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Abstract: We look at the generalisation of topologically massive gravity (TMG) to

higher spins, specifically spin-3. We find a special “chiral” point for the spin-three,

analogous to the spin-two example, which actually coincides with the usual spin-two

chiral point. But in contrast to usual TMG, there is the presence of a non-trivial

trace and its logarithmic partner at the chiral point. The trace modes carry energy

opposite in sign to the traceless modes. The logarithmic partner of the traceless

mode carries negative energy indicating an instability at the chiral point. We make

several comments on the asymptotic symmetry and its possible deformations at this

chiral point and speculate on the higher spin generalisation of LCFT2 dual to the

spin-3 massive gravity at the chiral point.
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1. Introduction

Gravity in three dimensions has long been a testing ground for constructing a theory

of quantum gravity in higher dimensions. Although the actual solutions are quite

different from say gravity in four dimensions, the three dimensional models have been

instructive for the analysis of more conceptual problems like the role of topology and

topology-change, the connections between different quantisation procedures. As is

well known, the main difference of three dimensional gravity with higher dimensional

gravity arises from the fact that there are no local degrees of freedom for gravity in
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3d. There are no gravitational waves and curvature is concentrated at the locations

of matter. For topologically trivial spacetimes, there are no gravitational degrees of

freedom at all.

To make the dynamics of three dimensional gravity more like gravity in higher

dimensions, one needs to restore local degrees of freedom. In 3d, there is the unique

opportunity of adding a gravitational Chern-Simons term to the action which now

becomes

S3 = SEH + SCS (1.1)

where SEH =

∫

d3x
√
−g(R− 2Λ) (1.2)

and SCS =
1

2µ

∫

d3xǫµνρ
(

Γσ
µλ∂νΓ

λ
ρσ +

2

3
Γσ
µλΓ

λ
νθΓ

θ
ρσ

)

(1.3)

The linearlised equations of motion of this theory are those of a massive scalar field.

The existence of this massive excitation can also be traced to the effective interac-

tion of static external sources where one finds a Yukawa attraction with interaction

energies as expected for a massive scalar graviton. The theory is called topologically

massive gravity [1, 2]

Topologically massive gravity theories in three dimensions with a negative cos-

mological constant (Λ = −1/ℓ2) have been recently extensively studied in the context

of AdS/CFT [3]. Without the Chern-Simons term, 3d gravity in AdS space has the

additional feature of having black hole solutions [4]. Now with the topological term,

we have both black holes and propagating gravitons. For a generic value of the co-

efficient of the gravitational Chern-Simons term, the theory has been shown to be

inconsistent: either the black hole or the gravitational waves have negative energy.

It was conjectured in [5] that the theory becomes sensible at a special point where

µℓ = 1. The authors claimed that the dual boundary CFT became a chiral CFT

with one of the central charges vanishing (cL = 0). This claim, however, was soon

hotly contested [6] and in following works [7], topologically massive gravity at the

chiral point was shown to be more generally dual to a logarithmic CFT. The energies

of these logarithmic solutions were calculated and it was shown that these carried

negative energy at the chiral point indicating an instability and the breakdown of

the Chiral gravity conjecture. A more complete analysis based on techniques of

holographic renormalisation showed that this claim was indeed justified [9]. It was

discussed that the original chiral gravity conjecture might also hold in a limited

sense when one can truncate the LCFT to a chiral CFT provided certain three-point
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functions vanish 1. Similar claims were also made in [11].

Higher-spin theories in AdS3 have been the subject of active interest recently.

Unlike their higher-dimensional cousins, they admit a truncation to an arbitrary

maximal spin N , rather than involving the customary infinite tower of higher-spin

fields. Also, like gravity, they possess no propagating degrees of freedom (see, for

example, [13] or [16]). The asymptotic symmetry structure for theories with higher

spin in AdS have been examined in [12, 13] (see also the recent work [14]). The

authors find that a Brown-Henneaux [15] like analysis for a theory with maximal spin-

N in the bulk yields a WN asymptotic symmetry algebra. For the spin-3 example,

this is the non-linear classical W3 algebra. This has been tested at the one-loop level

in [16], using the techniques developed in [17]. Finally, this lead to the proposal of

a duality between a family of higher-spin theories in AdS3 and WN minimal models

in the large N limit in [18], which has subsequently been checked in [19].

Motivated by the features of topologically massive gravity recounted previously, a

natural question to ask is what happens when these higher-spin theories are similarly

deformed by the addition of a Chern-Simons term. In this paper, we initiate a study

of these issues by considering the effect of parity violating, three-derivative terms

added to the quadratic action of spin-3 Fronsdal fields in AdS3. These are the spin-3

analogues of the linearisation of the gravitational Chern-Simons term described in

(1.3), and we shall continue to refer to them as “Chern-Simons” terms.

The outline of the paper is as follows: we start out in Sec.2 by constructing the

curved space analogue of the action for massive gravity coupled to higher spin modes

in [21]. The equations of motion are derived from there. After relating the coefficient

of the spin-three “Chern-Simons” term to the spin-two term in Sec.3 by looking at

the frame-like formulation, we enter a detailed analysis of the equations of motion in

Sec.4.

Here in Sec.4, following a strategy similar to the spin-two case, we first re-

write the equations in terms of three commuting differential operators. At the chiral

point, two of these operators become identical indicating an inadequacy of the basis

of solutions and thereby necessitating the existence of a logarithmic solution. We

solve the equations of motion explicitly. We find that unlike the spin-2 counterpart,

the trace of the spin-3 cannot be generically set to zero and will be responsible for

giving rise to non-trivial solutions in the bulk which carry a trace, in addition to the

traceless mode. We also construct the logarithmic solutions corresponding to both

1The existence of such a truncation only shows that a set of operators of the LCFT form a closed

sub-sector, not that this sub-sector has a dual of its own [9].
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the trace and traceless mode. We compute energies for all the solutions. Away from

the chiral point, the massive traceless mode carries negative energy, making this a

generalisation of the spin-two example. The novelty in our analysis is the existence

of the trace mode. The massive trace mode carries positive energy away from the

chiral point and is not a gauge artefact. At the chiral point, both the traceless and

the trace mode have zero energy. The logarithmic partner of the trace mode at the

chiral point carries positive energy whereas the logarithmic partner of the traceless

mode has negative energy indicating an instability similar to the case of the spin-two

example. We also show that massless branch solutions, and hence massive branch

solutions at the chiral point, can be gauged away by appropriate choice of residual

gauge transformation. This along with the fact that left branch and massive branch

solutions carry zero energy at the chiral point suggests that these can be regarded

as being gauge equivalent to vacuum. But the logarithmic branch solutions are not

pure gauge and the negative energy for the logarithmic partner of the traceless mode

is a genuine instability in the bulk, similar to the spin-2 example. Apart from all

this we find a peculiar “resonant” behaviour for the trace modes at µℓ = 1
2
, which

needs some understanding from the CFT perspective.

In Sec.5, we make several comments on the nature of the asymptotic symmetry

with the gravitational Chern-Simons term. At the chiral limit, we argue that the

natural symmetry algebra to look at is a contraction of the W3 algebra which essen-

tially reduces to the Virasoro algebra. We comment on other possible realisations at

this limit. We end in Sec.6 with discussions and comments and directions of future

work. A couple of appendices list some detailed calculations omitted from the main

text.

Note Added:

While this work was being readied for submission, the paper [20] was posted on the

arXiv which has some overlap with the present paper. There are some important

differences, however. Unlike in [20] we find additional physical spin-one modes (the

trace of the spin-three field) that need to be accounted for2. The analysis of the

spin-3 traceless mode is in agreement with [20]. In addition, we also construct all

2We note that similar trace modes were found in the flat-space analysis of Deser and Damour

[21] that we shall shortly come to. These (with an appropriate sign convention for the action) were

interpreted as ghost-like excitations. But as we will see later, as per our sign convention of the

action (which is required for the positivity of energy of BTZ black holes [5]), these modes carry

positive energy and hence cannot be ghost like. On the contrary the traceless modes will carry

negative energy and will be ghost-like.
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logarithmic solutions and compute their energies and have a different proposal for

the asymptotic symmetry algebra.

