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Abstract. We show that a simple model of a spatially resolved evolving economic system, which has a
steady state under simultaneous updating, shows stable oscillations in price when updated asynchronously.
The oscillations arise from a gradual decline of the mean price due to competition among sellers competing
for the same resource. This lowers profitability and hence population but is followed by a sharp rise as
speculative sellers invade the large un-inhabited areas. This cycle then begins again.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 87.23.Kg Dy-
namics of evolution – 89.75.Fb Structures and organization in complex systems

1 Introduction

Cycles in natural and economic systems are widely ob-
served and are often described by analogy to the differ-
ential equations describing physical oscillating systems.
However, the observed oscillations are frequently irregu-
lar. In some cases, such as the Milankovitch cycles which
drive ice ages, this irregularity may be an interplay be-
tween different deterministic modes (precession, obliquity
and eccentricity), however the possibility of stochastic ef-
fects producing low frequency oscillations has been widely
overlooked.

In economics, Schumpeter’s equilibrium theories re-
lated business cycles to oscillations about equilibrium in
a dynamical system. Other authors relate cycles to time
lags in the system: the cobweb model [1] in which price
is determined by supply, which is in turn determined by
previous prices; or Kitchin’s inventory model which has
prices determined by stored goods [2]. See also the macroe-
conomic models of Lucas [3] and Blinder [4]. Further au-
thors have proposed bubbles of overconfidence (e.g. Elliot
[5], Juglar) or external controlling influences (as, for ex-
ample, governmental policy changes) as the driving force
behind business cycles. Finally, Kondratieff’s long wave
cycle [6] has cycles driven by exogenous innovation shocks.
We might imagine that these should be irregularly spaced
and stochastic in nature, they are not however treated
as such. This is in part because the measured quantities
(various economic indicators) are seen as separate from
the underlying driving forcer.

In ecological systems, the model of Lotka-Volterra gives
regular oscillations, while more recent food-web and evo-
lutionary models [7,8] tend to have stable epochs punc-

a E-mail: e-mail: lawrence.mitchell@ed.ac.uk
b E-mail: e-mail: g.j.ackland@ed.ac.uk

tuated by rapid change in the spirit of the punctuated
equilibrium of Eldredge and Gould [9,10]. Regular oscilla-
tions driven by lags in reacting to a change in environment
are also observed [11] (in a similar manner to the above-
mentioned economic models).

2 A simple marketplace model

In a previous paper, we introduced a simplified model of a
market subject to none of these drivers, rather relying on
supply-led competition and evolution through bankruptcy
and startups [12]. Competition occurs through price – low
prices increase the chance of sales, but reduce the profit
margin. A dual ecological model considers competition for
resources – effective foraging requires a high metabolic
rate and a need to eat more frequently. In this paper we
will use the language of the economic model.

Here we consider a continuous time version of the model,
and show that it generates spontaneous oscillations of ir-
regular period.

The details of the model are as in previous work [12]
except for the choice of update scheme. We consider a
ring of 2N alternating sellers and buyers (N of each), the
lattice layout showing connections is shown in Fig. 1. Each

j i j + 1 i + 1 j + 2 i + 2

Fig. 1. Diagram showing lattice of buyer-seller interactions.
Sellers are marked as squares, buyers as circles.

seller has capital Ci and fixed price Pi (i = 1, . . . , N).
Initial prices are drawn from Pi ∈ [0, Pmax), and initial
capital is Ci = 0 ∀i. A timestep consists of N iterations of
the following:

http://arxiv.org/abs/0801.3973v2
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1. One seller (j) is chosen uniformly at random and pays
overhead d = 2, decreasing the capital Cj by 2.

2. One buyer (i) is chosen uniformly at random and the
lower priced of the two adjacent seller sites (k = j or j+
1) increases its capital Ck by Pk.

Hence in each timestep, on average, each buyer makes one
purchase and each seller pays one overhead.

