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Abstract 

Hepatitis C virus (HCV) is a major cause of chronic liver disease and liver cancer and remains a large 

health care burden to the world. In this study we developed a DNA microarray test to detect HCV 

RNA and a protein microarray to detect human anti-HCV antibodies on a single platform. A main 

focus of this study was to evaluate possibilities to reduce the assay time as short time-to-result (TTR) 

is a prerequisite for a point-of-care test. A significant reduction of hybridisation and washing times 

did not impair the assay performance. This was confirmed first using artificial targets and 

subsequently using clinical samples from an HCV serconversion panel derived from a HCV infected 

patient. We were able to reduce the time required for the detection of human anti-HCV antibodies to 

only 14 min achieving nanomolar sensitivity. The protein microarray exhibited an analytical 

sensitivity comparable to that of commercial systems. Similar results were obtained with the DNA 

microarray using a universal probe which covered all different HCV genotypes. The assay time after 

PCR could be reduced from 150 min to 16 min without loss of sensitivity. Taken together, these 

results constitute a significant step forward in the design of rapid, microarray-based diagnostics for 

human infectious disease and show that the protein microarray is currently the most favourable 

candidate to fill this role. 

 

Introduction 

HCV continues to be a global health problem. An estimate from the World Health Organization 

(WHO) from 1999 suggests that about 3 % of the world’s population is infected with HCV causing 

more than 86000 deaths in Europe in 2002
[1;2]

. The increasing incidence of undiagnosed chronic 

societal infections, including those spread sexually (e.g. human immunodeficiency virus (HIV)) and 

those spread percutaneously (e.g. HCV), has resulted in a major financial burden on global health 

services and generated an urgent requirement for improved medical diagnostics
[3;4]

. Underlying 

characteristics of most current detection systems which require improvement are numerous. These 

devices can only be operated by a limited team of highly skilled personnel within hospital 

environments, specimens for testing require time-consuming transport to diagnostic laboratories and 

various tests specific for only one biomarker need to be performed before a positive diagnosis can be 

made. The fact that some patients fail to return for the results of these laboratory tests compounds this 

already difficult situation
[5]

. The development of automated ‘point-of-care’ diagnostic devices for 

application within local medical practices would allow for faster diagnosis, earlier treatment, reduced 

clinic visits and hence significantly aid in alleviating these problems
[6]

. 

For the diagnosis of HCV infections there are three HCV markers useful in the clinical practice, 

including total anti-HCV antibodies, HCV genotype and HCV RNA
[7]

. The microarray platform 
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developed in this work contains two of these three markers and has the capability to be extended to 

also detect the HCV genotype by introducing genotype specific DNA probes to the DNA microarray. 

Currently, initial diagnosis for HCV-infection comprises testing individuals for the serologic presence 

of specific antibodies to a range of immunogenic HCV epitopes (core, NS3, NS4 and NS5 proteins) 

using a third-generation enzyme immunoassay (EIA) and then assessing serum HCV RNA levels by 

nucleic acid test (NAT) before beginning therapy and subsequently during therapy
[8]

. Despite both 

EIA and NAT being highly sensitive techniques, they both have considerable shortcomings since they 

are only specific for one class of microbe and have a lengthy time-to-result (TTR), which ultimately 

culminates in a diagnosis end-point of days to weeks
[9]

. Indeed, even with experimental multiplex 

PCR diagnostics is used in order to increase diagnostic capacity, complications with the amplification 

of primer dimers and the difficulty of matching optimal primer annealing temperatures arise
[10;11]

. 