2. Spin-3 fields in AdS3 with a Chern Simons term

We begin by reviewing the linearised action for spin-3 Fronsdal fields3 with a Chern-

Simons term in flat space [21] (see also the related work [22]). The Fronsdal operator

F for the spin-3 field is given by

FMNP [φ] = ∂2φMNP − ∂(M∂
AφNP )A + ∂(M∂NφP )A

A, (2.1)

where the brackets denote the sum of the minimal number of terms necessary to have

complete symmetrisation in the enclosed indices without any overall normalisation

factor. We then define the tensor GMNP by

GMNP = FMNP − 1

2
η(MNFP )A

A. (2.2)

It was shown in [21] that the most general action with up to three derivatives and

parity violating terms could be written as

S [φ] =
1

2

∫

d3xφMNPGMNP +
1

2µ′

∫

d3xφMNP ǫQR(M∂
QGR

NP ) (2.3)

The two terms appearing in this action are each invariant under the gauge transfor-

mation

φMNP 7→ φMNP + ∂(MξNP ), (2.4)

where ξ is a traceless symmetric rank two tensor. The first term is just the usual

Fronsdal action for massless spin-3 fields [23], while the second term is the linearised

Chern-Simons term.

In this paper, we will study the covariantisation of this action to AdS3. To do so,

we minimally couple the background gravity to the spin-3 fluctuation by promoting

all partial derivatives to covariant derivatives, and demanding invariance under the

gauge transformations4

φMNP 7→ φMNP +∇(MξNP ), (2.5)

3We remind the reader that these fields are completely symmetric rank-3 tensors. The usual

double-tracelessness constraint would not play a role before the introduction of spin-4 fields.
4In going from flat space to AdS3, in addition to changing partial derivatives to covariant deriva-

tives in (2.1), we have to multiply the last term by a factor of 1

2
so that we are consistent with our

earlier convention of symmetrisation. With partial derivatives, the last term will have a minimum of

three terms whereas with covariant derivatives, it will have six terms, because covariant derivatives

do not commute.

– 5 –



where ∇ is the covariant derivative defined using the background AdS3 connection.

To construct the AdS generalisation of (2.3), it is helpful to recollect what happens in

the case where there is no topological term, i.e. the covariantisation of the Fronsdal

action. As reviewed for example in [13], the Fronsdal operator (2.1) (defined now

with covariant derivatives instead of partial derivates) is no longer invariant under

the gauge transformation (2.5), what is invariant (for the spin-3 field in AdS3) is the

combination [24]

F̃MNP = FMNP − 2

ℓ2
g(MNφP )A

A, (2.6)

and if we now define

GMNP = F̃MNP − 1

2
g(MN F̃P )A

A, (2.7)

the gauge invariant Fronsdal action is given by [24]

S [φ] =
1

2

∫

d3x
√
−gφMNPGMNP . (2.8)

It turns out that the case with the Chern-Simons terms is essentially similar. The

gauge invariant action is given by

S [φ] =
1

2

∫

d3x
√
−gφMNPGMNP +

1

2µ′

∫

d3x
√
−gφMNPεQR(M∇QGR

NP ), (2.9)

where GMNP is now defined through (2.7), and

εMNP ≡ 1√−g ǫ
MNP . (2.10)

We remind the reader that εMNP is a tensor and all indices are raised and lowered by

the background metric. We can write the above action more compactly by defining

F̂MNP = F̃MNP +
1

µ′
εQR(M∇QF̃R

NP ), (2.11)

in terms of which the action becomes

S [φ] =
1

2

∫

d3x
√
−gφMNP

(

F̂MNP − 1

2
g(MN F̂P )

)

. (2.12)

One may further show that this action gives rise to the equations of motion

D(M)F̃MNP ≡ F̂MNP = F̃MNP +
1

µ′
εQR(M∇QF̃R

NP ) = 0. (2.13)

Alternatively, one could have started with constructing the most general parity vio-

lating, three derivative equations of motion for φMNP in flat space in three dimensions

consistent with the gauge invariance (2.4), and attempted a covariantisation to AdS.
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We had initially followed this procedure and obtained identical results. In the above

equations, however, the coefficient µ′ is arbitrary and is not fixed by the gauge invari-

ant structure. In the next section, we will look at the relation of our action with the

SL(3, R) × SL(3, R) Chern-Simons formulation of spin-3 gravity [13] with unequal

levels and obtain the relation of µ′ with the coefficient of gravitational Chern-Simons

term µ, given in terms of the left and right levels aL and aR as,

aL − aR
2

=
1

µ
. (2.14)

3. Relation with Chern-Simons formulation of high spin grav-

ity and fixing the normalisation

It has been observed in [12, 13] that higher spin gravity in three dimensions can have

a Chern-Simons formulation. The levels of the Chern-Simons action in [12, 13], were

taken to be equal and hence it produced only the higher-spin extension of Einstein

gravity. Since it is known that if we take unequal levels of the Chern-Simons action

in pure gravity and impose the torsion constraints, we get parity violating Chern-

Simons term and the action becomes that of a topologically massive gravity. We

should also be able to do the same for spin-3 massive gravity by taking unequal levels

of the Chern-Simons terms. After taking unequal levels for the SL(3, R)× SL(3, R)

Chern-Simons action in [13], and imposing the torsion constraints, we arrive at the

following action

S =
1

8πG

∫

ea ∧
(

dωa +
1

2
ǫabcω

b ∧ ωc − 2σǫabcω
bd ∧ ω c

d

)

− 2σeab ∧
(

dωab + 2ǫcdaω
c ∧ ω d

b

)

+
1

6l2
ǫabc

(

ea ∧ eb ∧ ec − 12σea ∧ ebd ∧ e c
d

)

+
1

µ

∫

ωa ∧ dωa +
1

3
ǫabcω

a ∧ ωb ∧ ωc − 2σωab ∧ dωab − 4σǫabcω
a ∧ ωb

d ∧ ωdc. (3.1)

Subject to the torsion constraint

dea + ǫabcωb ∧ ec − 4σǫabcebd ∧ ωd
c = 0,

deab + ǫcd(aωc ∧ e b)
d + ǫcd(aec ∧ ω b)

d = 0. (3.2)

This is the full non-linear action for spin-3 massive gravity. But since we are in-

terested in linearised equations of motion, we can expand this action around AdS3

background

ēa = eaAdS, ēab = 0. (3.3)
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And then take linearised fluctuations h a
M and h ab

M around this background. And

finally we should be able to write everything in terms of the physical Fronsdal fields

h̃MN and φMNP , defined as

h̃MN =
1

2
ē a
(MhN)a,

φMNP =
1

3
ēa(M ē

b
NhP )ab. (3.4)

The above action (3.1) is, however, given in terms of the frame fields

hMN = ē a
MhNa,

hMNP = ēaM ē
b
NhPab. (3.5)

The frame fields has an additional Λ gauge symmetry [13] which can be gauge fixed

to write down the entire action in terms of the physical Fronsdal fields (3.4).

If one is able to successfully implement the programme, one should arrive at the

action (2.12), since the structure is completely determined by gauge invariance. Since

we already have the action, we will bypass the complete programme and just use the

Chern-Simons formulation to fix the normalisation of the coefficient µ′. For that it

is sufficient to find the coefficient of some simple terms. Hence, we use the action

(3.1), to find the coefficients of φMNP∇2φMNP and φMNP ǫQRM∇Q∇2φ R
NP . These

coefficients can be found after a simple exercise and the quadratic action is

S =
1

2

∫ √
−g

(

φMNP∇2φMNP +
1

2µ
φMNP ǫQRM∇Q∇2φ R

NP + · · ·
)

. (3.6)

Here we have used 1
16πG

= 1 and 2σ = −1. Comparing the coefficients of the above

terms to the coefficient of similar terms in (2.12), we see that, µ and µ′ are related

by

µ′ = 6µ. (3.7)

4. Analysis of the linearised equations of motion

4.1 Solving the linearised equations of motion

In this section, we will analyse the linearised equations of motion (2.13). We wish to

cast this equation in a form D(M)D(L)D(R)φMNP = 0 for three commuting differential

operators D(M), D(L) and D(R). D(M) is defined in (2.13). So we have to put F̃MNP

(2.6) into the form D(L)D(R)φMNP . Note that generically this cannot be done. One

has to do a suitable field redefinition and use a suitable gauge condition to be able
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to do it. After a careful analysis, one finds that there is a unique field redefinition

and gauge condition which solves the above purpose. They are

φMNP = φ̃MNP − 1

9
g(MN φ̃P ),

∇Qφ̃QMN =
1

2
∇(M φ̃N). (4.1)

Using this field redefinition and gauge condition, we get

F̃MNP = ∇2φ̃MNP − 1

6
∇(M∇N φ̃P ) −

8

9l2
g(MN φ̃P ) −

1

9
∇2φ̃(MgNP ) +

1

9
g(MN∇P )∇Qφ̃Q.

