beyond the scope of this paper. We have not 



considered the modifications to the phase diagram associated with multi-component 

gasses, such as the change in bubble point because such a complete treatment is non-

unique and substantially beyond the scope of this paper; the concepts outlined here 

remain pertinent to the full analysis.  

5 Conclusions 
We have demonstrated the utility of a simple conversion factor to estimate safe 

CO2 column heights in depleted gas fields from known, pre-production gas column 

heights. This technique has greater utility than estimation from first principles, as pore 

throat radii do not need to be estimated, a procedure which would introduce order of 

magnitude uncertainties. The measurement of this property requires specific core 

which may not be available. The conversion factor takes into account the differences 

in buoyancy drive, interfacial tensions and contact angles between the two systems. 

 Where CO2 is in the dense phase, the reduction in capillary entry pressure as a 

consequence of interfacial tension differences at the seal is at least balanced by the 

decrease in buoyancy of supercritical CO2 compared to natural gas. Thus actual 

reductions in the column height are then derived from changes in contact angles, 

about which there are large theoretical and experimental uncertainties. 

Neglecting the role of contact angles, an optimistic approach, for fields with CO2 

in the dense phase, typical conversion factors are in the range of 1.0-2.0 for the UK 

Southern North Sea case studies. For shallow-buried fields with low pressure CO2 in 

the gas phase, the column height conversion factor can be as low as 0.5. 

A more conservative estimate includes an assessment of fluid-mineral contact 

angle ratios, about which there is significant uncertainty but is a number less than but 

on the order of 1. For shaley caprocks this may be as low as 0.7, but this endmember 

estimate was based on a single mineral analysis and scaling up to a complex reservoir 

caprock is likely to increase this number towards 1 as suggested by other studies. For 

example, experiments on carbonate rich caprocks indicate that caprock will remain 

water wet. Taking the most extreme value for the single mineral reduces conversion 

factors to between 0.7-1.3 for the Southern North Sea case studies.  This suggests that 

more research should be directed towards understanding wetting behaviour in CO2-

rich systems to determine whether wettability is a significant control in real systems.  
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Variable Glossary 

 

P   Reservoir pressure [MPa] 

T   Reservoir temperature [K] 

gS    The specific gravity 

gasB   The gas formation factor 

gasZ   Compressibility of produced gas 

sw   Weight percent of dissolved salt in formation water 

ym   Molar concentration of component y [mol/m3] 

yx   Mole fraction of component y  in a mixture 

2/COgasψ  Natural gas to CO2 column height conversion factor 

wρ , gasρ , 2COρ  Density of formation water, produced gas, carbon dioxide [kg/m3] 

YX /ρ∆   Density difference between substances Y and X [kg/m3] 

YX /γ   Interfacial tension between substances X and Y 

YX /cos θ  Contact angle for substances X and Y on some implicit solid matrix 

YXh /   Column height of substance X with substance Y above 

yM   Molecular weight of component y [g/mol] 

pr    Pore radius 

tr    Throat radius   

33144.8 −= ERgas  Universal gas constant for P and T in [MPa] and [K] 

 
 



Appendices 

Formation water density, wρ  

All of the calculations in this section are using T[F], P[psia] and 

density[lbm/ft3] as described by Danesh [2007]. The resulting density, wρ  needs to be 

converted back into SI units to integrate with the rest of the analysis.  

The formation water density at standard conditions expressed in the weight 

percent of dissolved salt, sw  can be estimated in the form, 

23
)tan( 1060074.1438603.0368.62 ssdardsw ww −×++=ρ . 

Neglecting the mass of dissolved gas in the water at reservoir conditions, the 

water density at reservoir conditions can be calculated as, 

w

dardsw
w B

)tan(ρ
ρ =   . 

Where wB  is the formation water volume factor at standard conditions which 

can be calculated knowing the reservoir P and T (McCain, 25). 

( )( )TwPww VVB ,, 11 ∆+∆+=  

This expression contains a pressure and temperature correction factor, 

( ) ( )TEEPTEEPV Pw 1372834.11025341.2995301.1758922.3 2
, −+−−−+−−=∆  

2
, 750654.5433391.12001.1 TETEEV Tw −+−+−−=∆  

Produced gas density (dry gas), gasρ  

Using the ideal gas formula the density under reservoir conditions [A Danesh, 

2007] is expressed as, 

TRZ
PM

gasgas

gas
gas =ρ  

Where, 

The gas formation factor, gasB  describes the ratio of the gas volume at 

reservoir conditions compared to the gas volume at standard conditions and is 

frequently a recorded reservoir parameter. This can be used to the compressibility of 

the gas, 

T
PB

Z gas
gas 41047.3 −×

=    . 



Where the molecular weight is known, this can be used directly. For pure 

methane, 16=gasM . For natural gas mixtures it will be higher, typically ~22 [R C 

Selley, 1998]. For gasses with heavier hydrocarbon molecules, such as pentane, it can 

be as high as ~43 (Kapuni field, NZ [R C Selley, 1998]). 

The specific gravity is often the quoted parameter, which relates the molecular 

weight of gas at standard conditions to the molecular weight of air at standard 

conditions, gairggas SMSM 96.28== . 
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Tables 
 
Table 1- Calculated column height ratios for gas fields from the UK Southern North Sea. 