The advent of microarray technology has made possible the simultaneous analysis of thousands of 

distinct biomarkers on a single platform
[12;13]

. The principle behind this technology is the attachment 

of capture probes to a solid substrate (e.g. glass) and the subsequent hybridization of e.g. 

fluorescently-labeled targets to these capture probes. Microarray slides are subsequently scanned and 

any bound targets detected by fluorescence analysis
[14-16]

. It is a distinct advantage over conventional 

ELISA’s which rely on physisorption for the attachment of capture probes that oligonucleotides 

(synthesized ex situ with a terminal functionalizing group (e.g. thiol or amino)) and proteins can be 

covalently attached to a chemically modified substrate (e.g. epoxysilane)
[17-19]

. Studies have already 

shown the utility of protein microarrays for the combined typing of whole blood and the simultaneous 

serodiagnosis of various infectious agents (e.g. HIV and HCV infection) in blood samples
[20-23]

. 

Overall, these devices have found extensive application in a variety of fields including expression 

profiling, diagnostics, drug discovery and DNA sequencing
[24-28]

. In addition to discriminating 

between multiple classes of microbe, by incorporating genotype and even sub-type-specific probes, 

‘theranostic’ devices could be constructed for the tailored treatment of infected patients undergoing 

treatment
[29]

. 

Fundamental properties of microarrays that have highlighted their candidacy for implementation into 

‘point-of-care’ diagnostics include: their high-throughput nature for the identification of diverse test 

analytes, small platform size for compatibility into microfluidic devices and small sample volume 

(e.g. patient blood serum) requirement. Several studies have already shown the basic application of 

microarray-based diagnostics for the screening of allergen-specific IgE antibodies, drugs and even for 

early diagnosis of prostate cancer
[30-32]

. Coupled with portable computers for data analysis, these 

devices are paving the way towards fully-comprehensive front-line diagnostics. There are still, 

however, important factors which preclude the introduction of microarray-based diagnostic devices 
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into mainstream healthcare, these include a lack of sample automation, lengthy TTR, the 

reproducibility of microarray manufacture and the initial cost of microarray production
[33]

. 

Here we describe the fabrication of DNA and protein microarrays directed against universal HCV 

determinants for the rapid detection of HCV infection in clinical samples. Significant advances in 

TTR have been made achievable with assay optimization, such that anti-HCV antibodies can now be 

identified from clinical samples within a timeframe of less than 20 minutes. Furthermore, both the 

DNA and protein microarray were validated by comparing the analytical sensitivity to commercial 

diagnostics for the serodiagnosis of HCV infection using a seroconversion panel taken from a HCV 

infected patient. The results of which have comprehensively shown our DNA and protein microarrays 

to be as sensitive as current commercial detection systems. All data considered, this study comprises a 

proof-of-principle for the application of microarray-based detection platforms for the rapid detection 

of human infectious disease. 

 

Materials and methods 

Microarray construction 

A DNA capture probe of sequence: 5' – 

GGCAATTCCGGTGTACTCACCGGTTCCGCAGACCACTATGGCTCTCCCGGGAGGGGGGG 

– thiol - 3' was designed by performing an alignment of the conserved 5’-UTR of 113 HCV isolates, 

covering genotypes 1 to 6, using the Los Alamos HCV database (http://www.hcvdb.org/). 

Oligonucleotides were obtained from Metabion (Martinsried, Germany). A 5’-thiol HCMV negative 

control probe of sequence: 5’ – 

CAAATACCGTGGGACGACACGCACCGGCAGTGCGCAGGCAGCGTCGGACACAACACGCT

TACGGCCCTCAACACT – 3’was also used
[34]

. Thiol modified oligonucelotides were spotted in 1x 

Schott Nexterion spot buffer (20 μM) containing 5 mM Tris(2-carboxy-ethyl)phosphine hydrochloride 

(TCEP) to cleave the mercapto-ethyl protection group on Schott Nexterion Slides E (epoxy silane 

modified surface; Schott UK Ltd., Stafford, U.K.) with a Microgrid II spotter (Digilab, Huntingdon, 

UK) using 200 μm solid pins. After printing, microarrays were incubated in saturated NaCl humidity 

box for 1 hr at room temperature followed by incubation under dry conditions over night in order to 

facilitate probe immobilization. Thereafter, microarrays were washed for 5 min in 0.1% Triton X-100, 