(4.2)

One can further see that this F̃MNP can be cast into the desired form as

F̃MNP = − 4

ℓ2
D(R)D(L)φ̃MNP , (4.3)

where D(R) and D(L) are defined as

D(L)φ̃MNP = φ̃MNP +
ℓ

6
εQR

(M |∇Qφ̃R|NP ),

D(R)φMNP = φ̃MNP − ℓ

6
εQR

(M |∇Qφ̃R|NP ). (4.4)

Now, putting this together with (2.13), our equations of motion become

D(M)D(L)D(R)φ̃MNP = 0. (4.5)

One can also check that D(M), D(L) and D(R) are three sets of mutually commut-

ing operators. The superscripts (M), (L) and (R) stand for massive, left moving

and right moving branches, respectively. Taking trace of the equation (4.5) and

contracting it with ∇M , one finds that

∇M φ̃M = 0 (4.6)

However, we see that we do not get any tracelessness constraint from the equation

of motion and we will soon see that the trace will be responsible for giving rise to

some non-trivial solutions to the equation of motion.

Let us now try to solve for the massive branch. We can obtain the left moving

and right moving solution from this by putting µℓ = 1 and µℓ = −1 respectively.

The massive branch equation is

D(M)φ̃MNP = 0, (4.7)
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where D(M) is defined in (2.13). Let D̃(M) be the same as D(M) with µ → −µ. By

acting on (4.7) with D̃(M), we get

∇2φ̃MNP −
(

4µ2 − 4

ℓ2

)

φ̃MNP

=
1

6
∇(M∇N φ̃P ) +

8

9ℓ2
g(MN φ̃P ) +

1

9
∇2φ̃(MgNP ). (4.8)

The equations for the massless branch is the same as above with µ → 1
ℓ
. Taking the

trace of the above equation, we get

(

∇2 − 36µ2 +
2

ℓ2

)

φ̃M = 0. (4.9)

We will solve the equations in AdS3 background with the metric

ds2 = ℓ2
(

− cosh2 ρdτ 2 + sinh2 ρdφ2 + dρ2
)

. (4.10)

The metric has the isometry group SL(2, R)L ×SL(2, R)R. The SL(2, R)L isometry

generators are [5]

L0 = i∂u,

L−1 = ie−iu

[

cosh 2ρ

sinh 2ρ
∂u −

1

sinh 2ρ
∂v +

i

2
∂ρ

]

,

L1 = ieiu
[

cosh 2ρ

sinh 2ρ
∂u −

1

sinh 2ρ
∂v −

i

2
∂ρ

]

, (4.11)

where u ≡ τ + φ and v ≡ τ − φ. The SL(2, R)R generators (L̄0, L̄±1) are given by

the above expressions with u → v. The quadratic Casimirs are

L2 =
1

2
(L1L−1 + L−1L1)− L2

0,

L̄2 =
1

2

(

L̄1L̄−1 + L̄−1L̄1

)

− L̄2
0. (4.12)

The Laplacian acting on tensors of various ranks can be written in terms of SL(2, R)

Casmirs as

∇2h = − 2

ℓ2
(

L2 + L̄2
)

h,

∇2hM = − 2

ℓ2
(

L2 + L̄2
)

hM − 2

ℓ2
hM ,

∇2hMN = − 2

ℓ2
(

L2 + L̄2
)

hMN − 6

ℓ2
hMN +

2

ℓ2
hgMN ,

∇2hMNP = − 2

ℓ2
(

L2 + L̄2
)

hMNP − 12

ℓ2
hMNP +

2

ℓ2
h(MgNP ). (4.13)
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Now we are in a position to solve the equations of motion. We will first solve for

the trace (4.9), put it back into the full equation (4.8) and obtain the solution to

the full equation which carries this trace. Using (4.13), we can solve for the trace

and classify it in terms of SL(2, R) primaries and descendants. Using (4.13), we can

write (4.9) as
[

−2
(

L2 + L̄2
)

− 36µ2ℓ2
]

φ̃M = 0. (4.14)

Let us specialise to “primary” states with weights (h, h̄), i.e

L0φ̃M = hφ̃M , L̄0φ̃M = h̄φ̃M ,

L1φ̃M = 0, L̄1φ̃M = 0. (4.15)

From the explicit form of the generators (4.22), one can see that (u, v) dependence

of φ̃M is

φ̃M = e−ihu−ih̄vψM(ρ), (4.16)

The primary conditions ( second line of (4.15)) are satisfied for h − h̄ = 0,±1, but

the only solutions compatible with the condition ∇M φ̃M = 0 are

h− h̄ = 1, ψv = 0, ψρ =
2i

sinh(2ρ)
f(ρ), ψu = f(ρ),

or h− h̄ = −1, ψu = 0, ψρ =
2i

sinh(2ρ)
f(ρ), ψv = f(ρ),

(4.17)

where f(ρ) satisfies 5

∂ρf(ρ) +

[

(h+ h̄) sinh2(ρ)− cosh2(ρ)

sinh ρ cosh ρ

]

f(ρ) = 0

=⇒ f(ρ) =
1

ℓ2
(cosh ρ)−(h+h̄) sinh(ρ). (4.18)

The first line of (4.17) is the solution to our original equation of motion (4.7), whereas

the second line is the solution to the original equation of motion with µ → −µ. The
second line will therefore not belong to the massive branch, but by putting µℓ = 1

in the second line we will get the right branch solution and by putting µℓ = 1 in the

first line, we will get the left branch solution. Putting (4.17) in (4.9), we get

h = 1± 3µℓ, h̄ = ±3µℓ,

or h = ±3µℓ h̄ = 1± 3µℓ. (4.19)
5We have put an overall factor of 1

ℓ2
in the solution to f(ρ). This is because (for dimensional

consistency) we want to obtain the solution to φ̃MNP which are dimensionless so that at the end

of the day we can multiply appropriate powers of ℓ to the solution to match it with its canonical

dimension. And since we want the full solution to be dimensionless, the trace has to be multiplied

by the factor of 1

ℓ2
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It is easy to see that f(ρ) in (4.18) will blow up at ρ→ ∞ if h+ h̄ < 1. Since µℓ ≥ 1,

this rules out the lower sign in (4.19). To summarise, the different branch solution

will carry the following weights.

Massive: h = 1 + 3µℓ h̄ = 3µℓ,

Left: h = 4 h̄ = 3,

Right: h = 3 h̄ = 4. (4.20)

We can successively apply L−1 and L̄−1 on the primary solutions obtained above and

obtain the descendant solutions. After obtaining the solution for the trace, let us try

to obtain the solution to the full equation (4.8). Using (4.13), we can write (4.8) as

1

ℓ2
[

−2
(

L2 + L̄2
)

− 8− 4µ2ℓ2
]

φ̃MNP =
1

6
∇(M∇N φ̃P ) −

4

3ℓ2
(

1− 3µ2ℓ2
)

φ̃(MgNP ).

(4.21)

We have to put the solution obtained for the trace in the RHS of the above equation

and obtain the solution to the full equation. If we take the primary (or descendant)

trace solutions (4.16,4.17,4.18) in the RHS of (4.21), then one can show that φ̃MNP ,

should also be a primary (or descendant) solution. This is because of the following

identity (which we prove in appendix A)

Lξ∇(M∇N φ̃P ) = ∇(M∇NLξφ̃P ), (4.22)

where Lξ is an isometry generator.