 

Field name 
Pressure 

[MPa] 
Temp 

[K] 

CO2 
Density 
[kg/m^3] 

Corrected 
water 

density 
[kg/m^3] 

Gas 
expansion 

factor 
Gas 

compressibility 

Molecular 
Weight of 

Gas 

Gas 
density 

[kg/m^3] 

CO2/water 
density 

difference 
[kg/m^3] 

Gas/water 
density 

difference 
[kg/m^3] 

Density 
ratio 

IFT 
Ratio 

Maximal 
column 
Height 

correction 
factor 

Safe column 
Height 

correction 
factor  

Amythest 28.25 360.93 692.54 1149.79 235.0 0.960 16.962 166.361 457.25 983.42 2.15 0.502 1.079 0.755 
Barque 26.53 352.59 709.30 1123.00 229.0 0.947 16.650 159.126 413.70 963.87 2.33 0.501 1.167 0.817 
Camelot 19.64 338.71 681.60 1113.31 192.0 0.870 16.915 135.539 431.71 977.77 2.26 0.500 1.133 0.793 
Cleeton 28.58 352.59 733.50 1250.30 244.0 0.957 16.975 172.857 516.80 1077.44 2.08 0.501 1.045 0.731 
Clipper 26.53 352.59 709.20 1123.38 229.0 0.947 16.535 158.027 414.18 965.36 2.33 0.501 1.168 0.818 
Leman 20.82 324.82 785.30 1169.40 229.0 0.807 16.667 159.293 384.10 1010.11 2.63 0.501 1.318 0.922 

Ravenspurn 
S 30.94 366.48 699.20 1239.46 240.0 1.014 16.932 169.600 540.26 1069.86 1.98 0.502 0.995 0.696 

Rough 31.23 364.82 709.30 1223.43 255.5 0.966 17.010 181.384 514.13 1042.05 2.03 0.502 1.016 0.712 
Sean S 58.57 362.04 887.30 1158.40 192.0 2.428 17.209 137.896 271.10 1020.51 3.76 0.503 1.894 1.326 
Sean N 58.57 367.59 872.80 1154.84 202.0 2.273 17.005 143.356 282.04 1011.49 3.59 0.502 1.800 1.260 

West Sole 29.39 358.15 717.60 1152.21 239.0 0.989 16.787 167.441 434.61 984.77 2.27 0.502 1.137 0.796 
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Figure captions 
 
Figure 1 (Colour online) Compilation of IFT data for (CO2+CH4)/water mixtures [Q 

Y Ren et al., 2000] and for the pure CO2/water [P Chiquet et al., 2007b]. For the data 

between 0 to 80 mol%CO2, at each pressure measurements are taken at 4 temperatures 

(298.15K, 313.15K, 333.15K, 353.15K and 373.15K). For the data at 100 mol%CO2, 

measurements were taken at 5 different temperatures. Chiquet suggested that previous 

measurements of IFT were biased to lower values because they assumed a density of 

the CO2 saturated water that proved inaccurate; we interpret it as being likely that the 

IFT values for the CO2+CH4 mixtures lie closer to the lines fitted between the pure 

CO2 and pure CH4 IFT values. This interpretation is supported by the tight clustering 

of the Chiquet measurements compared to Ren. 

 

Figure 2 (Color online) Phase properties and buoyancy drives for two different 

subsurface scenarios. The left hand figures refer to a sub-aerial case and the right a 

submarine case. (a,b) Vapour pressure curves (solid black) with subsurface pressure 

temperature trajectory (solid red). Contours of constant density as a function of 

pressure and temperature have been added in dashed lines; the corresponding density 

[kg/m3] has been written in the same color. Dotted blue lines are the critical pressure 

and temperature. (c,d) Subsurface densities (solid red line) plotted on a pressure-

density phase diagram. The black solid line shows the saturated vapour curve and the 

dew point curve. Some isotherms have been added near the critical point for reference 

as dashed lines. Dotted blue lines show the critical density and pressure. The dashed 

red line in (d) is the phase change pressure. (e,f) Natural gas, CO2, fresh water and 

saline density profiles. The blue dotted line is the depth corresponding to the critical 

pressure and the red dashed line in (f) is the depth at which the phase change occurs. 



(g,h) Density differences between the (1) natural gas and fresh water (black solid) or 

saline (black dashed) (2) CO2 and fresh water (red solid) or saline (red dashed). (i,j) 

Density difference ratios between (1) gas/fresh water and CO2/fresh water systems 

(solid lines) and (2) gas/saline and CO2/saline systems (dashed lines). 

 

Figure 3 Histogram of (a) maximal and (b) safe (including experimental contact angle 

data) column height ratios for the Southern North Sea dataset described in the text. 

 
Figure 4 (Color online) Generalisation to acid gases. Here we present an evaluation 

of the impact of H2S on the interfactial tension ratio assuming the same molarity of 

H2S in a produced methane stream and in an injected CO2 stream. (a,b) Plot showing 

the produced and injected molar fractions of H2S. The line of equivalence where the 

gas compositions have the same IFT is shown with the black dashed line. The line of 

equivalence where the injected (CO2+H2S) stream has half the IFT of the produced 

(CH4+H2S) gas is shown with the red dashed line. Calculations have been performed 

to calculate the molar fraction of H2S in the injection stream assuming a constant 

molar fraction in the produced gas as a function of depth. The inset figure zooms in on 

the data and adds contours of depth. Note how the injected molar fraction decreases 

with depth then increases again. (c,d) Plot of the molar fraction of H2S in the injection 

stream (solid line) given some molar fraction in the produced gas (dashed line). The 

molar fractions vary non-linearly as they are dependent upon the densities of the CO2 

and methane which vary non-linearly with depth (Figure 2c,d). (e,f) The IFT ratio is 

calculated as a function of depth using Eqn 10. The IFT of the injection stream is 

always slightly greater than half the IFT of the produced gas. These ratios also vary 

non-linearly with depth because they are functions of the molar fractions. 
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