4 min in 1 mM HCl and 10 min in 100 mM KCl. Each wash step was carried out at room temperature 

and with stirring. Microarrays were rinsed three times for 1 min in deionized water at room 

temperature and with stirring. After washing, microarrays were blocked in 0.1 M Tris + 50 mM 

ethanolamine + 0.1% SDS; pH9, for 15 min at 50°C with stirring. Microarrays were rinsed as above 

and stored at room temperature until use. 

http://www.hcvdb.org/


Page 4 of 21 
 

Protein probes for antigen microarray printing were prepared with an optimized printing buffer 

comprised of 50 mM PBS + 10% glycerol. HCV NS4 (Fitzgerald Industries International, 

Massachusetts, U.S.A.) and core antigen (Virogen, Massachusetts, U.S.A.) printing buffer were 

prepared as 500 μg/mL probe solutions. Arabidopsis total plant protein negative control (AMS 

Biotechnology, Oxon, U.K.) and positive control mouse anti-HBV IgG or human serum IgG probes 

(Sigma-Aldrich, Dorset, U.K.), were prepared as 100 μg/mL probe solutions. Probes were printed in 

replicates of five. Antigen probes were printed and immobilized as for DNA microarrays. Thereafter, 

microarrays were blocked with phosphate buffer saline Tween-20 solution (PBST) + 1% (w/v) bovine 

serum albumine (BSA) for 1 hr at room temperature, rinsed with deionized water and centrifuged dry. 

Completed microarrays were stored under N2 at 4°C until use. 

 

Detection probes for indirect detection of unlabeled HCV cDNA 

Six Cy3-conjugated oligonucleotide detection probes between 19 and 24 nucleotides in length 

(Metabion, Martinsried, Germany) were designed against distinct regions of the HCV cDNA 

amplified product based on published primer sequences of the HCV 5’ UTR
[35;36]

. The universal 

primers which contained degeneracies at certain positions were modified to be specific for certain 

genotypes and adjusted to have a similar melting temperature These detection probes allowed for 

universal coverage of all six HCV genotypes and were of sequence: 5' – 

Cy3=CGTGACAGAAGTTCCTCACAGG (genotype 3), 5' – Cy3=GTGACAGTAGTTCCTCACAG 

(genotypes 1, 2, 4, 5 & 6), 5' – Cy3=TGCACGGTCTACGAGACCT (genotypes 1-6), 5' – 

Cy3=ACACTCTAACTAACGCCATGGCTA (genotypes 1, 2, 4, 5 & 6), 5' – 

Cy3=ACACTCCAACTAACGCCATGGCTA (genotype 3) and 5' – 

Cy3=AAGCACCCTATCAGGCAGT (genotypes 1-6).  

 

Target preparation 

For the detection of HCV cDNA, total RNA was extracted from human clinical samples at the Royal 

Infirmary of Edinburgh, Edinburgh, UK. Human clinical samples used for testing comprised five 

HCV RNA isolates from HCV-positive patients and one anti-HCV seroconversion panel 

(ZeptoMetrix HCV seroconversion panel HCV 9041, Donor No. 63625), obtained from the Royal 

Infirmary of Edinburgh, Midlothian, U.K. and ZeptoMetrix Corporation (New York, U.S.A), 

respectively. A one-step reverse transcription – PCR (RT-PCR) using a published set of primers 

against conserved HCV 5’ UTR region (5'- ccc tgt gag gaa ctw ctg tct tca cgc; 5'- ggt gca cgg tct acg 

aga cct) were used to generate and amplify HCV cDNA of approximately 300 bp length (SuperScript, 
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Invitrogen, Paisley, U.K)
[35]

. Approximately 2 ng/µL of patient RNA or 2 µL extracted 

seroconversion panel RNA was mixed with 0.2 µM primers, 1 X Reaction Mix, 1 µL RT/Platinum® 

Taq Mix and water for a total reaction volume of 50 µL. RT-PCR was performed with a Techne TC-