Sellers which have not paid an overhead still have the
ability to produce goods for a buyer: we treat the overhead
as a fixed cost, rather than a payment for the acquisition
of goods to sell. At the end of the timestep, we now remove
bankrupt sellers in the following manner:

1. All sellers with Ci < 0 are bankrupt: site i becomes
vacant.

2. Vacant sites are repopulated with probability γ.
3. New sellers at site i have Ci = 0 (writing off any debt

the previous seller may have had).
4. New sellers at site i take the price of a randomly chosen

existing site j, Pi = Pj + dp, (dp ∈ [−min(∆, Pj), ∆]).

This completes one complete timestep for the model. Note
that the buyer sites are always occupied but seller sites
may be vacant: in some rounds, some buyers have no
choice of supplier. The only two free parameters in the
model are γ and ∆.

It is worth mentioning that the seller dynamics mean
that sellers have neither rational expectations of the mar-
ket, nor any explicit memory of past transactions: implic-
itly the market behaviour is encoded in the time evolution
of seller capital, this is however not consulted when choos-
ing a strategy except for the case of bankruptcy when
C(t− 1) > 0 and C(t) < 0 when the strategy of the seller
changes. The hold-over of capital by sellers is similar to
a model of Lucas [3] in which it is found that exogenous
unanticipated shocks to a collection of independent mar-
kets (Phelpsian Islands) can have the effect (if there is
memory causing information lags) of producing cyclical
output. In our model there are no external shocks, the
variations in the market being driven solely by the inter-
nal dynamics.

For high values of the rebirth parameter γ, only sellers
charging close to their marginal cost can survive, however
for γ / 0.5 the price distribution formed favoured peaks
[12] at higher prices. We will refer to sellers with Pi ≈ 1,
〈Ci〉 ≈ 0 as ‘cheap’ and those with sufficiently high price
to accumulate capital 〈Ci〉 > 1 ‘expensive’. We find that
expensive sellers are still present in the continuous time
formulation as shown in Fig. 2.

Note that unlike many microscopic models [13,14,15]
of evolutionary competition, the favouring of certain strate-
gies is not enhanced by niche construction for similar or-
ganisms. Rather, sellers are only able to construct niches
which enhance the selection of competitor strategies. Ex-
pensive sites do not survive by conferring an advantage
on similar expensive sites (the cheap sellers have a much
higher fitness when invading): niches for expensive sellers
exist in gaps between cheap sites [12].
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Fig. 2. Comparison of steady state price distribution for con-
tinuous (black, circles) and discrete (red, triangles) time sim-
ulations with N = 106, ∆ = 0.04, γ = 0.5. Error bars show
standard error in the mean for 20 time-averaged distributions
sampled 1000 timesteps apart after steady state is reached.
Note that for the continuous time model, there is no fixed
break even price, although on average P = 1 is break even.
High prices cut off at P = 9 for clarity, along with the discrete
time peak at p = 1 which reaches 12.

3 Oscillatory behaviour

As γ is increased above ≈ 0.5, the system enters an os-
cillatory state after an early time transient decay (erasing
the initial conditions). The phase diagram (Fig. 3 insert)
shows schematically the region in parameter space which
leads to such a situation. These oscillations are evident
as a slow decrease followed by a fast increase in the total
number of sellers and the mean price of the system. This
boom-bust cycle is stable across many oscillatory periods
and is occasionally interspersed with larger excursions.

This regime is not seen in the discrete time model [12]
since the high-priced sellers are not able to persist in un-
favourable situations. Stochastic dynamics can however
allow their persistence, since it is not a given that an ex-
pensive seller will have to pay overhead during a round in
which it is not selling. This is enough to persist long-lived
expensive sellers, which as we shall see drive the oscilla-
tions.