Since the trace carries weights (h, h̄) given by (4.19), we can break the full φ̃MNP

as

φ̃MNP = χMNP + ΣMNP , (4.23)

where all the parts of φ̃MNP which carry the weights (h, h̄) are put into χMNP and

the rest in ΣMNP . They satisfy the equations

1

ℓ2
[

−2
(

L2 + L̄2
)

− 8− 4µ2ℓ2
]

χMNP =
1

6
∇(M∇N φ̃P ) −

4

3ℓ2
(

1− 3µ2ℓ2
)

φ̃(MgNP ),

1

ℓ2
[

−2
(

L2 + L̄2
)

− 8− 4µ2ℓ2
]

ΣMNP = 0. (4.24)

Since the RHS of (4.21) carries the weights (4.19), hence it should be equated with

a part of LHS which carries the same weights and hence the equation is decomposed

in the above way. The first of the equation in (4.24) becomes (by using the weights

(4.19))

8

ℓ2
(

4µ2ℓ2 − 1
)

χMNP =
1

6
∇(M∇N φ̃P ) −

4

3ℓ2
(

1− 3µ2ℓ2
)

φ̃(MgNP ). (4.25)
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The solution to χMNP is therefore

χMNP =
ℓ2

8 (4µ2ℓ2 − 1)

[

1

6
∇(M∇N φ̃P ) −

4

3ℓ2
(

1− 3µ2ℓ2
)

φ̃(MgNP )

]

. (4.26)

We see that the solution has a divergence at µℓ = 1
2
. This is not something unusual

since we are solving the equation with a source (RHS of (4.21)) of specific weights

(h, h̄). This divergent behaviour is analogous to the resonance in forced oscillations.

From (4.26), we notice that

gNPχMNP = φ̃M ∇MχMNP =
1

2
∇(N φ̃P ). (4.27)

Using (4.27) in the decomposition (4.23) and in the gauge condition (4.1), we get

gNPΣMNP = 0, ∇MΣMNP = 0. (4.28)

Let us now solve the equation of motion for ΣMNP (the second line of (4.24)) subject

to the tracelessness and gauge condition (4.28) 6. We specialise to “primary” states

with weights (h, h̄), i.e

L0ΣMNP = hΣMNP , L̄0ΣMNP = h̄ΣMNP

L1ΣMNP = 0, L̄1ΣMNP = 0. (4.29)

From the explicit form of the generators, one can see that the (u, v) dependence of

ΣMNP is

ΣMNP = e−ihu−ih̄vσMNP (ρ), (4.30)

The primary conditions are solved for h− h̄ = 0,±1,±2,±3. But the only solutions

compatible with the gauge conditions and tracelessness condition (4.28) are

h− h̄ = 3,

σMNv = 0

σρuu =
if(ρ)

cosh ρ sinh ρ
σuuu = f(ρ) σρρρ =

−if(ρ)
cosh3(ρ) sinh3(ρ)

σuρρ =
−f(ρ)

cosh2(ρ) sinh2(ρ)
,

(4.31)

and

h− h̄ = −3,

σMNu = 0

σρvv =
if(ρ)

cosh ρ sinh ρ
σvvv = f(ρ) σρρρ =

−if(ρ)
cosh3(ρ) sinh3(ρ)

σvρρ =
−f(ρ)

cosh2(ρ) sinh2(ρ)
,

(4.32)

6This solution is similar to the one obtained in [20].
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where f(ρ) satisfies

∂ρf(ρ) +

[

(h+ h̄) sinh2(ρ)− 3 cosh2(ρ)

sinh ρ cosh ρ

]

f(ρ) = 0

=⇒ f(ρ) = (cosh ρ)−(h+h̄) sinh3(ρ). (4.33)

Now putting the above into the second line of (4.24), we get

h = 2± µℓ h̄ = −1 ± µℓ

or h = −1 ± µℓ h̄ = 2± µℓ (4.34)

The solution with h−h̄ = 3 belongs to the original massive branch whereas h−h̄ = −3

belongs to the massive branch with µ→ −µ. The left branch is obtained by putting

µℓ = 1 in the h − h̄ = 3 solution and right branch is obtained by putting µℓ = 1

in the h − h̄ = −3 solution. It is also easy to check that f(ρ) in (4.33) diverges at

ρ → ∞ unless h + h̄ ≥ 3. This rules out the lower sign in (4.34). To summarise we

obtain the following solution

Massive: h = 2 + µℓ h̄ = −1 + µℓ

Left: h = 3 h̄ = 0

Right: h = 0 h̄ = 3 (4.35)

We can successively apply L−1 and L̄−1 on the primary solutions obtained above to

obtain the descendant solutions. At the chiral point µℓ = 1, the massive and left

branch solutions coincide and and hence the basis of solutions become insufficient

to describe the dynamics. However following the construction of [7], one sees that a

new logarithmic mode emerges (which is annihilated by D(L)2 and not by D(L)). We

now turn to this point.

4.2 Logarithmic modes at the chiral point

Let us denote the massive branch, left branch and right branch solutions with su-

perscripts M, L and R respectively. At the chiral point µℓ = 1, the massive branch

and left branch coincides and hence the basis of solutions become insufficient to de-

scribe the dynamics. However following the construction of [7], one sees that a new

logarithmic mode emerges (which is annihilated by D(L)2 and not by D(L)). The

logarithmic mode is obtained as

Φ(new) = lim
µℓ→1

Φ(M)(µℓ)− Φ(L)

µℓ− 1
=
dΦ(M)(ǫ)

dǫ
|ǫ=0, (4.36)
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where ǫ ≡ µℓ − 1. We have schematically used Φ to denote any mode which has a

decomposition into massless and massive branches and have suppressed any possible

spacetime indices. It can be easily seen that since Φ(M) and Φ(L) are annihilated

by D(M) and D(L) respectively, the term inside the limit is annihilated by D(M)D(L)

but not by D(M) or D(L) separately. After taking the limit, therefore the mode is

annihilated by D(L)2 but not by D(L). Now let us find out the logarithmic partner of

the mode χMNP in (4.26). Expressing µℓ in terms of ǫ and then taking the derivative

wrt ǫ, we get

χ̂MNP ≡ dχMNP (ǫ)

dǫ
|ǫ=0

= −ℓ
2

9

[

1

6
∇(M∇N φ̃

(L)
P ) − 1

3ℓ2
φ̃
(L)
(MgNP )

]

+
ℓ2

24

[

1

6
∇(M∇N φ̂P ) +

8

3ℓ2
φ̂(MgNP )

]

,

(4.37)

where φ̃
(L)
M is the trace of the left branch solution and φ̂M ≡ dφ̃

(M)
M

(ǫ)

dǫ
|ǫ=0. It can be

easily seen from the definition of φ̂M that

φ̂M = [−3i(u + v)− 6 log cosh ρ] φ̃
(L)
M , (4.38)

and hence

L0φ̂M = 3φ̃
(L)
M + 4φ̂M L̄0φ̂M = 3φ̃

(L)
M + 3φ̂M L1φ̂M = L̄1φ̂M = 0

=⇒ L2φ̂M = −21φ̃
(L)
M − 12φ̂M L̄2φ̂M = −15φ̃

(L)
M − 6φ̂M

=⇒
(

∇2 − 34

ℓ2

)

φ̂M =

[

− 2

ℓ2
(

L2 + L̄2
)

− 36

ℓ2

]

φ̂M =
72

ℓ2
φ̃
(L)
M . (4.39)

Using the above set of equations and taking the trace of (4.37), we get, as expected,

that φ̂M is the trace of χ̂MNP . We also see that χ̂MNP satisfies

L0χ̂MNP = 3χ
(L)
MNP+4χ̂MNP , L̄0χ̂MNP = 3χ

(L)
MNP+3χ̂MNP , L1χ̂MNP = L̄1χ̂MNP = 0.

(4.40)

We have thus obtained the logarithmic partner of the mode χ
(L)
MNP at the chiral point.

