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Linear and nonlinear spatio-temporal instability
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The linear and nonlinear spatio-temporal stability of an interface separating two
Newtonian fluids in pressure-driven channel flow at moderate Reynolds numbers is
analysed both theoretically and numerically. A linear, Orr–Sommerfeld-type analysis
shows that most of such systems are unstable. The transition to an absolutely unstable
regime is investigated, and is shown to occur in an intermediate range of Reynolds
numbers and ratios of the thicknesses of the two layers, for near-density matched fluids
with a viscosity contrast. A critical Reynolds number is found for transition from
convective to absolute instability of relatively thin films. Results obtained from direct
numerical simulations (DNSs) of the Navier–Stokes equations for long channels using
a diffuse-interface method elucidate that waves generated by random noise at the inlet
show that, near the inlet, waves are formed and amplified strongly, leading to ligament
formation. Successive waves coalesce with each other further downstream, resulting
in longer larger-amplitude waves further downstream. In the linearly absolute regime,
the characteristics of the spatially growing wave near the inlet agree with that of the
saddle point as predicted by the linear theory. The transition point from a convective
to an absolute regime predicted by linear theory is also in agreement with a sharp
change in the value of a healing length obtained from the DNSs.

1. Introduction
This study of spatio-temporal stability of two-layer channel flows is motivated by

the practical problem of removal of viscous soils in industrial plant during cleaning
and product turnover operations. Standard practice is to displace the more viscous
product fluid (which initially fills entire pipelines) by water, resulting in viscous films
being left behind on pipe walls by a finger of water. These films are found by our
test simulations for laminar flows (to be reported elsewhere) to be typically around
0.3 pipe radius thick, and to be sheared by the continued water flow. The resulting
film displacement is anticipated to be strongly affected by the evolution of waves on
the film surface. Also, most of the previous work on shear-induced interfacial wave
evolution considers the linear temporal stability problem whereas the spatio-temporal
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problem has not yet received much attention. We review this literature very briefly
here, along with spatio-temporal studies of related systems. The present study has two
main objectives: to further extend previous studies of the linear problem (especially
to include relatively thin films), and to undertake the direct numerical simulation
(DNS) of open systems (i.e. with an inlet). The significant issue here is the comparison
between the results obtained from these approaches, which hitherto has been addressed
primarily for nonlinear temporal growth.

Of the main mechanisms that may lead to linear temporal growth, the one due to a
viscosity stratification (Yih 1967) is usually dominant for a two-layer flow of different
fluids. Viscosity stratification leads to net work being done by the perturbation velocity
and stress at the interface. Boomkamp & Miesen (1996) verified that this mechanism
plays an important role in many papers on interfacial instability, by using an
energy budget. Other mechanisms for instability are also conveniently summarized by
Boomkamp & Miesen (1996). Of particular importance for laminar two-layer flow is a
Tollmien–Schlichting or shear-type mechanism (possibly in both fluids). Although the
Yih mechanism usually dominates, its growth rate being rather large and shear modes
only being unstable beyond a critical Reynolds number with relatively low growth
rates, competition between these modes has been observed by particular choices of
flow parameters (Yecko, Zaleski & Fullana 2002). The specific problem of the stability
of two-layer channel flow has been studied in detail by Yiantsios & Higgins (1988);
detailed findings of an energy budget can be found in Sahu et al. (2007).

Practical systems are of finite size, however, and the linear spatio-temporal growth
of disturbances (possibly introduced at an inlet) may be rather different from that
predicted by a temporal linear analysis. Reviews of the analysis of spatially evolving
systems can be found in Huerre & Monkewitz (1990) and Chomaz (2005). Most
previous work in this field is on single-phase flows, but it includes free-surface flows
such as falling films down a fibre (Duprat et al. 2007), and miscible three-layer systems
(Sahu et al. 2009).

In § 3 we perform a spatio-temporal linear stability analysis for two-dimensional
two-layer immiscible channel flows. Apart from investigating the nature of spatio-
temporal instability in these systems, a further objective is to provide the benchmark
data necessary in subsequent sections on DNSs. A full parametric study of the linear
analysis turns out to be not necessary, as the results are qualitatively similar to those
reported recently in Sahu et al. (2009) for miscible three-layer systems. An issue not
resolved by Sahu et al. (2009), however, is the behaviour of relatively thin films,
due to limitations of their numerical method. Our results indicate that this is rather
important, so in § 3 we focus primarily on the dependency of the results on the ratio
of the interfacial height to the channel height including the thin film regime. Also,
the present numerical method allows us to investigate in detail the various spatial
branches, and the coalescence of some of these into a saddle point.

The main objective of this paper is the DNS of the nonlinear behaviour of two-
dimensional two-layer channel flows, and to aim to compare with the linear theory of
§ 3. Most previous work in this field is for the nonlinear temporal evolution, i.e. on the
DNS of two-layer flows subject to streamwise-periodic boundary conditions, which
usually leads to ligament formation (e.g. Boeck et al. 2007). We briefly revisit this
problem in § 4.2, both as a numerical (convergence) test, and to further investigate
how and at what rate ligaments are extended. Ligaments are observed in subsequent
sections in larger-scale flows.

In the main problem studied here (§ 4.4), the periodic conditions are dropped, and
a two-layer flow through a channel of finite length is simulated. Previous work in
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Figure 1. Schematic illustration of the flow geometry.

this area is limited essentially to the very recent study by Fuster et al. (2009), on
the DNS of jet atomization. The present paper attempts to compare against the full
spatio-temporal analysis, rather than a comparison against a temporal analysis, which
was done by Fuster et al. (2009). Also, tests by us show that great care must be taken
with the implementation of the inlet conditions. We introduce random noise at the
channel inlet, akin to the methodology proposed previously by Chang, Demekhin &
Kalaidin (1996) for thin falling films, which appears not to have been done previously.

The numerical method used here is that of Ding, Spelt & Shu (2007), which is a
diffuse-interface method to track interfaces in conjunction with a projection method
to solve the equations of motion for two-phase incompressible fluids. This method has
been used and tested against previous work by others (who used a different numerical
method) in Ding et al. (2007) and in several other papers, including Ding & Spelt
(2008). The present problem poses several challenges. In order to compare with linear
theory, the simulations must be highly resolved whilst relatively long domains must
be simulated. A further concern is the use of such a diffuse-interface method, which
necessarily smears the discrete jump in fluid properties across the interface over an
interfacial region of finite thickness, which might affect the linear growth regime result-
ing from the simulations. Conveniently, however, the thickness of the interfacial region
is well controlled by an input parameter of the diffuse-interface method, and we shall
choose this to be proportional to the grid spacing. Both of these concerns are therefore
important matters of convergence with respect to the grid spacing. We present evidence
of convergence for the problem at hand at various stages in this paper.