3.1 Aperiodicity

Unlike other models of boom-bust cycles (see for example
[18] for a review), we find that the period of the oscilla-
tions is not a simple function of the model parameters,
instead, the period is stochastic in nature with a typical
length (Fig. 4), the origin of this stochasticity is explained
in greater detail below. The shape of the distribution takes
broadly two forms, for ‘small’ ∆ the peak is Gaussian with
a heavier, exponential right tail of high prices. For ‘large’
∆ more of the probability mass is in the peak with a
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A − All prices regime

C − Bertrand regime
B − Oscillatory regime
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Fig. 3. Ensemble-averaged unsatisfied demand (fraction of un-
sold to buyers) as a function of birth-rate, γ, in an enforced
Bertrand steady state (open circles, error bars too small to
show) and unrestricted steady state (solid circles), N = 104,
∆ = 0.04. Error bars show standard error in the mean over
thirty ensembles after steady state is reached. In contrast to the
discrete time version, the Bertrand solution diverges from un-
restricted result at γ ≈ 0.8 (c.f. [12] where the two are identical
until γ ≈ 0.6). This intermediate regime (0.5 / γ / 0.8) is the
region of oscillatory behaviour. Inset shows a schematic phase
diagram with the three regions marked, dotted line shows po-
sition of in phase space of unsatisfied demand data.

less pronounced right tail. These differences may be ex-
plained by considering the exact character of the oscilla-
tions. When ∆ is small (∆ / 0.05) the range of prices that
the oscillations cover is typically also small 0.6 < P̄ < 1.3
with intermittent larger excursions to P̄ ≈ 2. For larger
∆ ' 0.07, the typical oscillation is over a wider range of
price 0.08 < P̄ < 2 with fewer large or small excursions.
The modal period of these differing regimes is approxi-
mately the same as ∆ also influences the rate of change of
P̄ . This compensates to some extent for the larger change
required in P̄ to complete a period. The cross-over be-
tween the two regimes is gradual which may be seen by
considering the variance of the period distribution as a
function of ∆ (Fig. 4 inset).

4 Dynamics of the oscillations

In the oscillatory regime, the mean price typically fluctu-
ates between P̄ < 1 and P̄ ≈ 2 with a sharp upswing and
slow decay as shown in Fig. 5. The asymmetry in the cycle
may be explained by considering the different mechanisms
involved in the upswing and downturn. The driving force
on the downward section of the oscillation is competition
between many like-priced sellers. In this case, a lower price
is favourable. The upswing, however, is nucleated from a
few existing high-priced sites: rather than evolution from
cheap sites, a peak suddenly appears in the price distribu-
tion which then moves slowly downwards. The plateau at
the top of the oscillation is due to a decreased rate of seller
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Fig. 4. Distribution of cycle period lengths for different values
of ∆ as indicated in legend, N = 104, γ = 0.7. Data prepared
by smoothing time-series for the number of live sellers with
a 40-point moving average to remove high-frequency compo-
nents and then calculating the distance between zeroes of the
derivative of the dataset. The peak and left tail are well-fitted
by Normal distributions while the right tail is heavier (with an
approximate exponential decay). Inset shows how the variance
of the distribution varies with ∆.

turnover: when all competing sellers have a similar price,
mean lifetime of sellers increases with the price, hence, at
the top of a cycle, the turnover rate will be low causing a
‘slowing’ of the dynamics.
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Fig. 5. One period of oscillations for a system with N = 105,
γ = 0.75 and ∆ = 0.04. Shown from top to bottom are the
fraction of live sellers, the mean price of those sellers and the
mean capital. Note how the mean capital peaks later than the
price and grows more slowly

This asymmetry in the oscillatory waveform leads to
another interesting result. We find that as the amplitude
and period of the oscillation increases, the mean fraction
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of live sellers over a period also increases, along with the
total number of sales. This is easily understood given the
previous argument, the system spends more time at the
top of the cycle (since seller turnover rate is slower) than at
the bottom. We note that this behaviour is similar to that
of maximum shown in [16] for a spatial Daisyworld model.
another type of evolving stochastic cellular automaton.