Using the same trick we can also obtain the logarithmic partner of the mode Σ
(L)
MNP

and we get7

Σ̂MNP ≡ dΣ
(M)
MNP (ǫ)

dǫ
|ǫ=0 = [−i(u+ v)− 2 log cosh ρ] Σ

(L)
MNP , (4.41)

and hence Σ̂MNP satisfies

L0Σ̂MNP = Σ
(L)
MNP+3Σ̂MNP L̄0Σ̂MNP = Σ

(L)
MNP L1Σ̂MNP = L̄1Σ̂MNP = 0. (4.42)

7This is the same as the logarithmic mode obtained in [20].
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We have so far obtained traceless as well as traceful solutions to the equation

of motion (2.13). We also obtained their logarithmic partners at the chiral point.

We label the massive, left and right branch χ modes (4.26) as (Mχ), (Lχ) and (Rχ)

respectively. We also label the logarithmic solution to the χ mode (4.37) as (logχ).

Similarly we label the massive, left, right and logarithmic Σ modes (4.31, 4.32, 4.33,

4.35, 4.41) as (MΣ), (LΣ), (RΣ) and (logΣ) respectively. We will now obtain the

energies of all the above modes.

4.3 Energy of the fluctuations

After imposing the field redefinition and gauge condition (4.1), we obtain the action

(2.12) (up to total derivatives) as,

S =
1

2

∫ √
−g

[

−∇Qφ̃
MNP∇Qφ̃MNP − 1

2µ
εQRM∇Qφ̃MNP∇2φ̃R

NP

+
19

9l2

(

φ̃M φ̃M +
1

6µ
εQRM φ̃

M∇Qφ̃R

)

+
17

18

(

∇Qφ̃M∇Qφ̃M +
1

6µ
εQRM∇Qφ̃M∇2φ̃R

)]

(4.43)

The momentum conjugate to φ̃MNP is

Π(1)MNP ≡ δS

δ ˙̃φMNP

=

√−g
2

[

−∇0

(

2φ̃MNP +
1

6µ
εQR(M∇Qφ̃

NP )
R

)

+
17

18× 3
∇0

(

2φ̃(MgNP ) +
1

6µ
εQR(M∇Qφ̃Rg

NP )

)

− 1

6µ
ε0R(M∇2φ̃

NP )
R − 19

9× 18

1

µℓ2
ε0R(M φ̃Rg

NP ) +
17

18× 18µ
ε0R(M∇2φ̃Rg

NP )

]

.

(4.44)

Since we have three time derivatives, we should also implement the Ostrogradsky

method (following [5]), and introduce KMNP ≡ ∇0φ̃MNP as a canonical variable and

find the momentum conjugate to that which is,

Π(2)MNP ≡ δS

δK̇MNP

=

√−g
2

[

1

6µ
g00εQR(M∇Qφ̃

NP )
R − 17

18× 18µ
g00εQR(M∇Qφ̃Rg

NP )

]

(4.45)

The above expressions are the most generic expressions for the conjugate momenta

and can be applied on any modes. The conjugate momenta for the different modes
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are listed in appendix B. In oder to obtain the energy we must put the expressions

for the conjugate momenta in the Hamiltonian

H =

∫

d2x
(

˙̃φMNPΠ
(1)MNP + K̇MNPΠ

(2)MNP − L
)

=

∫

d2x
(

˙̃
φMNPΠ

(1)MNP −KMNP Π̇
(2)MNP −L

)

+
d

dτ

∫

d2x KMNPΠ
(2)MNP

≡ E0 + E1, (4.46)

where the integral is over φ and ρ and L is the Lagrangian density. We have defined

the first integral in the second line of (4.46) as E0 and second integral as E1. Also

note that L = 0 on the solutions. Now we can put the conjugate momenta obtained

in appendix (B) and the real part of the solutions obtained in the previous sections to

get the energy expressions for different modes. One can see by explicitly putting the

solutions in the above integrals that E1 for all the non-logarithmic modes vanishes but

logarithmic modes get non-trivial contribution from E1. Putting the real part of the

logarithmic solutions and expressions for the conjugate momenta for the logarithmic

modes in Mathematica, we get 8

E1
(logχ)

=
d

dτ

∫

d2x

√−g
2

[

−∇0χ̂MNP

(

χ̂MNP + χ(L)MNP
)

+
17

18
∇0χ̂M

(

χM + χM
)

]

,

=
79π

280ℓ5

E1
(logΣ) =

d

dτ

∫

d2x
−√−g

2

[

∇0Σ̂MNP

(

Σ̂MNP + Σ(L)MNP
)]

= − 4π

15ℓ5
. (4.47)

We can now put the expressions for the real part of the solutions obtained in the

previous sections and conjugate momenta in appendix (B), to get the expressions for

8All the expressions of energy that we will obtain will have the dimension of 1

ℓ5
. This is due

to our choice of units 1

16πG
= 1 and using dimensionless solutions of φ̃MNP . If we re-instate the

factor of 1

16πG
= 1 and multiply the solutions of φ̃MNP with appropriate powers of ℓ matching their

canonical dimensions, we will get the correct dimensions of energy. However this will not change

any of the qualitative features of the discussion
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E0 for different modes. For the non logarithmic χ modes we get,

E0
(Mχ) = −3

µ

(

3µ2 − 1

ℓ2

)
∫

d2x
√
−g ε0RM χ̇

(M)
MNPχ

(M) NP

R

+
1

6µ

(

17µ2 − 5

ℓ2

)
∫

d2x
√
−g ε0RM χ̇

(M)
M χ

(M)
R

E0
(Lχ) =

(

−1 +
1

µℓ

)
∫

d2x
√−g

[

χ̇
(L)
MNP∇0χ(L)MNP − 17

18
χ̇
(L)
M ∇0χ(L)M

]

− 6

µℓ2

∫

d2x
√
−g ε0RM χ̇

(L)
MNPχ

(L) NP

R +
2

µℓ2

∫

d2x
√
−g ε0RM χ̇

(L)
M χ

(L)
R

E0
(Rχ) =

(

−1 − 1

µℓ

)
∫

d2x
√
−g

[

χ̇
(R)
MNP∇0χ(R)MNP − 17

18
χ̇
(R)
M ∇0χ(R)M

]

− 6

µℓ2

∫

d2x
√−g ε0RM χ̇

(R)
MNPχ

(R) NP
R +

2

µℓ2

∫ √−gε0RM χ̇
(R)
M χ

(R)
R

(4.48)

For the non logarithmic Σ modes, we get

E0
(MΣ) =

1

µ

(

µ2 − 1

ℓ2

)
∫

d2x
√
−g εR0M Σ̇

(M)
MNPΣ

(M)NP

R

E0
(LΣ) =

(

−1 +
1

µℓ

)
∫

d2x
√
−g Σ̇

(L)
MNP∇0Σ(L)MNP

E0
(RΣ) =

(

−1 − 1

µℓ

)
∫

d2x
√−g Σ̇

(R)
MNP∇0Σ(R)MNP

(4.49)

For the logarithmic modes (trace as well as traceless), we get

E0
(logχ)

=

∫

d2x

√−g
2

[

˙̂χMNP∇0χ(L)MNP + χ̇
(L)
MNP∇0χ̂MNP − 17

18

(

˙̂χM∇0χ(L)M + χ̂
(L)
M ∇0χ̂M

)

]

−6

ℓ

∫

d2x
√
−g ε0RM ˙̂χMNP χ̂

NP
R +

2

ℓ

∫

d2x
√
−g ε0RM ˙̂χM χ̂R

−18

ℓ

∫

d2x
√−g ε0RM ˙̂χMNPχ

(L) NP

R +
17

3l

∫

d2x
√−g ε0RM ˙̂χMχ

(L)
R

E0
(logΣ) =

∫

d2x

√−g
2

(

˙̂
ΣMNP∇0Σ(L)MNP + Σ̇

(L)
MNP∇0Σ̂MNP

)

−2

ℓ

∫

d2x
√−g ε0RM ˙̂

ΣMNPΣ
(L)NP

R (4.50)

All the integrands above are t and φ independent. From the above expressions,

one can easily see that forMΣ, LΣ and RΣ, the expression is quite simple, being given

by single integrals, and by putting the solutions in the integrals, one find that they

are negative. Hence one finds that E0
RΣ

is always positive, E0
LΣ

is positive for µℓ > 1
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and E0
MΣ

is positive for µℓ < 1. And since E1 vanishes for non-logarithmic modes,

we find, in agreement with [20], that the qualitative feature for the non-logarithmic

Σ modes is the same as that of the spin-2 case [5]. The energy expressions for the

left and right χ modes are obtained after putting the solutions in Mathematica as

E(Lχ) = E0
(Lχ) =

π

3µℓ6
(1− µℓ) ,

E(Rχ) = E0
(Rχ) =

π

3µℓ6
(1 + µℓ) . (4.51)

Thus we see that even for the χ modes the energy of the right branch is always

positive and the energy of the left branch is positive for µℓ < 1 and is zero for

µℓ = 1. Although a direct analytic expression for EMχ
is not possible, but using

Mathematica it can be seen that it is zero for µℓ = 1, positive for µℓ > 1 and

negative for µℓ < 1. We mention some of the numerical results for EMχ
obtained

using Mathematica.