2. Problem formulation
We consider immiscible two-phase flow in a rectangular horizontal channel of

dimensional height H and dimensional length L, as depicted in figure 1; both the
phases are considered Newtonian and incompressible. The upper fluid has viscosity µA

and density ρA; the lower fluid has viscosity µB and density ρB . The streamwise and
wall-normal directions are parallel to x̂ and ŷ, respectively, as indicated in figure 1.
The flow is driven by a pressure gradient along the x̂ direction and is bounded by walls
at ŷ = 0 and ŷ = H , respectively. We shall consider systems with periodic boundary
conditions as well as open systems with an inlet at x̂ = 0 and an outlet at x̂ = L̂. The
dimensional location of the interface is at ŷ = ĥ + η̂(x̂, t̂), where ĥ and η̂ correspond
to the unperturbed interfacial position and the amplitude of an applied disturbance,
respectively. We introduce the following dimensionless variables (without carets),

x̂ = H x, ĥ = Hh, η̂ = Hη, û = V u, p̂i = −ρig(ŷ−ĥ)+
µAV

H
p, t̂ = (H/V )t, (2.1)

where u = (u, v) and p are velocity and pressure, respectively. The velocity scale
is chosen to be V = Q/H , where Q is the total volumetric flow rate through the
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channel. These scalings result in the following main dimensionless parameters,

Re =
ρAV H

µA

, m =
µB

µA

, r =
ρB

ρA

, Γ =
γ

µAV
, G =

(ρB − ρA)gH 2

µAV
. (2.2)

Here, Re is a Reynolds number, m and r represent viscosity and density ratios,
respectively, Γ is an inverse capillary number and G is a Bond number (a Weber
number would correspond to We = Re/Γ ). In the following, two approaches are
followed to solve the equations of motion, a linear Orr–Sommerfeld-type analysis
and a DNS. Further details of the method of solution are provided in these sections,
including the dimensionless equations of motion in § 4.1).

3. Linear spatio-temporal stability analysis
Denoting a small-amplitude disturbance to the flat interface by η = εη̃ei(αx−ωt), the

wavenumber is complex in this spatio-temporal analysis, α = αr +iαi , and the complex
frequency is denoted by ω = ωr + iωi . We use here the problem formulation as stated
in Sahu et al. (2007) (but for Newtonian fluids) in terms of the perturbation in the
streamfunction εψ(y)ei(αx−ωt), obtained after linearization of the governing equations
(presented in the Appendix) with respect to ε. This results in an eigenvalue problem,
with as unknowns the eigenfunction ψ(y) and a dispersion relation between α and ω.
This problem is solved here using a spectral collocation method at a specified order
of the Chebyshev polynomials in each of the two fluid layers. For all cases considered,
51 collocation points in the upper layer and from 15 (for h � 0.05) to a maximum
of 51 (for h = 0.5) in the lower layer were sufficient to achieve convergence. The
present implementation of the numerical method does not require an equal number
of collocation points to be used in both layers (as was the case in Sahu et al. 2007,
2009), thereby allowing us to investigate a large range of values for the depth ratio h.
Furthermore, the use of a specialized eigenvalue solver (Trefethen 2000) (details can
be found in the Appendix) obviates the need for any explicit operations to remove the
infinite eigenvalues from the problem, or to rebalance the problem to take account of
ill-conditioning, difficulties which Boomkamp et al. (1997) encountered in their work.
We have verified that the results from this entirely new code used here agrees with
those of Sahu et al. (2007) and, when using a turbulent base state, with the results of
Miesen & Boersma (1995).

We follow here the notation of, for example, Huerre & Monkewitz (1990). The
flow is said to be linearly unstable if the most dangerous mode in the temporal
analysis is unstable. Unstable parallel flows are classified as convectively unstable if
initially localized pulses are amplified in at least one moving frame of reference but
are damped in a laboratory frame, and absolutely unstable if such pulses lead to
growing disturbances in the entire domain in a laboratory frame. The distinction is
especially important in the determination of global stability of non-parallel systems
(e.g. Chomaz 2005). An unstable parallel flow is absolutely unstable if the following
criteria have all been met: (i) if ωi0 ≡ ωi(α0) > 0, where α0 is the wavenumber at
which the group velocity cg = ∂ω/∂α is zero, (ii) if the corresponding saddle point
α0 in the complex α plane is the result of the coalescence of spatial branches that
originate from opposite half-planes at higher and positive ωi and (iii) the saddle
point pinches at ωi0; this is verified by locating a cusp at ωi0 in the complex ω

plane (Lingwood 1997; Schmid & Henningson 2000) and ensuring that the complex
wavenumber corresponding to the pinching point coincides with α0. Other unstable
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Figure 2. Spatial branches (at ωi = 0) for the system defined by h = 0.3, m= 30, r = 1, Γ = 0.01
and G = 0 at various Re (Re = 5, 30, 49, 55, 70, 100 in (a), (b), (c), (d ), (e), (f ), respectively).
Transition from convective to absolute behaviour occurs at Re = 55.

flows are convectively unstable. Example results are shown and discussed further
below (figure 4).

We have solved the Orr–Sommerfeld-type problem for (αr, αi)= [(0.1, 120) ×
(50, −120)]. We have done this for m =10, 20, 30, 100, 1000, r = 1, 1.3, 100, and
combinations thereof, for Re � 3000 and 0.002 � h � 0.9, and checked all cases where
−0.005 <ωi0 < 0.005. The spatial growth rate (αi) for the classical spatial stability
analysis (where αi is obtained for real ω) was then obtained by plotting the ωi = 0
contour in the complex α plane. We have verified that the system remains temporally
unstable even for very low interface heights (including down to h = 0.002) in the range
of Re investigated here.

Figure 2 shows the effect of Re on the spatial growth rates. It is seen that ωi = 0
occurs on several ‘spatial’ branches. The spatial branch from αi = 0 is henceforth
denoted by α∗; the other branches are denoted as indicated in the figure. The
coalescence of branches in the lower half of the complex α plane into a saddle point
indicates the transition from convective to absolute instabilities. This is found to occur
in the present case at Re = 55; the saddle-point method coupled with the cusp-map
technique does not show any evidence of a pinched saddle node in this case for



Spatio-temporal instability of two-layer flows 463

Re
αr0

α10

h

h

500 1000 1500 2000 2500 30000

0.1

0.2

0.3

0.4

0.5

HRT

HDT

LDT

LRT

Convectively unstable

Convectively unstable

Absolutely unstable

(a) (b)

(c)

–50

–40

–30

–20

–10

0

Re = 3000, h = 0.027

Re = 55, h = 0.3

ReInt

0.02

100 20 30 40 50

0.04 0.06 0.080

0.05
0.10
0.15
0.20
0.25
0.30

Figure 3. Regime transitions: (a) the loci of all the transition points, the stability map. A
transition is identified as a point where ωi0 = 0. (�), HD transition points; (�), LD transition
points; (×), LDT points fitted to the power law h = 1.6Re−0.5. (b) Variation of the lower-branch
C/A transition h = hc with interfacial Reynolds number Reint , and (c) LD transition points
plotted on α space. Parameter values are m= 30, Γ = 0.01 and r = 1.

any Re < 55, indicating that the interfacial behaviour is convectively unstable in this
region.