512 Thermal Cycler (Bibby Scientific Limited, Staffordshire, U.K.) using the following protocol: 

50°C for 30 min, 94 °C for 2 min, 40 cycles of 94 °C for 15 s, 55 °C for 15 s and 68 °C for 1 min and 

a final extension at 68 °C for 10 min. Following RT-PCR, HCV cDNA was purified using a Qiagen 

PCR cleanup kit (Qiagen, West Sussex, U.K.) and subjected to PCR amplification by mixing 2 µL 

template with 0.4 µM primers, 1 x Taq buffer, 100 µM dNTPs, 1 mM MgCl2 and water for a total 

reaction volume of 25 µL. PCR was performed with the thermal cycler as above using the following 

protocol: 95 °C for 15 min, 30 cycles of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s and a final 

extension at 72 °C for 10 min. For labeling PCR, a ratio of 3:2 between Cy3-dCTP (40 µM; GE 

Healthcare, Buckinghamshire, U.K.) and dCTP (60 µM) were included in the reaction. After 

purification of the amplified PCR product as before, confirmation of 300 bp HCV cDNA was shown 

using a Bioanalyzer (Agilent Technologies, South Queensferry, U.K.) and the Cy3 incorporation rate 

and DNA concentration measured using a Nanodrop spectrophotometer (Labtech, East Sussex, U.K.). 

All HCV cDNA samples were stored at -20 °C. Various concentrations of target sample were 

prepared by dilution of HCV cDNA with 4 x sodium saline citrate solution (SSC) + 0.01% sodium 

dodecyl sulfate (SDS) including detection probes (2 µM) for the indirect detection of HCV cDNA. 

For the direct detection of HCV cDNA, targets between 100 pM and 1 pM were generated from a 

Cy3-labeled 40-mer oligonucleotide complementary to the HCV detection probe. The sequence of the 

artificial Cy3-labeled target was 5' – 

Cy3=CCCCCCCTCCCGGGAGAGCCATAGTGGTCTGCGGAACCGG – 3’ (Metabion, 

Martinsried, Germany). For the direct detection of HCV cDNA from the anti-HCV seroconversion 

panel, targets were prepared by diluting Cy3-labeled HCV cDNA 12.5-fold with hybridization buffer 

(4 x SSC + 0.01% SDS).  

Whole human blood was supplied with ethical approval by the Scottish National Blood Transfusion 

Service (SNBTS, Edinburgh, UK) and blood serum prepared by centrifugation at 4000 r.p.m. for 10 

min at 4 °C. Human blood had been pre-screened to confirm the absence of HIV, HBV, HCV, 

syphilis and HTLV I/II. Whole human blood and blood serum were stored at 4°C. Clinical samples of 

human HCV infected sera were provided in the form of an anti-HCV seroconversion panel 

(HCV9041; ZeptoMetrix Corporation, New York, U.S.A.). Seroconversion panel members were 

stored at -20°C. Target samples were prepared by 1:10 serial dilutions of blood serum or plasma with 

10 mM PBS + 0.05% Tween20 (PBST; Sigma-Aldrich, U.S.A.) + 1% BSA (Sigma Aldrich, U.K.). 

For mock experiments, 6.7 nM anti-HCV NS4 and core recombinant antibodies were spiked into 1:10 

diluted human serum and further target samples generated by serial dilution in diluted serum.  
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Microarray hybridization/incubation 

DNA target samples were denatured at 95° for 5 min and incubated on ice for 5 min. The “long” 

protocol consisted of target hybridization for 2 hr at 55°C with an Agilent (Agilent Technologies, 

South Queensferry, U.K.) 8 well gasket slide in an Agilent hybridization oven under agitation 

(rotation speed 4). After hybridization slides were washed for 10 min each in 2 x SSC + 0.1% SDS, 2 

x SSC and then 0.2 x SSC, all wash steps at room temperature and with stirring. Microarray slides 

were centrifuged dry for 2 min at 1000 r.p.m. The “short” protocol consisted of target hybridization 

for 10 min at 55°C, one wash each for 2 min in 2 x SSC + 0.1% SDS, 2 x SSC and then 0.2 x SSC, all 

wash steps at room temperature and with stirring. Microarray slides were centrifuged dry for 2 min at 

1000 r.p.m.  