µℓ =
1

3
: E(Mχ) = E0

(Mχ) = − 16π

45ℓ5
.

µℓ = 1 : E(Mχ) = E0
(Mχ) = 0,

µℓ = 2 : E(Mχ) = E0
(Mχ) =

π

40ℓ5
,

µℓ = 3 : E(Mχ) = E0
(Mχ) =

16π

315ℓ5
. (4.52)

The energies E0 for the logarithmic branch solutions are obtained (after putting the

solutions in Mathematica) as:

E0
(logχ)

=
859π

504ℓ5
,

E0
(logΣ) = −132π

25ℓ5
. (4.53)

This, along with (4.47), shows that the logχ modes has positive energy and the logΣ

modes has negative energy.

4.4 Residual gauge transformation

In this section, we will show that the massless branch solutions and massive branch

solution at the chiral point (both the trace as well as traceless modes) can be removed

by an appropriate choice of residual gauge transformation. But since the residual

gauge parameters does not vanish at the boundary, the modes can be regarded as

gauge equivalent to the vacuum only if they have vanishing energy. Hence, as per the

calculations of the energies above, we will see that massive and left moving solution

– 19 –



at the chiral point (both the trace as well as traceless mode) can be regarded as gauge

equivalent to vacuum. The gauge transformation in terms of the variable φ̃MNP (4.1)

is

δφ̃MNP = ∇(MξNP ) +
1

2
∇Qξ

Q

(MgNP ),

δφ̃M =
9

2
∇Nξ

N
M . (4.54)

We need to find the residual gauge transformation obeying the gauge condition (4.1)

and the auxiliary condition (4.6) implied by the equation of motion. We find that

the residual gauge transformation satisfying these properties is

∇2ξMN − 6

ℓ2
ξMN =

3

4
∇(M∇Qξ

Q

N),

∇M∇Nξ
MN = 0. (4.55)

One can use the above equation to deduce the following equation for ∇Mξ
M
N

∇2
(

∇Mξ
M
N

)

− 34

ℓ2
∇Mξ

M
N = 0. (4.56)

We thus see that ∇Mξ
M
N satisfies the same equation as φ̃M (4.9) at the chiral point

µℓ = 1, obeying the same condition (4.6). Thus one can choose the residual gauge

transformation to remove the trace of the massless branch solution and of the massive

branch solution at the chiral point which subsequently gauge away the appropriate

χ modes.

For the traceless Σ modes, the residual gauge transformation should obey the

equations

∇2ξMN − 6

ℓ2
ξMN = 0,

∇Mξ
M
N = 0. (4.57)

We can once again see from (4.57) that for the residual gauge transformation param-

eter for the Σ mode satisfying the above equation (4.57), ∇(MξNP ) satisfies

∇2∇(MξNP ) = 0,

∇M∇(MξNP ) = 0. (4.58)

These equations are the same as the massless Σ equations of motion and massive

equations of motion at the chiral point (4.24) and Σ gauge condition (4.28) and hence

one can appropriately choose the parameters to gauge away the massless branch

solution for ΣMNP and massive branch solution for ΣMNP at the chiral point.
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To summarise, we find that both the massless χ and Σ modes and their respec-

tive massive modes at the chiral point can be gauged away by an appropriate choice

of residual gauge transformation parameters. Since the gauge transformation pa-

rameters do not vanish at the boundary, the modes can however be treated as gauge

equivalent to vacuum only if they have vanishing energy. Hence, as per the energy

calculations in the previous section, the left branch solution and massive branch so-

lution at the chiral point can be regarded as gauge equivalent to vacuum. Since the

logarithmic modes do not satisfy the same equations as their left moving partners,

they cannot be regarded as pure gauge and are therefore physical propagating modes

in the bulk. Thus the logarithmic traceless modes indicate a genuine instability in

the bulk since they carry negative energy.

5. Asymptotic Symmetries and the Chiral Point

In our analysis of three dimensional gravity with spin three fields, we have seen

that while solving the equations of motion for the linearised spin three, we find that

there is a point where the basis for the solution becomes insufficient to describe it.

This is the indication of the development of a logarithmic branch to the solution.

This happens at a point where µℓ = 1. This is the same point where the spin-two

excitations develop a logarithmic branch and the central charge of the left moving

Virasoro algebra vanishes.

Topological Massive Gravity at the chiral point was conjectured to be dual to a

logarithmic conformal field theory with c = 0. In our bulk analysis above, we have

provided indications that a similar picture emerges when one includes the spin-three

fields. To further our understanding of the symmetries of the boundary theory, let

us look at the asymptotic symmetry structures.

5.1 The c = 0 confusion

The asymptotic symmetry analysis for the theory with spin three fields in AdS (with-

out the parity violating gravitational C-S term) was performed recently in [12, 13].

The asymptotic symmetry algebra that was obtained was the classical W3 algebra.
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[

Lm, Ln

]

= (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (5.1)

[

Lm, Vn
]

= (2m− n)Wm+n

[

Wm,Wn

]

=
c

360
m(m2 − 1)(m2 − 4)δm+n,0 +

16

5c
(m− n)Λm+n

+ (m− n)
( 1

15
(m+ n+ 2)(m+ n + 3)− 1

6
(m+ 2)(n+ 2)

)

Lm+n,

where

Λm =
+∞
∑

n=−∞

Lm−n Ln . (5.2)

sums quadratic nonlinear terms. Here the central charge for both the Virasoro and

the pure W3 is given by the Brown-Henneaux central term c = 3ℓ
2G

for AdS.

When one adds the parity violating gravitational C-S term, in the case of the

usual AdS3 without any higher spin terms, one ends up with corrected central terms

where the left-right symmetry is broken, viz. c± = 3ℓ
2G

(1 ∓ 1
µℓ
). The “chiral-point”

corresponds to µℓ = 1 where c+ = 0.

The shift of the central terms, which is the effect of gravitational anomalies on

the boundary stress tensor [25, 26], does not change with the addition of the spin

three fields. Thus the asymptotic symmetry algebra for the bulk theory with the

Chern-Simons terms added is two copies of W3 algebra, now with differing central

charges.

Now, when we look at the chiral point of the W3 algebra, we see a potential

problem. The non-linear term (5.2) in (5.1) has a coefficient which is inversely

proportional to the central term and hence in the chiral limit would blow up.

5.2 The solution

We propose a simple solution to the above problem. The blowing up of an algebra in

a particular limit is indicative of the fact that one should look at an Inönü-Wigner

contraction of the algebra at that point. To achieve this, let us rescale the generators

as follows:

Ln = Ln, Yn =
√
cWn. (5.3)
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The rescaled W3 algebra now looks like

[

Lm, Ln

]

= (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0, (5.4)

[

Lm, Yn
]

= (2m− n)Ym+n,

[

Ym, Yn
]

=
c2

360
m(m2 − 1)(m2 − 4)δm+n,0 +

16

5
(m− n)Λm+n

+ c(m− n)
( 1

15
(m+ n + 2)(m+ n+ 3)− 1

6
(m+ 2)(n+ 2)

)

Lm+n.