We have determined the boundary between convective and absolute instability by
first plotting contours of ωi on the complex α plane, and by subsequently determining
the value at the saddle point ωi0. For most cases studied here, only one saddle point
could be identified for flows that were found to be absolutely unstable. However, for
relatively thin films (h � 0.04) at high flow rates (Re � 750) or for large values of Γ ,
multiple saddle points were obtained, but only one pinched. These cases are discussed
further below.

We have determined the transition points between convective and absolute
instability (C/A) for a range of flow parameters. As explained in the Introduction,
a full parametric study is not the subject of this paper; qualitatively, the trends are
similar to those reported in Sahu et al. (2009) for miscible three-layer systems. In
summary, for systems with a density contrast the flow is usually convectively unstable
(hence air–water and air–oil systems were found to be convectively unstable for the
range of Re studied); the same is found even for density-matched cases if the viscosity
contrast is sufficiently close to unity, and for a large range of values of Γ (we return
to this last point at the end of this section however). In the remaining cases, the flow
is found to be absolutely unstable at an intermediate range of Re and h values, which
we investigate in more detail here, as this is beyond the range of parameters that
could be studied with the numerical method of Sahu et al. (2009).

Transitions C/A are shown for a range of cases in a h − Re plot in figure 3(a). The
region bounded within the curve corresponds to a parameter set for which absolute
instabilities occur. The transitions at low and high Re are henceforth referred to as
‘LRT’ and ‘HRT’, respectively, and those at low and high h by ‘LDT’ and ‘HDT’,
respectively. At the LDT, for Re > 750, two saddle points were found of which only
one pinched.
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Figure 4. Effect of dimensionless surface tension, Γ . (a) Absolute growth rate ωi0 versus
Reynolds number Re for different values of Γ : (�), Γ =0.01; (�), Γ = 1; (�), Γ = 10. Other
parameter values are m= 30, r =1, G = 0. (b) Contours of ωi0 in the complex α plane for
Re = 200, Γ = 10 with all other parameters as in (a) show two saddle points. These poles are
enlarged in (c) and (d ). The circles indicate the saddle point and the pluses indicate cusps;
these match only for the right-hand pole indicating it as a pinching saddle point. The left-hand
pole is non-pinching.

Of particular interest is the LDT: for relatively thin films, there is a critical height
beyond which the system is absolutely unstable, and this extends over a large range
of Re values. At this point it is important to remember that Re is based on the total
flow rate through the entire channel, of both fluids. The results for the LDT can
be seen as evidence for a critical value of a Reynolds number based on the height
and properties of the thin film and the dimensional interfacial velocity of the base
state (Uint ), Reint ≡ ρBhUint/µB =(r/m)h(UintH/Q)Re, as follows. If we approximate
the velocity in the film by simple shear, then a constant critical value of Reint = Rec

int

corresponds to a critical height hc ∼ (mRec
int/rRe)1/2. Hence, hc ∼ 1/

√
Re. The results

for the LDT shown in figure 3(a) are seen to accurately follow this prediction. In
figure 3(b), it is seen that the value of Reint approaches a constant as hc is lowered:
the points corresponding to the lowest values of hc in figure 3(b) correspond to
Re = 2500, 3000 and 10 000.

The results show, however, that a long-wave approximation would not be
appropriate in this case. This can be seen as follows. Figure 3(c) depicts the trajectory
of the LDT points in the α space. Evidently, at higher Re the saddle point corresponds
to shorter waves with larger spatial growth rates, even at lower interface heights. The
results shown can be approximated by a straight line, αi0 ≈ 1.7 − αr0. So the spatial
amplification of disturbance is evidently very high; the amplitude of the saddle-point
wave would more than double over a single wave length.

These results are found to be relatively independent of the dimensionless surface
tension coefficient, Γ up to Γ = 1. For larger surface-tension values, however, the
absolute growth rate has significantly dropped. In figure 4(a), the value of ωi0 is
shown as a function of Re for different values of Γ at a fixed interface height h.
However, for Γ = 10 two saddle points were obtained, of which only one pinched as
shown in figure 4(b) for Re = 200. We have verified that the small deviation between
the locations of the cusp and the saddle points in the cases of non-pinching saddle
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points is independent of the number of collocation points used for solving the full
Orr–Sommerfeld problem. Finally, we have checked that the most dangerous temporal
mode for Γ = 10 is still an interfacial mode.

4. Numerical simulations of linear and nonlinear behaviour
In this section, the results of numerical simulations are discussed in detail following

a brief description of the numerical procedure used to carry out the computations.
Connections with the linear theory predictions presented in § 3 are made where
appropriate.

4.1. Numerical method

One of the objectives of the present work is to study the wave evolution in the
nonlinear regime using full numerical simulations. The diffuse-interface method of
Ding et al. (2007) is used here (which closely follows Jacqmin 2000). Thus the volume
fraction of the lower fluid, c, is used as the order parameter such that c = 0 and c =1
correspond to the bulk of the upper and lower fluid, respectively. In this method,
the volume fraction is governed by the advective Cahn–Hilliard equation, which in
dimensionless form is given by

∂c

∂t
+ u · ∇c =

1

Pe
∇ · (M∇φ) , (4.1)

where the mobility M depends on volume fraction as M(c) = c(1 − c); φ =
6
√

2γ (ε−1Ψ ′(c)− ε∆c) is the chemical potential, Ψ (c) = c2(1− c)2/4 is the bulk energy
density that has minima at c = 0 and 1 (corresponding to the two bulk fluids), γ is
the interfacial tension, ε is a measure of the thickness of the diffuse interface and
Pe = HU/(M0φ0) is the Peclet number; here, M0 and φ0 are the characteristic values of
mobility and chemical potential. As in Ding et al. (2007), we use Pe = 1/ε2; the value
of ε is limited by the grid spacing, and is set to ε = 0.5∆x, which corresponds to a
thickness of the interfacial region (in terms of the distance between contours of c = 0.1
and 0.9) of around 3∆x. The diffusion term in (4.1) originates from thermodynamics,
and provides a mechanism to maintain the regularity of the interface. The Cahn–
Hilliard equation is solved simultaneously with the following equations of continuity
and momentum:

∇ · u = 0, (4.2)

Re ρ

[
∂u
∂t

+ u · ∇u
]

= −∇p + ∇ · [µ(∇u + ∇uT )] + Γ φ∇c − Gey. (4.3)

The dimensionless values of the local viscosity and density are calculated using the
local volume fractions of the respective layers, i.e. ρ = (1 − c) + c r , µ =(1 − c) + c m.
The choice of the smoothing function may affect the dynamics of small waves on the
interface for coarse grids. Coward et al. (1997) argued that shear rate rather than
viscosity should be smoothed for simulation of flows in which interfacial shear is
dominant. Such a method results in a harmonic smoothing of viscosity across the
interface. We have found this argument to be of benefit in our earlier work (Valluri
et al. 2008), wherein a level-set method was used, resulting in a substantial reduction of
discretization errors, yielding better agreement between our numerical and theoretical
predictions of the linear growth rate for a given grid. In the present work based on the
diffuse-interface method, however, harmonic smoothing was found to require a finer
grid to get comparable results when comparing to linear theory to those obtained
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with the arithmetic smoothing that is used here. A standard projection finite-volume
method is used herein on a MAC grid to solve the momentum equations, with
Adams–Bashforth and Crank–Nicholson techniques for the advective and viscous
terms, respectively. A split semi-implicit discretization is used for the Cahn–Hilliard
equation. The advection term in the Cahn–Hilliard equation is discretized using a
fifth-order weighted essentially non-oscillatory (WENO) scheme. Further details and
results of convergence tests can be found in Ding et al. (2007), other applications
of the same method with comparisons to other, independent work can be found in
Ding & Spelt (2008).

Two types of simulations are reported in this study. In the first, we impose periodic
boundary conditions at the ends of the domain, with a fixed pressure drop (hence
the total flow rate through the domain may change in time). In the second type, inlet
and outlet conditions were imposed on the left and right boundary of the domain,
respectively. At the inlet, the velocity field is prescribed as discussed further below.
Neumann conditions are used at the outlet, that is, zero normal gradient of velocity
and volume fraction under a fixed pressure drop. Domain length to height ratios
of up to 1:10 have been used, a ratio dictated by computational feasibility. The
governing equations were solved on a MAC grid for the rectangular domain shown
in figure 1, using square grid cells. The simulations were conducted using OPENMP
on 8-processor machines.

The initial wave amplitude, measured by the interface displacement, is taken to be
much smaller than the grid spacing. This is because the stability analysis described
in § 3 is valid only for perturbations of infinitesimally small amplitude. If the initial
amplitude is not very small, the pressure disturbance is too large for the linear analysis
to be valid. We typically use an initial wave amplitude of O(10−3). A complication
arising from starting waves with such small amplitudes is that the approach to breakup
of slender filaments requires many time steps. In some simulations, discretization
errors around the interface, related to the discretization of the surface-tension term,
accumulate over these rather long integration times, when the wave amplitude is much
smaller than the grid spacing. These discretization errors may give rise to disturbances
generating spurious currents, though small in magnitude (cf. Lafaurie et al. 1994),
unless large values of Γ are simulated. In this paper, we focus on modest values of
Γ , which still allows us to study the C/A transition.

4.2. Spatially periodic simulations

We briefly investigate spatially periodic flows here, primarily with the objective to
report on convergence studies, and comparisons with previous work. Also, ligament
formation is observed in these simulations, which also feature in the results presented
in the subsequent sections; the small domain used in the present section allows this
process to be well resolved for relatively long times.

For these purposes, we report here on the evolution of a sinusoidal wave that
corresponds approximately to the most-dangerous temporal mode for h =0.3, m =30,
r = 1, Γ =0.01, G = 0 and Re = 50, which is approximately α = 2π (hence we use a
square domain here). Cases similar to this are simulated for open-ended channels in
the next section, and it is seen in the previous section that such flow parameters are
close to a C/A transition.

Figure 5 shows the effect of grid spacing on a semilog plot of the disturbance
amplitude a versus time; a is obtained by subtracting the undisturbed base state
interfacial depth from the instantaneous maximum interface height in the domain.
The growth rates correspond to the slopes of the curves in figure 5(a). In table 1, the
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Grid ωi cr = ωr/αr

120 × 120 0.30 0.18
240 × 240 0.33 0.18
480 × 480 0.34 0.19
Theoretical 0.34 0.21

Table 1. Dependence of the growth rate and wave speed on mesh spacing for temporally
unstable flows. Parameters used are L =1, h = 0.3, m= 30, r =1, Γ =0.01, G =0 and Re = 50.
The CFL number was kept constant between different grids.
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Figure 5. (a) Convergence study. Maximum perturbation height as a function of time for the
most unstable mode. Solid and dashed lines represent the numerical simulation (for the grids
indicated) and linear stability analysis, respectively. (b) Time evolution of amplitude of the
fundamental mode and overtones. In both figures, h = 0.3, m= 30, r = 1, Γ =0.01, G = 0 and
Re = 50.

growth rate and the wave speed obtained from the simulations are compared with
those obtained from the temporal linear stability theory. It was also verified that the
Fourier transform of the wave evolved with the same growth rate as the maximum
interface height. The growth rates from the numerical simulations appear to converge
rapidly to those predicted from linear theory upon mesh refinement; the wave speed
does approach the theoretical value but a very fine grid would be required to possibly
achieve very close agreement. Additional tests (not shown) with even smaller initial
amplitudes, as low as O(10−6), gave results very close to those reported here. In figure 6
it can be seen that the velocity field also closely matches the linear theory (we have
verified that throughout the linear stage the DNS curve shown in this figure does
not change visibly). We therefore conclude that the degree of agreement with linear
theory, and the general trends seen when refining the grid, are similar to that found
in our previous work wherein a level-set method was used (Valluri et al. 2008).

From figure 5(a) we see that after around t = 12 for the finest grid used, there is
a substantial departure from the linear (i.e. exponential) growth regime. To illustrate
this more clearly, we show in figure 5(b) the growth of the first four Fourier modes
of the interface profile, which has an initial dimensionless amplitude of 10−3. The
results show that once the overtones are expected to be more or less resolved, their
growth rate briefly (and only approximately) satisfy the relation ωk

i = (k +1)ωi , where
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Figure 6. Comparison between linear theory (solid line) and DNS (dashed line) of the vertical
velocity component w as a function of y across the wave crest (at x = x0). The velocity has
been scaled with the wave amplitude. Flow conditions as in figure 5 at t =3 with Ny =480.
OS= Orr–Sommerfeld, DNS =direct numerical simulation.

k is the overtone number, and ωi is the growth rate of the fundamental mode. This
would suggest that the overtones are enslaved to the fundamental mode at this early
stage (cf. Barthelet, Charru & Fabre 1995). This seems reasonable, even though the
system studied here is far from criticality (the first four overtones shown here are
all unstable themselves): the fundamental mode was imposed at t = 0 and may be
expected to initially drive the growth of overtones. A comparison with fully weakly
nonlinear theory is not the aim of this section.