Protein target samples were incubated with the HCV antigen microarrays using Agilent 8 well gasket 

slides and hybiridization chambers in an Agilent hybridization oven (Agilent Technologies, South 

Queensferry, U.K.). The “long” protocol consisted of target incubation for 4 min at 37°C, two washes 

for 20 min in PBST and then two washes for 10 min in PBS, all wash steps at room temperature and 

with stirring. Microarrays were centrifuged dry as before and incubated with 60 μL sheep anti-mouse 

IgG-Cy3 conjugate (mock samples; Sigma Aldrich, Dorset, U.K.) or goat anti-human IgG-Cy3 

conjugate (clinical samples; Sigma Aldrich, Dorset, U.K.) for 10 min at 37°C. Wash steps were then 

repeated, microarrays rinsed in water and centrifuged dry. The “short” protocol consisted of target 

incubation for 4 min at 37°C, one wash for 2 min in PBST and then one wash for 2 min in PBS, all 

wash steps at 37°C and with stirring. Microarrays were centrifuged dry and incubated with secondary 

detection antibody as before for 2 min at 37°C, wash steps repeated, rinsed in deionized water and 

centrifuged dry. 

 

Image processing and analysis 

Microarray slides were scanned with a Tecan LS Reloaded Scanner using an excitation wavelength of 

532 nm and a 575 nm detection filter (Tecan UK Ltd., Reading, U.K.). Microarray spots were 

analyzed with QuantArray software (Perkin Elmer, Waltham, U.S.A.) and graphs constructed by 

presenting data as either mean fluorescence intensity or signal-to-noise ratios by defining a detection 

threshold (i.e. S/N > 1.0 was regarded as a positive signal) as shown below: 

 

where SD is standard deviation. 

Threshold =                               Mean probe intensity

(Mean + 3*SD of mock) + (Mean 3*SD of negative control)

Threshold =                               Mean probe intensity

(Mean + 3*SD of mock) + (Mean 3*SD of negative control)
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Results and Discussion 

Microarray sample incubation and washing times  

There is great hope that microarrays can be integrated into fully automated detection systems for 

diagnosing human infectious diseases, such as those caused by HCV and HIV. One of the foremost 

factors obstructing introduction of microarray-based diagnostics into point-of-care devices is the 

lengthy TTR associated with this technology. We developed a DNA microarray for HCV RNA 

detection and a protein microarray for human anti-HCV antibody detection on the same platform. 

Both thiol modified HCV specific DNA probes and HCV antigens were immobilized on epoxy-

functionalized glass slides. The detection was based on fluorescence generated by Cyanine3 (Cy3) 

dyes introduced in the HCV cDNA amplicon during reverse transcription-PCR reaction and 

secondary anti-mouse and anti-human Cy3-labelled antibodies. In this study, we investigated the 

possibility of optimizing both protein and DNA microarrays in order to reach a TTR significantly 

shorter than that of current clinical diagnostics. We investigated possibilities to reduce target 

incubation and washing times and compared the analytical behaviour in terms of sensitivity and 

specificity of a “long” commonly used microarray protocol
[15;37-39]

 with a significantly faster “short” 

protocol as shown in Fig. 1.  

 

 

Fig. 1. Comparison of the time required for individual steps within protocols tested for both HCV 

RNA detection (DNA “short” and DNA “long”) and anti-HCV antibody detection (protein “short and 

protein “long”). Note that the wash times represent the overall time required for a set of different 

wash steps and times required for DNA protocols do not include times for PCR. All protocols 

displayed include a final fluorescence scan (2 min) and data evaluation (2 min).  