We may explain the oscillatory cycle by considering
the variation in the fraction of vacant sites over a cycle.
As the mean price drops, the demand in the system is able
to support fewer and fewer sellers: for a mean price P̄ , the
demand in the system supports approximately P̄ /2 sell-
ers. The increasing number of vacant sites allows expen-
sive sellers to thrive in locally favourable environments: if
a buyer is next to a vacant site, it has to visit the seller
on the other side of it (even if this seller is high-priced).
These expensive sellers survive to the end of the round
and accumulate sufficient capital to survive even if they
fail to make a sale in the following round. They are thus
candidates for replication into newly vacant sites. Since
only live sellers are considered during the replication cy-
cle, the expensive sellers occupy the space – they can sur-
vive a timestep without a sale because one sale can cover
multiple overhead payments. As the system fills up with
high-priced sellers, new sellers in vacant sites do better by
undercutting existing ones, rather than exploiting vacant
sites of which there are now few. The price of the system
is then driven downwards by Bertrand competition [17].

5 Persisting sellers

As already intimated, the upswing in the price oscillation
has a different origin to the downturn: Bertrand compe-
tition among sellers favours P = 1. We may track this
more closely by observing the ancestry of sellers through
time. We label each seller uniquely at the beginning of
a simulation, every new seller adopts its label and price
from a parent seller. This allows us to associate sellers
with a given ‘franchise’. We first note that in the oscilla-
tory regime the number of unique ancestors falls to O(1)
after a finite time (exponential decay). In contrast, in the
stationary regime, the number of unique ancestors decays
with an approximate power law with exponent close to
unity. Thus, sellers do not collapse onto a single common
ancestor, but rather a number of different franchises per-
sist.

We now look for franchises with a high mean price: ex-
pecting that during the bottom of a cycle they will have
only a few members; and during an upswing their size
should increase markedly. As Fig. 6 shows, this is indeed
the case: in the oscillatory regime we find a small number
of persisting high-priced franchises. During lean periods,
these franchises often only consist of a single seller. These
sellers are the parents of a franchise. They have been able
to build up a large capital which allows survival through
bad patches when they are unable to sell. Offspring sell-
ers, however, have less accumulated capital and are thus
less likely to survive competition with cheaper sellers once
Bertrand competition kicks in. Hence, typically only the

original parent (and perhaps a few offspring) survive with-
out selling until the bottom of the cycle is reached.

The downward change in mean price arises from a con-
tribution of pre-existing franchises flourishing at different
times and adaptation within some franchises to the cur-
rent fittest strategy. Very high-priced franchises (P ' 3)
do not seem to adapt much and thus their contribution
to the mean price is only due to varying size. Interme-
diate (P ≈ 2) and cheap franchises both vary their size
and adapt to the current fittest strategy. We can see this
occuring in Fig. 6. During the third cycle the mean price
reaches 2.75 and initially falls off quite sharply: sellers
jumping ship from one franchise to another. As the mean
price reaches ∼ 2 the franchises start adapting and the
rate of change decreases.
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Fig. 6. Change in fraction of sellers with a common ancestor
(a franchise) through a number of oscillatory cycles. N = 105,
γ = 0.7, ∆ = 0.08. Top panel shows the size of the franchise as
a fraction of total sellers. Middle panel shows the mean price
of sellers in the franchise. Bottom panel shows the mean price
of the system. The original parent persists through many cy-
cles while the offspring are only short-lived, flourishing during
upswings in the mean price.

Concurrently persisting franchises have slightly differ-
ent prices. Thus the maximum mean price over a period
is determined by how successful each of the franchises are
in invading the empty sites at the bottom of a cycle. Since
both the rate of change of P̄ and its minimum are approxi-
mately constant for a given ∆, the observed distribution of
periods is primarily due to the stochastic manner in which
franchises achieve success (invasion) at the beginning of a
cyle.

This oscillatory behaviour can be interpreted in terms
of the fitness of the sellers - defined as their number of
offspring. The fittest price is environmentally determined,
depending on the number of vacant sites. A new expensive
mutant is unable to invade a system nearly-full of cheap
sellers unless it is located adjacent to a vacant site (and
therefore has a buyer). If the number of vacant sites in-
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creases, the mutant’s fitness increases (depending on its
position) and it is able to survive and proliferate. This
newly established mutant-rich system is now invadable by
cheaper sellers. Thus, the system is found to be in an os-
cillating state alternately trying to fix to a population of
cheap sellers (which are fitter when the predominant sell-
ers are expensive) and a population of expensive sellers
(fitter when the predominant sellers are cheap).