The late-time wave evolution is summarized in figure 7(a–d ). After nonlinear
distortion, a ligament is seen to be formed. This is not observed for relatively large
values of h, for which we have investigated in detail the nonlinear distortion in our
previous work (Valluri et al. 2008). In figure 7(b) it is seen that this ligament is
stretched by the surrounding flow, consistent with the findings of Boeck et al. (2007).
This involves normal stresses inside the ligament that lower the pressure inside the
ligament, thereby creating a sharp pressure gradient at the root of the ligament (see
figure 7c), which drives fluid from the lower layer to enter the ligament. Meanwhile,
the height of the wave at the root of the ligament only slowly increases during
this stage (as can be verified by comparing this height in figures 7c and 7d ). The
streamwise locations of the root and tip of the ligament are traced in time in figure 8
for modest and relatively large values of Re. It is of interest to note a sudden
acceleration of the streamwise location of the ligament tip, especially at low Re,
obviously leading to an acceleration in the rate of stretching of the ligament. We have
verified that the acceleration occurs at the point whereat the ligament tip has reached
the trough of the periodic wave. The acceleration is therefore due to advection and
stretching by the flow past the crest downstream of the original wave crest. Hence
we conclude that interaction with downstream waves can have a significant effect
on the rate of stretching of a ligament. Finally, we note in figure 8(a) that once the
ligament has stretched to the point that the ligament thickness becomes comparable
to the interfacial thickness, the ligament defined by the c = 0.5 contour breaks, but the
subsequent trend in the figure is seen to be consistent with those at earlier times. In
the Cahn–Hilliard formulation, the c =0.5 contour does not break due to numerical
error, but due to the minimization of the local free energy.
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Figure 7. Temporal wave evolution for Re = 50, Ny = 480 (only the lower half of the domain
is shown) for t = 16.6 (a), t = 20 (b, c) and t = 21.4 (d ). In (a) and (c), the contours represent the
pressure distribution. The instantaneous streamlines shown in (b) are in a frame of reference
moving with the horizontal velocity component of a point on the ligament.
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Figure 8. Ligament dynamics: the streamwise location of the ligament tip XT and root XR

versus time from the onset of overturning for Re =50 (a) and Re = 500 (b) with Ny = 480.
Other parameter values are h = 0.3, m= 30, r = 1, Γ = 0.01, G = 0.

Tests showed the periodic domain to be prohibitive when investigating the
convective/absolute nature of instabilities, because disturbances originating from
a test pulse in the middle of the domain reach their periodic images too quickly. We
therefore use in- and outlet conditions in the subsequent sections.

4.3. Simulations with a localized disturbance in open systems

We study here the spatio-temporal evolution of instabilities in relatively long channels
(of aspect ratio 1:10) by introducing a small-amplitude interfacial forcing localized
in the central region of the channel for a short duration of time. This is done by
employing a body force of the form, Fimp = β∂c/∂z, in the y-momentum equation.
Here, β =A(−1 + cos(2π(x − 5.0))) for 4.5 � x � 5.5 and t � 0.006, but equal to zero
for all other values of x and t . The factor A is chosen such that the resulting initial
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Figure 9. Evolution of the interfacial height at x = 5 following the introduction of a localized
forcing around x = 5 as described in the main text (forcing switched off after t > 0.006) for
Re = 30 (a) and 100 (b). Other parameters are: H : L =1 : 10 at (Nx × Ny) ≡ (1800 × 180);
h =0.3, m= 30, r = 1, Γ = 0.01 and G = 0.
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Figure 10. The (x, t) plots of the minimum interfacial height obtained following the
introduction of a localized forcing around x = 5 as described in the main text (forcing switched
off after t > 0.006) for Re = 30 (a) and 100 (b). Other parameters are H : L =1 : 10 at
(Nx × Ny) ≡ (1800 × 180); h = 0.3, m= 30, r =1, Γ =0.01 and G = 0.

amplitude of the wave so generated is approximately 0.006 after the initial forcing,
arguably small enough for linear theory to be valid (as suggested by figure 5).

In figures 9 and 10, results are shown for cases that are linearly convectively
(Re = 30 with A= 20) and absolutely (Re = 100 with A= 5) unstable. In figure 9(a), it
can be seen that the amplitude of the disturbance at the central point of the forcing
(x =5) decays for the convectively unstable case. In figure 10(a), the initial disturbance
is seen to be convected downstream in this case. Conversely, the corresponding results
for Re =100 (a linearly absolutely unstable case) show evidence of sustained growth
of disturbance at a frequency ωr = 1.4 ± 0.1 at x =5, which agrees quite well with the
saddle mode frequency predicted by the linear theory (= 1.61). Close inspection of



Spatio-temporal instability of two-layer flows 471

figure 10(b) suggests there is evidence of propagation in the upstream direction, albeit
at a rather slow rate. We conclude that these results are consistent with the findings
of the linear spatio-temporal stability analysis.

It is seen in figure 10 that both simulations are overwhelmed quickly by disturbances
convected from the inlet, as is to be expected from an unstable system. Small
disturbances are generated at the inlet because the inlet profiles that are used as
boundary conditions for velocity and volume fraction not necessarily exactly match
with the discretized equations of motion. In preliminary simulations (not reproduced
here), the analytical unidirectional parabolic two-layer velocity profile was used. This
was found to yield even stronger wave growth from the inlet, because the analytical
solution is not exactly equal to the solution of the velocity field that would be obtained
numerically for a flat interface. In an effort to further reduce such disturbances, the
present results have been obtained using a so-called numerical inlet profile (instead of
the analytical profile), which was obtained from a simulation using periodic conditions
for a very short domain (to ensure that the interface was kept flat) using the same
number of grid spacing across the channel height, Ny. Given that an investigation
of the long-time behaviour of these systems would require a very long computational
domain indeed, we instead investigate the wave evolution and the comparison with
linear theory in more detail in simulations with forcing at the inlet, in the next section.

4.4. Simulations with random forcing at the inlet of open systems

We study here the nonlinear spatio-temporal evolution of instabilities in relatively long
channels by introducing small-amplitude random forcing to displace the interface at
the inlet. In all the cases described here, constant flow rate conditions are imposed at
the channel inlet; a Neumann-type outflow condition is applied at the outlet described
by ∂u/∂x = 0 and ∂c/∂x =0. No-slip and no-penetration boundary conditions are
imposed on the top and bottom channel walls. The initial conditions for the velocity
correspond to the numerical base state, for reasons described in § 4.3.