Now, at the chiral point, the algebra would be the contracted version of the W3

algebra.

[

Lm, Ln

]

= (m− n)Lm+n,
[

Lm, Yn
]

= (2m− n)Ym+n, (5.5)
[

Ym, Yn
]

=
16

5
(m− n)Λm+n.

The Y and Λ actually generate an ideal and so one must set them to zero in any

irreducible representation of the W3 algebra. So the classical W3 in the chiral limit

essentially reduces to the Virasoro algebra.

What we are advocating here is the classical analogue of what happens for the

quantum W3 for c = −22/5 [28]. Let us remind the reader of the quantum version of

the W3 algebra is. The quantum effects enter into the regularisation of the quadratic

non-linear term (5.2). This shifts the overall quadratic coefficient of the quadratic

term from 16
5c

→ 16
5c+22

in (5.1). As is obvious, c = −22/5 represents a blowing up

of the quantum W3 algebra and [28] prescribes a similar procedure to what we have

outlined above.

The logarithmic degeneracy at the chiral point that we would go on to construct,

in this light would be related to a left moving LCFT with c = 0, very similar to the

original construction of the spin-two example.

5.3 Comments on other possible solutions

The above procedure is certainly a correct one, but one might think that this is not

the most general procedure that can be followed at the chiral point. Let us comment

on a couple of other possible solutions.

One way to argue that c = 0 is not a problem in this context is to say that in this

limit one should actually be looking at the quantum version of the W3, instead of

the classical algebra. Then the shifting of the non-linear term described above would

mean that the algebra is perfectly fine in the chiral limit. When c is small, and the

curvature of space-time is large, it may be more sensible to look at the quantum
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algebra. The question obviously would be how an asymptotic symmetry analysis

would see the change from classical to quantum and this is far from obvious. That

this feature does not have any analogue in the well-studied spin-two example makes

this an attractive avenue of further exploration.

Another possible solution is to say that nothing is wrong at c = 0. Λ is actually

a null field and the c=0 singularity is cancelled by Λ become null. Let us take the

quantum counterpart c = −22/5. Let us suppose that Λ is a null field. We can work

the commutation relations and see for example,

[

Lm,Λn

]

= (3m− n)Λm+n +
22 + 5c

16
[m(m2 − 1)Lm+n]. (5.6)

So we see that indeed at c = −22/5, this commutator closes to Λ. This is consistent

with the fact that Λ is a null field. We can similarly work out the consequences for

Wn. The obstacle in this path is trying to figure out how to carry out an essentially

quantum mechanical analysis in a classical algebra. We leave these issues for future

work.

6. Conclusions and Future directions

In this paper, we reviewed the the linearised action for spin-3 Fronsdal fields with a

Chern- Simons term in flat space [21] and generalised it to AdS space. The structure

of the action is uniquely fixed by gauge invariance. We looked at its relation to the

SL(3, R)× SL(3, R) Chern-Simons action [13, 12] with unequal levels and fixed the

normalisation of the gauge invariant action found earlier. We then looked at the

equations of motion and decomposed it into left, right and massive branch.

We figured out that the trace cannot be set to zero unlike the spin-2 case [5].

The trace gives rise to non-trivial solutions to the equations of motion which has

no counterpart in the spin-2 case. The trace solution has a “resonant” behaviour

at µℓ = 1
2
. The massive branch trace mode carries positive energy for µℓ > 1 and

negative energy for µℓ < 1 and zero energy for µℓ = 1. The left branch solution

carries positive energy for µℓ < 1 and negative energy for µℓ > 1 and zero energy

for µℓ = 1. Apart from the “trace” solutions we also have the usual traceless mode.

However the traceless mode has energy behaviour which is opposite to that of the

trace mode (and similar to the spin-2 counterpart [5]) i.e massive traceless mode

carries positive energy for µℓ < 1 and negative energy for µℓ > 1 and zero energy for

µℓ = 1 and the left branch traceless solution carries positive energy for µℓ > 1 and

negative energy for µℓ < 1 and zero energy for µℓ = 1. The right branch solution

carries positive energy for both the trace and traceless mode.
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At the chiral point the massive and left branch solution coincide and develop

a new logarithmic branch both for the trace and traceless modes. The logarithmic

solution for the trace mode carries positive energy whereas the logarithmic solution

for the traceless mode carries negative energy. We also found that left branch and

massive branch solution at the chiral point are pure gauge and have vanishing energy

and hence can be treated as gauge equivalent to the vacuum. But the logarithmic

modes are not pure gauge and are therefore physical propagating modes in the bulk.

And since the logarithmic solution for the traceless mode carries negative energy, it

indicates an instability in the bulk at the chiral point. It is therefore tempting to

conjecture that higher spin massive gravity constructed in this paper at the chiral

point is dual to a higher spin extension of LCFT2. But there are some conceptual

issues which should be dealt with before making this conjecture which are:

1. Variational principle is well defined for the new logarithmic solutions:

The logarithmic solutions are the non trivial solutions to spin-3 massive gravity

at the chiral point that grows linearly in time and linearly in ρ asymptotically.

It is found to have finite time-independent negative energy. But before it can

be accepted as a valid classical solution one must check that the variational

principle is well defined, i.e. the boundary terms vanish on-shell for the loga-

rithmic solutions. Similar questions for the spin-2 counterpart was asked with

an affirmative answer in [7]. We would also like to do similar check for both

of our logarithmic solutions and as a by product obtain the boundary currents

dual to the logarithmic modes.

2. Consistent boundary conditions for the logarithmic modes:

We should be able to find consistent set of boundary conditions which encom-

passes the new logarithmic solutions i.e. there are consistent set of boundary

conditions for which the generator of the asymptotic symmetry group is finite.

Similar questions for the spin-2 case was asked with an affirmative answer in

[8]. We would also like to perform similar analysis for our logarithmic branch

solutions.

3. Correlation function calculation:

We should be able to compute correlation function in the gravity side. This

should put us in a position to compare them with boundary correlators ex-

pected from a higher spin extension of LCFT. Similar questions were addressed

in [9, 10] for the spin-2 case. The comparison in that case was however with

correlators in LCFT which is well known in the literature. To our knowledge
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there is no higher spin extension of LCFT in the literature so far9. The correla-

tion function calculations should open up interesting questions to be answered

about the higher spin extension of LCFT.

4. One loop partition function calculation:

To make the higher spin extension of LCFT dual to the theory constructed in

this paper more concrete, one should also compute the one loop determinant of

the Euclidean theory constructed in this paper using the heat kernel techniques

of [17] (which was also applied to the massless higher spin theory in [16]). If

the LCFT proposal is right, one should be able to show that there would be

no holomorphic factorisation of the one loop partition function at the chiral

point. The expectation is that we would learn something more about the higher

spin extension of LCFT from the structure of the one loop partition function.

Similar calculations were done for TMG without higher spin in [30] and for

General Massive Gravity in [31] and the authors found concrete evidence for

an AdS/LCFT picture. In a subsequent work, we have looked at doing a

similar computation for the spin-3 version of TMG constructed in this paper

and subsequently generalized it to arbitrary spins [32].

Apart from all the above issues, the boundary CFT needs to be understood

better. For example, there is the peculiar “resonant” behaviour found for the trace

modes at µℓ = 1
2
which should show up even in the CFT. Apart from that we find

a positive energy propagating mode in the bulk at the chiral point, which is the

logarithmic solution corresponding to the trace mode. This has no counterpart in

the spin-2 example and we would like to understand what this means from the CFT

perspective. We leave these issues for future work.

Before we conclude, let us pause to remind the reader of the essential differences

between our work and the work mentioned in the introduction which we said had

some overlap with ours [20]. The part of our work which overlaps with [20] is the

analysis of the traceless mode. The novel feature of our work is the trace modes

and their logarithmic partner. We find several non-trivial features of this trace mode

which we have addressed in this paper. We find instability in the bulk by explicitly

computing the energy of the logarithmic partner of the traceless modes and end

by speculating a higher spin extension of LCFT dual to the theory constructed in

this paper at the chiral point. We also have a different proposal for the asymptotic

symmetry structure and its peculiarities at the chiral point.