6 Suppressing oscillatory behaviour

In this section we study ways of avoiding the system-wide
oscillatory behaviour while allowing for the continued ex-
istence of highly profitable sellers. The first method we
study divides the system into a number of large, semi-
autonomous, regions. We have seen that the oscillatory
cycles the system goes through do not have a fixed period
and hence, if we divide the system into regions, they will
be likely to oscillate out of phase with one another. The
net result on the global mean price will be a reduction in
the amplitude of observed oscillations. Obviously, if the
regions are completely independent, we have not gained
anything, just shown that out of phase oscillations can
partly cancel. Consider, however, if we couple the regions
somehow. If the coupling is weak, the regions may continue
out of phase. Recall that the upswings are seeded by just
a few high-priced sellers. Should all of these sellers die
out, the system price can never recover and consequently
the mean price stays low. If this system were weakly cou-
pled with another oscillating region, an expensive price
could be copied in from outside, reseeding the expensive
franchises and allowing for recovery to high prices. With
a large number of regions, the likelihood that they all si-
multaneously crash to the low-priced state is very low.
This should allow for longer survival times of an oscil-
lating state over similarly-sized systems without separate
regions.

1 2 3 4 5

c 1 − c

Fig. 7. Diagram showing the division of one-dimensional sys-
tem into islands. This particular system has five islands (la-
belled). Also shown are two copying events: an inter-island
copy (occurring with probability c) and an intra-island copy
(probability 1 − c)

The coupling we introduce is to divide our system into
regions. Buyers do not see the region boundaries, however,
sellers do. When a new seller is introduced into the sys-
tem they either take their price from within their region,
or from the whole system. The former occurs with some
set probability 1− c, the latter with probability c. Taking
c = 1 corresponds to the previously studied case, c = 0
leads to completely uncoupled regions. Figure 7 shows a
diagram of the two different copying steps. We find that
for small values of the coupling constant (c / 0.05), islands

oscillate out of phase with on another. This leads to a sta-
bilisation in the mean price exhibited by the whole system
(Fig. 8), but without affecting the dynamics in each indi-
vidual island. With c ' 0.05, the separate islands oscillate
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Fig. 8. Mean price exhibited in an oscillating system divided
into five equally sized islands. Top figure shows the mean sys-
tem price, bottom two figures show the mean price of two dif-
ferent islands. Note how the amplitude of the oscillations is
much reduced for the global system due to out of phase oscil-
lations between islands. N = 105, ∆ = 0.04, γ = 0.75, c = 0.05

in phase and the system then evolves as if the island sep-
aration did not exist (i.e., the global oscillations are the
same as the island ones). The low coupling regime allows
for a recovery from crashes that the latter does not. Since
the upswings are driven by a small number of expensive
sellers, it is possible that all these sellers become bankrupt,
the system cannot recover from this crash. When islands
oscillate in phase, this crash is global. With out of phase
oscillations, other islands can be in a high-priced phase of
the cycle, these sellers can then reseed the crashed part of
the system with new expensive sellers, leading to a better
recovery.

The second method of suppressing oscillations we study
is to introduce a varying time-delay in the price copying
stage. We can think of this as a random delay in the prop-
agation of news events. The driving cause of the down-
ward phase of the cycle is Bertrand competition between
sellers favouring cheaper prices. The repeatability of the
cycles indicates that there is only one possible route to the
low-priced state the dynamics can take. By destroying (to
some degree) the correlation between the copied price dis-
tribution and the exhibited system price distribution, we
are able to suppress this pathway, removing the oscillatory
cycle.