We introduce random-phase noise in the system by changing the height at the inlet
h + A(t) according to (Chang et al. 1996)

A(t) =

∫ ∞

0

|Â(ωf )|ei(ωf t+θ(ωf )) dωf , (4.4)

where θ(ωf ) is the phase of the complex amplitude Â(ωf ) and ωf is a real perturbation
frequency. On approximating (4.4) with Nf frequency units of width ∆ωf = ωmax/Nf ,
where ωmax is some high frequency cutoff we find

A(t) =
A0

Nf

Nf∑
k=0

ei(kωmax t/Nf +θk ). (4.5)

The phase θk is a randomly generated phase angle between 0 and 2π and A0 = Âωmax is
an arbitrarily specified amplitude such that A(t) = O(10−3). We have chosen Nf = 1000
and ωmax =3ωT

max , where ωT
max is the real frequency corresponding to the maximum

temporal growth rate, such that a wide range of frequency spectrum is accounted for.
Chang et al. (1996) chose the maximum cutoff frequency as twice the frequency of
the neutral mode.

We have also conducted tests to establish the sensitivity of the results in this section
to the grid spacing. As in the previous section, we use Ny =180. Results obtained
with Ny =90 (and even Ny = 60) were found to be qualitatively very similar to those
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Figure 11. Snapshots of interface profiles from simulations with random forcing at the inlet,
for various values of Re (Re = 30 (a), 55 (b), 100 (c). Other parameters are h = 0.3, m= 30,
r = 1, Γ = 0.01, G = 0, Re =50 for the analytical inlet profile.
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Figure 12. Successive wave profiles: curves A, B and C are for successive times at intervals
of two time units; curve D is for 4.5 time units later than curve C. Parameter values used are
h =0.3, m= 30, r = 1, Γ = 0.01, G = 0 and Re = 55 for the numerical inlet profile.

reported here; the only difference is that the phenomena observed occur further
downstream when using a coarse grid.

In figure 11, snapshots are shown of typical interface profiles. Motivated by the C/A
transitions found from the linear analysis, we focus here mainly on the effect of the
value of Re on the results for r = 1, m = 30, h = 0.3, Γ = 0.01 and G =0. In figure 12,
the typical evolution near the inlet is shown. In all the simulations, the sequence A–D
shown in figure 12 is repeated continuously, after an initial transient, leading to an
initially almost regular wavetrain.
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Figure 13. Healing length versus Re for different threshold values (a) and the time-averaged
maximum and minimum interface height (b) for Re = 55. In (a), results are shown for threshold
levels corresponding to 1 %, 5 % and 10 % of the base height of the interface h. In (b), the
open symbols correspond to |hmax −have|, the filled symbols to |hmin −have|, where have = 0.297;
the slope of the straight line is 0.12, and the curved line is an exponential curve with exponent
4.5, corresponding to the spatial saddle point growth rate αi0. The numerical inlet profile was
used here.

The spatial growth rate observed in figure 12 does seem rather large. We compare
here the case of Re = 55 with linear theory, as this corresponds to the C/A boundary,
i.e. where ωi0 = 0, which simplifies a comparison with the numerical simulations:
because the variance of forcing is constant, there is no temporal growth at the inlet,
but there would be for disturbances that have been transported further downstream
in cases away from the C/A boundary. To facilitate a comparison with linear theory,
we have determined from contour plots of the height h(x, t) in the (x, t) plane the
averaged distance where for the first time the interface reaches a height hmax for a
range of values of hmax . We have repeated this process for a minimum height hmin.
The results are shown in figure 13(b). Here we have subtracted an averaged value
such that both curves more or less overlap (this value changes somewhat for different
values of x, as is discussed further below; the value used in the figure gives the best
coincidence of the hmax and hmin graphs for the case shown). Two regimes can be
identified: an initial, approximately exponential regime, and a later, approximately
linear regime.

An exponential curve has been superimposed in the figure, the exponent corresponds
to the value of −αi0 for the case under investigation. It is seen that these numerical
simulation results for the early spatial development can be represented well with
the linear theory corresponding to the spatial growth rate of the saddle node linear
mode. We have also investigated cases away from the C/A transition. At Re = 100,
for example, the results from the numerical simulations are qualitatively very similar
to those shown in figure 13(b), but the exponent is then higher than −αi0 from linear
theory. This would be expected, since here ωi0 > 0 here and further amplifies the wave
growth.

The spatial growth further downstream is seen in figure 13(b) to be governed by an
approximately linear regime. We have verified that in the cases studied here, there is
no significant dependency of the prefactor in this linear growth on the value of Re.



474 P. Valluri, L. Ó Náraigh, H. Ding and P. D. M. Spelt

2

100 110 120 130 140

4

6
x

8

(a)

2

100 110 120 130 140

4

6
x

t

8

(b)

Figure 14. Space–time plot for Re =30 with H : L =1 : 10 at (Nx × Ny) ≡ (1800 × 180)
coloured by minimum interface height (a) and maximum interface height (b). The other
parameters used are h = 0.3, m= 30, r = 1, Γ = 0.01 and G =0.

A main effect seen in figure 11 is the increased spatial amplification of disturbances
at larger Re. This is investigated further in figure 13(a), where we show the so-called
‘healing length’ as a function of Re. The healing length LH is defined here as the
distance from the inlet at which a prescribed interface elevation has been reached,
and this value has been averaged over time. Results are shown for different threshold
values. It was found that coarser grids showed the same trends, with a shift to
somewhat larger for LH . The results for sufficiently large threshold values show a
fairly rapid decrease in the value of H when Re is increased beyond about Re = 50,
after which it levels off. It is of interest to note that the C/A transition predicted by
linear theory is at Re = 55 in this case (see figure 3).

The behaviour further downstream is investigated in figures 14 and 15, where
results are shown for the elevation of the interface in (x, t) plots for different values
of Re. The interface height here corresponds to the y-coordinate where c = 0.5. At
any time t , more than one interface may be located at a streamwise location x (due
to ligament formation), so the minimum as well as the maximum of the interface
elevation is shown, the latter corresponding to the interfacial height of the ligament.

Once ligaments have reached a thickness that is comparable to the grid spacing,
the c =0.5 contours will eventually give the appearance of entrainment of droplets.
Although the results presented here are for a relatively fine grid, such artificial
entrainment events are observed in figures 14(b) and 15(b). The white streaks in these
figures do not correspond to actual droplets, but merely to that part of ligaments
wherein the value of c is still above 0.5. The results for periodic domains studied in
§ 4.2 suggest that this does not appear to affect the ligament dynamics (see figure 8a),
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Figure 15. Space–time plot for Re =100 with H : L = 1 : 10 at (Nx × Ny) ≡ (1800 × 180)
coloured by minimum interface height (a) and maximum interface height (b). The other
parameters used are h = 0.3, m= 30, r = 1, Γ = 0.01 and G =0.

as this is primarily in a regime wherein the ligament is almost passively advected.
Also, we have verified that the results for coarser grids are qualitatively similar, the
same phenomena occur but further downstream.