9See however some very recent work [29].
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Appendices

A. Taking the isometry generator across symmetrised covari-

ant derivatives

In this appendix we give the proof of the statement that the isometry generator can

be taken across symmetrised covariant derivatives. Let the isometry generator be

Lξ = ξM∂M , (A.1)

where ξM satisfies

∇(MξN) = 0. (A.2)

This generator acts on tensors of rank (r, s) as

LξT
M1M2......M

r

N1N2...Ns
= ξM∂MT

M1M2......M
r

N1N2...Ns
− ∂Qξ

M1TQM2......M
r

N1N2...Ns
− ∂Qξ

M2TM1Q......Mr

N1N2...Ns
· · ·

− ∂Qξ
MrTM1M2......Q

N1N2...Ns
+ ∂N1ξ

QTM1M2......M
r

QN2...Ns
· · ·+ ∂Ns

ξQTM1M2......M
r

N1N2...Q

= ξM∇MT
M1M2......M

r

N1N2...Ns
−∇Qξ

M1TQM2......M
r

N1N2...Ns
−∇Qξ

M2TM1Q......Mr

N1N2...Ns
· · ·

− ∇Qξ
MrTM1M2......Q

N1N2...Ns
+∇N1ξ

QTM1M2......M
r

QN2...Ns
· · ·+∇Ns

ξQTM1M2......M
r

N1N2...Q
. (A.3)

In the last equality we have added and subtracted Christoffel connections to write

the partial derivatives as covariant derivatives. Now let us apply (A.3) to a tensor

of rank 1 and its covariant derivative

LξφN = ξM∇MφN +
(

∇Nξ
M
)

φM

Lξ (∇PφN) = ξM∇M∇PφN +
(

∇Nξ
M
)

∇PφM +
(

∇P ξ
M
)

∇MφN . (A.4)

Taking a covariant derivative of the first expression in (A.4) and subtracting it from

the second, we obtain after some algebra

∇PLξφN − Lξ (∇PφN) =
1

ℓ2
ξ[NφP ] − φM∇M∇P ξN . (A.5)
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Therefore symmetrising the indices we get

∇(PLξφN) − Lξ

(

∇(PφN)

)

= 0. (A.6)

Now let us define TPN ≡ ∇(PφN). Performing the same analysis as before we obtain

∇M (LξTPN)−Lξ (∇MTPN) =
1

ℓ2
[

ξ[PTM ]N + ξ[NTM ]P

]

−TPQ∇Q∇MξN−TNQ∇Q∇MξP .

(A.7)

And hence once again symmetrising the indices we get

∇(M

(

LξTPN)

)

− Lξ

(

∇(MTPN)

)

= 0. (A.8)

Combining this with (A.6), we get

∇(M∇NLξφP ) − Lξ

(

∇(M∇NφP )

)

= 0. (A.9)

This is what we wanted to prove.

B. Conjugate momenta of different modes

In this appendix, we list all the conjugate momenta of the different modes that we

obtained from the equation of motion. The conjugate momenta of the first kind are

Π
(1)MNP

(Mχ)
=

√−g
2

[

−∇0χ(M)MNP +
17

18× 3
∇0χ(M)(MgNP )

− 2

µ

(

3µ2 − 1

ℓ2

)

ε0R(Mχ
(M) NP )
R +

1

9µ

(

17µ2 − 5

ℓ2

)

ε0R(Mχ
(M)
R gNP )

]

,

Π
(1)MNP

(Lχ)
=

√−g
2

[

−
(

2− 1

µℓ

)

∇0χ(L)MNP +
17

18× 3

(

2− 1

µℓ

)

∇0χ(L)(MgNP )

− 4

µℓ2
ε0R(Mχ

(L) NP )
R +

4

3µℓ2
ε0R(Mχ

(L)
R gNP )

]

,

Π
(1)MNP

(Rχ)
=

√−g
2

[

−
(

2 +
1

µℓ

)

∇0χ(R)MNP +
17

18× 3

(

2 +
1

µℓ

)

∇0χ(R)(MgNP )

− 4

µℓ2
ε0R(Mχ

(R) NP )
R +

4

3µℓ2
ε0R(Mχ

(R)
R gNP )

]

,

Π
(1)MNP

(logχ)
=

√−g
2

[

−∇0
[

χ̂MNP − χ(L)MNP
]

+
17

18× 3
∇0

[

χ̂(MgNP ) − χ(L)(MgNP )
]

(B.1)

− 4

ℓ
ε0R(M χ̂

NP )
R +

4

3l
ε0R(M χ̂Rg

NP ) − 12

ℓ
ε0R(Mχ

(L) NP )
R +

34

9l
ε0R(Mχ

(L)
R gNP )

]

.
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And

Π
(1)MNP

(MΣ)
=

√−g
2

[

−∇0Σ(M)MNP − 2

3µ

(

µ2 − 1

ℓ2

)

ε0R(MΣ
(M)NP )
R

]

,

Π
(1)MNP

(LΣ) = −
√−g
2

(

2− 1

µℓ

)

∇0Σ(L)MNP ,

Π
(1)MNP

(RΣ) = −
√−g
2

(

2 +
1

µℓ

)

∇0Σ(R)MNP ,

Π
(1)MNP

(logΣ) =

√−g
2

[

−∇0
(

Σ̂MNP − Σ(L)MNP
)

− 4

3l
ε0R(MΣ

(L)NP )
R

]

. (B.2)

And the conjugate momenta of the second kind are

Π
(2)MNP

(Mχ)
=

√−g
2

[

−g00χ(M)MNP +
17

18× 3
g00χ(M)(MgNP )

]

,

Π
(2)MNP

(Lχ)
=

√−g
2

[

− 1

µℓ
g00χ(L)MNP +

17

18× 3µℓ
g00χ(L)(MgNP )

]

,

Π
(2)MNP

(Rχ)
=

√−g
2

[

1

µℓ
g00χ(R)MNP − 17

18× 3µℓ
g00χ(R)(MgNP )

]

,

Π
(2)MNP

(logχ)
=

√−g
2

[

−g00
[

χ̂MNP + χ(L)MNP
]

+
17

18× 3
g00

[

χ̂(MgNP ) + χ(L)(MgNP )
]

]

.

(B.3)

And

Π
(2)MNP

(MΣ) = −
√−g
2

g00Σ(M)MNP ,

Π
(2)MNP

(LΣ) = −
√−g
2µℓ

g00Σ(L)MNP ,

Π
(2)MNP

(RΣ) =

√−g
2µℓ

g00Σ(R)MNP ,

Π
(2)MNP

(logΣ)
= −

√−g
2

g00
[

Σ̂MNP + Σ(L)MNP
]

. (B.4)

The labels L, M , R and log labels labelling the left, massive, right and logarithmic

modes respectively are kept inside “( )” braces and hence should not be confused
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with the spacetime indices MNP . The following relations have been used

D(L)(χ̂, Σ̂)MNP ≡ (χ̂, Σ̂)MNP +
ℓ

6
εQR(M∇Q(χ̂, Σ̂)RNP ) = −(χ,Σ)

(L)
MNP ,

D(M)(χ,Σ)
(M)
MNP = D(L)(χ,Σ)

(L)
MNP = D(R)(χ,Σ)

(R)
MNP = 0,

∇2χ̂MNP =
72

ℓ2
χ
(L)
MNP +

24

ℓ2
χ̂MNP +

2

ℓ2
χ̂(MgNP ),

∇2χ
(L,R)
MNP =

24

ℓ2
χ
(L,R)
MNP +

2

ℓ2
χ
(L,R)
(M gNP ), ∇2χ

(M)
MNP = 12

(

3µ2 − 1

ℓ2

)

χ
(M)
MNP +

2

ℓ2
χ
(M)
(M gNP ),

∇2Σ
(L,R)
MNP = 0, ∇2Σ

(M)
MNP =

(

4µ2 − 4

ℓ2

)

Σ
(M)
MNP ,

∇2Σ̂MNP =
8

ℓ2
Σ

(L)
MNP . (B.5)
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