To remove this correlation, we allow each seller to re-
tain a memory of its price over some fixed number of sell-
ing rounds. When copying a price, a seller to copy is picked
and then a price is chosen uniformly at random from the
set of available historical prices. Fig. 9 shows the effect of
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Fig. 9. Effect of varying the memory size on system prices.
The top figure shows the mean price of sellers (left axis, black
circles) over 25000 rounds after equilibriation, and the stan-
dard deviation around that value (right axis, red triangles).
Errorbars show standard error in the mean over forty realisa-
tions. Increasing the memory size reduces fluctuations in the
mean price and increases its equilibriated value. Lower figure
shows the mean capital of these sellers: increasing the memory
size weakly increases the mean capital. N = 105, ∆ = 0.04,
γ = 0.75.

varying the memory size on the system mean price. We
find for short memories (up to around 30 rounds), the os-
cillatory behaviour is retained. As the memory gets longer,
the oscillations are suppressed until eventually the system
no longer displays any oscillatory behaviour. Interestingly,
this change to the dynamics recovers the structure (though
not the exact form) of the steady state obtained for low
γ. This change to the dynamics increases both the mean
price and the mean capital in the system. Additionally, the
profitability of anomalous sellers (those with huge capital
buildups) is unaffected by the change. These sellers (which
are the parents of expensive franchises in the oscillatory
phase) are still able to obtain a large capital. If we wish
to optimise our system for overall prosperity, larger mem-
ories are better.

7 Conclusions

We have seen that modification of the discrete time model
presented in [12] to a continuous time version can lead to
the appearance of self-sustaining boom-bust cycles. The
cycle arises from continual pressure to reduce prices by
Bertrand competition, until the price becomes unsustain-
able and only sellers with large accumulated capital sur-
vive. These expensive sellers proliferate when there are
many vacant sites, until Bertrand competition between
them drives the modal price down once more.

There is no externally-imposed timescale for oscilla-
tion, the typical period emerges from the internal dynam-
ics with some variation from cycle to cycle. The oscilla-

tions observed show that in order to model the ‘stylised
fact’ of asymmetric business oscillations [19,20,21] it may
be enough to require stochasticity in the number of sales
(and a separation of timescales between selling and bankruptcy)
in a spatially separated market. Rather than require ex-
ogenous innovation shocks, our model requires only a vari-
ability in the amount of competition expensive sellers ex-
perience. Assuming they can survive depression periods,
these sellers are able to exploit a favourable market when
one such arrives. We note, however, that our model pro-
duces cycles which consist of rapid upturns followed by
a slower decay: this is in contrast to the asymmetries
typically observed in real world business cycles for which
the decay is rapid and the upturn more gradual. The be-
haviour seen is perhaps more similar to that observed dur-
ing introduction of new technologies [22], especially when
considering the mean cpaital. Initial high prices and high
profitability followed by a gradual decline of price as the
market catches on. Finally the new product becomes old
and is again superseded.

The length of each oscillation is primarily determined
by the price of the expensive franchise which first becomes
established after the bust phase. The higher this is, the
longer it takes for Bertrand competition to take effect.
This is a purely stochastic effect, qualitatively different
from previous models of boom and bust.

We have studied two methods of stabilising the system
against oscillations. Dividing the system into parts which
oscillate independently reduced the observed effect on the
global behaviour and allowed reseeding of expensive sites
from crashed systems. We found that adding a random
delay to the price copying stage completely removed the
oscillatory behaviour and the system returned to a steady
state with a price distribution similar to that found at low
γ values.

From an evolutionary point of view, we divide the
sellers into species by ancestry. We find that the change
in mean price arises from a combination of pre-existing
species flourishing at different stages of the cycle, along
with inter- and intraspecies Bertrand competition. The
former is the primary driver during upturns, while down-
turns are due to a combination of both drivers. More con-
cretely, very high-priced franchises do not participate in
Bertrand competition. Mid- and low-priced franchises do,
which causes the slow downswing. Thus, in the ecologi-
cal context, although we have single-parent (haploid) or-
ganisms, the inherited ancestry label (genotype) tends to
correspond to a consistent price (phenotype) and so it
makes some sense to regard the model as producing dis-
tinct species with high and low prices.

This work was produced by the NANIA collaboration funded
by EPSRC grant T11753. We thank three anonymous referees
for useful comments.
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