0 20 40 60 80 100 120 140 160

DNA "long"
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Protein "long"

Protein "short"

Time [min]

sample incubation wash I sec. Ab. incubation wash II
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HCV DNA microarray  

Artificial targets – In order to broadly detect all six genotypes of HCV, a universal oligonucleotide 

detection probe was designed based on a sequence alignment against the highly conserved 5’ UTR of 

the HCV genome. An oligonucleotide probe length of 59 bases was chosen since it should offer a high 

level of analytical sensitivity towards target HCV cDNA. Longer probe lengths are routinely used for 

the design of diagnostic DNA microarrays as they have been shown to exhibit increased sensitivity for 

dilute target concentrations resulting in a larger dynamic range of detection
[34]

. As a starting point to 

optimise, the hybridization of an artificial 40-mer Cy3-labeled target complementary to the HCV 

probe the hybridization time was varied between 10 and 45 min and the results are shown in (← Fig. 

2). These results showed that artificial HCV target concentrations down to 10 pM were clearly 

distinguishable from background signal after a hybridization period of only 10 min. As expected, 

there was only very low level background signal from the HCMV negative control probes regardless 

of hybridization duration. Based on these results and on data from wash time experiments (data not 

shown), for clinical testing we used a “long” DNA microarray protocol of 150 min (2 hr 

hybridization) and a “short” protocol of 16 min (10 min hybridization) in order to evaluate the 

serodiagnostic potential of the DNA microarray.  
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Validation with HCV RNA derived from HCV infected patient samples – Having successfully 

characterized the DNA microarray using artificial 40-mer Cy3-labeled targets, it was important to 

asses the clinical sensitivity of the microarray using full length HCV RNA derived from human 

clinical samples. Five clinical isolates of HCV RNA from HCV-infected patients were obtained from 

the Royal Infirmary of Edinburgh and confirmed to have viral loads between 4,000 and 6,500,000 

IU/mL (correlating to approximately 10 aM and 10 fM RNA respectively). However this was found to 

be too low a concentration of RNA for microarray detection (data not shown) and so a one-step 

reverse transcription and PCR was employed to amplify the RNA generating approximately 200 nM 

HCV cDNA. As a preliminary experiment to deduce whether the 300 bp cDNA fragments could 

hybridize to the DNA microarray probes, unlabeled HCV cDNA was pre-hybridized with specific 

Cy3-labeled detection probes and subsequently hybridized with the DNA microarray. The six 

oligonucleotide detection probes of between 19 and 24 bases were designed to hybridize with non-

overlapping regions of the amplified HCV cDNA product. Strong hybridization signals showed that 

the Cy3-labeled detection probes specifically hybridized to the 300 bp cDNA fragments and all five 

patient samples were found to be strongly positive (S/N > 1.0) indicating that the DNA microarray has 

a clinical sensitivity required for clinical diagnostics (see Fig. 3). This result was of particular 

importance because it demonstrated that the size and secondary structure of the larger PCR amplified 

product did not sterically hinder hybridization to the HCV capture probes.  

 

 

Fig. 3. Patient samples analysed with the HCV viral load DNA microarray using the “long” protocol 

with Cy3-labeled detection probes. Normalized hybridization signals obtained with Cy3-labeled 

detection probes for the indirect detection of HCV cDNA from HCV-positive clinical samples. 

Negative control probe and HCV detection probes are represented by black and white bars 

respectively. n = 25. 
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Following a successful demonstration of the serodiagnostic capability of the DNA microarray using 

clinical samples, an anti-HCV seroconversion panel was obtained for the purpose of addressing its 

analytical sensitivity compared to commercial diagnostics. In order to reduce the overall assay TTR, a 

second strategy was employed focusing on directly labeling the HCV cDNA with Cy3-dCTP during a 

second-round of PCR. Compared to using Cy3-labeled detection probes to indirectly detect HCV 

cDNA, this strategy offers the advantages of less sample handling, reduced operator-specific variation 

(critical for investigating small differences between panel members) and reduced assay time resulting 

from not having to prepare and add detection probes during target preparation. Target samples were 

prepared by diluting Cy3-labeled HCV cDNA from each panel member 12.5-fold with hybridization 

buffer before testing with the DNA microarray (Fig. 4).  