In figure 14, which is for Re = 30, it can be seen that four wave crests tend to
coalesce into two. This coalescence mechanism appears to be robust, as it occurs on
two occasions in a similar manner. Comparison with figure 14(b) shows that wave
coalescence coincides with the rapid elongation of a ligament stemming from the
upstream wave crest. A clear example (albeit for a different Re) is clearly visible in
figure 11(c). But most ligaments are formed directly from uniformly growing waves,
without coalescence phenomena.

Further evidence was obtained by taking Fourier spectra of the (x, t) graphs
to determine the dominant values of ωr . The spectra for Re = 30 and Re = 100 are
shown in figure 16. It can be seen in figure 16(d ) that in the absolutely unstable regime
(Re = 100), at a short distance from the inlet (x =1) where linear wave growth occurs,
a single dominant frequency of 1.4 ± 0.1, which is the same as that observed in the
pulse simulations in § 4.3, agreeing quite well with the saddle mode frequency predicted
by the linear theory (= 1.61). In the convective regime the numerical simulation at
Re =30 shows no such distinct single dominant frequency (figure 16a). In both
simulations a shift to lower frequencies is observed downstream in figures 16(b, c)
and 16(e, f ), consistent with coalescence phenomena observed in the corresponding
(x, t) plots.

Also, the slopes of the streaks in the (x, t) plots were measured within a short
distance from the inlet (where the waves are still small and there is exponential
growth) and averaged to determine a wave speed cr . Here, it was noted that the



476 P. Valluri, L. Ó Náraigh, H. Ding and P. D. M. Spelt

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0
ωr ωr ωr

1 2 3 0 1 2 3

(a) (b) (c)

(d) (e) (f)

Figure 16. Fourier frequency strengths at the inlet (a, d ), middle (b, e) and outlet (c, f ) of the
channel for Re = 30 (a–c) and Re = 100 (d–f ) (x = 2, 4, 9.9, 1, 7, 9.9 in (a), (b), (c), (d ), (e),
(f ), respectively). Other parameter values as in figures 14 and 15.

simulations are in agreement with the linear theory only for the cases that are no
longer purely convective; for Re = 100, the simulation resulted in a wave speed of 0.22,
which agrees with the saddle mode value (cr = ωr0/αr0) of 0.23. This indicates that a
randomly forced absolutely unstable system naturally selects a mode corresponding
to the saddle point in the linear regime, whereas no such preference is made for a
convectively unstable system.

In figure 15, which is for Re = 100, ‘first-generation’ ligaments are seen to be formed
with remarkable regularity. After a ligament has been formed, the speed of the root
or crest of the wave is seen to decrease briefly, before again acceleration to lead up to
subsequent ligaments. Wave coalescence is observed, quite similar to that for Re = 30
in figure 14, but further downstream.

5. Conclusions
The spatio-temporal behaviour of two-layer flows in a two-dimensional channel has

been investigated using linear theory and DNSs. Theoretical results were obtained
by solving an Orr–Sommerfeld type problem for a complex growth rate keeping
the wavenumber complex. Numerical results are obtained using a diffuse-interface
method.

In most systems studied here the linear theory predicts convective instability. We
have verified that the streamfunction amplitude profiles and energy budgets indicate
that instability arises due to an interfacial mode (in the parameter range studied here),
pointing to a Yih-type mechanism for instability arising from the viscosity contrast (cf.
Boomkamp & Miesen 1996). A limited region in parameter space is found to give rise
to absolute instability, i.e. for near and perfectly density-matched (i.e. liquid/liquid)
systems at moderate Reynolds number values and interfacial height, if there is a
viscosity contrast. It is found that thin films are predominantly convectively unstable,
but that there is a critical interfacial Reynolds number beyond which the instability
is absolute.

The main focus of the present paper is the application of an interface-capturing
(diffuse-interface) method (Ding et al. 2007), to compare with results from linear
theory discussed above and to investigate the later nonlinear development. We have
first reported here results for two-layer channel flow for relatively long channels
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showing the evolution of a temporary and spatially localized forcing in the middle of
the domain. These clearly confirm predictions of linear theory as to the convective
and absolute nature of instability of these flows. However, very small disturbances
from the inlet (arguably due to small discretization errors in the inlet velocity profile
that are unavoidable rapidly overwhelm the behaviour of any localized pulses, and it
would require a very large computational effort to simulate the long-time behaviour
of localized pulses.

Given the significance of disturbances created at the inlet for system sizes within
the reach of the present simulation method, and because we anticipate experimental
conditions to result in introduction of such disturbances, we have studied the system
further using random interfacial forcing at the inlet instead. Again, waves are seen
to grow rapidly at most values of Re. The spatial growth rate inferred from the
simulations for a case on the C/A boundary compares well with linear theory. Also,
the so-called healing length is found to drop when increasing the Reynolds number
Re around the C/A transition predicted by linear theory. Fourier spectra of the
time signal of minimum interface height at various spatial locations show a dominant
frequency close to the inlet, multiple competing frequency modes indicating incipience
of wave coalescence events in the middle and finally a lower dominant frequency close
to the outlet of the channel, corresponding to a high amplitude wave resulting from
wave coalescence events before it. For cases on the (C/A) boundary and those in
the absolute regime, the dominant wave frequency close to the inlet agrees well with
that saddle mode frequency. Wave speeds obtained for cases on the C/A boundary
and in the absolute regime also agreed with values predicted by linear theory. Thus,
a randomly perturbed system preferentially selects modes pertaining to the saddle
point (in the linear regime), when the conditions favour the instability to be absolute.
Further downstream, the results for the cases studied here show how wave coalescence
coincides with ligament formation from the upstream wave. This is observed in cases
that are either linearly convectively or absolutely unstable.

The DNSs presented here are naturally limited in parameter space, and focus
primarily on the C/A boundary in this study; a more extensive parametric study
is beyond the scope of this paper. We note that numerical methods for interface
tracking normally struggle with much larger values than the relatively low values
of a dimensionless surface-tension coefficient considered in this paper, due to the
formation of parasetic currents that can only be reduced by using a much finer grid
than used here.

This paper reports results from the ZEAL project TP//ZEE/6/1/21191, which
involves Alfa Laval, Cadbury Ltd., Ecolab Ltd., Newcastle University, Scottish &
Newcastle Ltd., GEA Process Engineering Ltd., Unilever UK Central Resources Ltd.,
Imperial College London, GlaxoSmithKline, Bruker Optics Ltd. and the University
of Birmingham. The project is co-funded by the Technology Strategy Board’s
Collaborative Research and Development programme.

Appendix
In this appendix, we describe the equations and the numerical method for the

linear stability analysis undertaken in § 3. In the ‘base state’, the interface is flat
(η = 0), the flow is steady and unidirectional, v = 0, u = U (y), and the pressure is
linear, p = (dP/dL)x, under a negative dimensionless pressure gradient, dP/dL. The
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solution for laminar velocity profile is then

UA =
dP

dL

y2

2
+ C1y + C2, (A 1)

UB =
1

2

m−1

(dP/dL)

(
dP

dL
y + C3

)2

+ C4. (A 2)

The pressure gradient, dP/dL, and the integration constants, C1, C2, C3 and C4, are
obtained by solving the following equations simultaneously:

1

2

m−1

(dP/dL)

[(
dP

dL
h + C3

)2

− (C3)
2

]
− 1

2

dP

dL
(h2 − 1) − C1(h − 1) = 0, (A 3)

C2 = −1

2

dP

dL
− C1, (A 4)

C3 = C1, (A 5)

C4 =
1

2

m−1

(dP/dL)
(C1)

2 and (A 6)∫ h

0

UBdy +

∫ 1

h

UAdy = 1. (A 7)

Equations (A 3) and (A 5) are obtained from the continuity of velocity and continuity
of shear stress at the interface, respectively. Equations (A 4) and (A 6) are obtained
by no-slip boundary conditions at the top and bottom walls, respectively. Equation
(A 7) represents a condition of constant volumetric flow rate, Q ≡ V H .

Perturbation equations: As mentioned in § 3, we study the stability of the system
by subjecting the base state to a small amplitude perturbation. Each flow variable is
expressed as a sum of the base state and the perturbation:

η = εη̃ei(αx−ωt), u = U (y) + εψy(y)ei(αx−ωt), v = −εiαψ(y)ei(αx−ωt),

p =
dP

dL
x + εp̃(y)ei(αx−ωt). (A 8)

Here ε is an arbitrary small parameter, η̃ is the relative amplitude of the perturbation,
ψ is the (y-dependence of the) streamfunction and p̃ is the corresponding (y-
dependence of the) pressure.

Substituting (A 8) into the equations of motion and boundary conditions, and
dropping terms that are nonlinear in the perturbed variables, we get the following
system of governing equations:

iαRe
[
(ψ ′′

A − α2ψA)(UA − c) − ψAU ′′
A

]
=

(
ψ ′′′′

A − 2α2ψ ′′
A + α4ψA

)
, (A 9a)

iαrRe
[
(ψ ′′

B − α2ψB)(UB − c) − ψBU ′′
B

]
= m

(
ψ ′′′′

B − 2α2ψ ′′
B + α4ψB

)
(A 9b)

and boundary conditions: no-slip and no-penetrating conditions at the walls:

at y = 0 : ψB = ψ ′
B = 0, (A 9c)

at y = 1 : ψA = ψ ′
A = 0, (A 9d )
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continuity of velocity and of the tangential and normal stress components and the
kinematic condition at the interface, y = h:

ψA = ψB, (A 9e)

η̃ = ψA/(c − UA) = ψB/(c − UB), (A 9f )

ψ ′
A − ψ ′

B + η̃
(
U ′

A − U ′
B

)
= 0, (A 9g)

ψ ′′
A + α2ψA − m

(
ψ ′′

B + α2ψB

)
= 0, (A 9h)

αrRe
[
ψ ′

B(c − UB) + ψBU ′
B

]
− αRe

[
ψ ′

A(c − UA) + ψAU ′
A

]
−m

(
ψ ′′′

B − 3α2ψB

)
+

(
ψ ′′′

A − 3α2ψ ′
A

)
− (Γ α2 + G)α

(
ψ ′

B − ψ ′
A

U ′
A − U ′

B

)
= 0. (A 9i )

Equations (A 9a)–(A 9i) constitute an eigenvalue problem for the streamfunctions, ψA

and ψB , with eigenvalue, λ= − iαc = − iω at a given Reynolds number. We have
verified that this system is consistent with earlier work, (e.g. Boomkamp et al. 1997).

Numerical solution: We solve (A 9) using the Chebyshev collocation method
described by Boomkamp et al. (1997), wherein a trial solution involving the Chebyshev
polynomials Tj (·) is proposed in each domain:

ψA (y) =

NA∑
j=0

ajTj (ηA) , ψB (y) =

NB∑
j=0

bjTj (ηB) ; (A 10)

this reduces the differential equations (A 9) to a finite-dimensional eigenvalue problem.
The variables ηA and ηB are linear transformations of the y-coordinate, such
that ηA, ηB ∈ [−1, 1]. The trial solution ψA is substituted into the differential
equation (A 9a) and evaluated at NA − 3 interior points; the same thing is done
for the trial solution ψB in (A 9b). This gives NA + NB − 6 equations in NA + NB + 2
unknowns; the system is closed by evaluating the trial functions at the boundaries
y = 0 and y = 1, and at the interface y = h. In this way, a finite-dimensional analogue
of (A 9) is obtained:

Aψ = −iαcBψ, (A 11)

where A and B are (N1 + N2 + 2) × (N1 + N2 + 2) complex matrices, and ψ ∈
�N1+N2+2 is a vector. The eigenvalue λ= − iαc is obtained using a standard eigenvalue
solver.

As in Trefethen (2000), we use the eigenvalue solver in MATLAB to solve (A 11).
The advantages of using this technique over other numerical methods (e.g. in the work
of Boomkamp et al. 1997) are twofold. First, the null rows in the matrix B (which
correspond to infinite eigenvalues) do not affect the computation: we have performed
calculations with these rows included or removed, and have verified that the value
of the finite eigenvalues is the same in both cases. Second, the solver automatically
balances the problem, which removes the possibility of ill-conditioning due to the
large entries in A associated with high-order derivatives of Chebyshev polynomials.
Thus, evaluation of the leading eigenvalue of (A 11) is rendered fast and accurate.

The approximation (A 10) converges exponentially in NA and NB to the solution of
the differential equation pair (A 9a)–(A 9b). In the cases considered here, convergence
has been achieved with NA = 51 collocation points in the upper layer and from
NB = 15 (for h � 0.05) to a maximum of NB = 51 (for h =0.5) in the lower layer. The
form of the trial solutions, wherein NA and NB are not necessarily equal, enables us to
investigate thin bottom layers; previous work in this area (see Sahu et al. 2007, 2009)
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involved a numerical method with NA = NB , which restricted the focus to relatively
thick bottom layers.
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