 

 

Fig. 4. Seroconversion panel samples analysed with the HCV viral load DNA microarray using Cy3-

labeled cDNA PCR products. Normalized hybridization signals for the direct detection of Cy3-labeled 

HCV cDNA from a commercial anti-HCV seroconversion panel using the (A) “long” and (B) “short” 

protocol. Negative control and HCV detection probes are represented by black and white bars 

respectively. n = 25. 
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The variation of normalized hybridization signals observed between panel members can be explained 

by the oscillating levels of HCV RNA present in the starting material of the individual panel members 

(Table S-1). As the anti-HCV seroconversion panel represents a time-course of plasma samples taken 

at arbitrary time-points before and after the appearance of anti-HCV antibodies, the levels of HCV 

RNA also varies between panel members reflecting the immune response against the virus. In 

agreement with supplier data, the first panel member was found to be negative for the presence of 

HCV RNA when using the “short” and “long” hybridization protocol (Fig. 4 and supplementary Fig. 

S-2). Of the eight panel members tested, 6 out of 8 were found to give strongly positive hybridization 

signals consistent with the supplier data. Although panel member 3 gave a negative signal (S/N = 

0.38) which is in contrast to supplier data (reported viral load: 63.72 MEq/mL), it was found to 

correspond to the absence of HCV cDNA after the RT-PCR step in this study (Fig. S-1). Therefore, 

the most likely explanation for the absence of HCV cDNA and hence negative hybridization signal is 

that there was a problem with the initial extraction of RNA from panel member 3. As a result of this, 

panel member 3 was regarded as an artifact of an unsuccessful pre-hybridization sample handling step 

and was not considered for assessment of the microarray’s analytical sensitivity. Nevertheless, this 

highlights one of the major disadvantages of using a DNA-based device in comparison to protein 

assays for disease diagnosis. The requirement for additional handling steps (e.g. RNA extraction) has 

the potential to introduce contaminants, damage preciously low-yield nucleic acid and significantly 

increase the overall assay TTR. When the DNA microarray was tested with the “short” hybridization 

protocol representing an assay time of 16 min after PCR, the overall hybridization signals were found 

to decrease whilst the general trend across the anti-HCV seroconversion panel remained the same 

(Fig. 4 B & Fig. S-2 B). Although panel members 4 to 8 were still successfully serodiagnosed as 

being positive (albeit less strongly), panel member 2 was now marginally negative (S/N = 0.79). 

Nevertheless, these results showed that all panel members except panel member 3, which was 

unsuccessfully processed at the RNA extraction stage, were correctly serodiagnosed in concordance 

with commercial assays with an assay time of 150 min after PCR and six out of seven panel member 

samples were identified correctly with the “short” protocol comprising an assay time of 16 min after 

PCR. Thus, we have shown the utility of DNA microarrays for the serodiagnosis of HCV infection 

within a significantly reduced timeframe, e.g. compared to a recently published HCV genotyping 

DNA microarray where the PCR products were hybridized for 1h at 68 C
[40]

.  

Improvement in DNA microarray sensitivity could realistically be achievable with sample pre-

treatment integrated at steps prior to target hybridization
[41-43]

. In parallel to this, integrated systems 

for automated sample pre-treatment would be advantageous for the avoidance of external 

contaminants during manual handling and minimization of operator-specific variation. PCR 

microfluidic devices currently under development for the amplification of nucleic acid templates 

within biological samples, would clearly play a central role in such standardization and also in 
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reducing the length of time required for sample preparation before hybridization
[44;45]

. In addition to 

the serodiagnosis of HCV infection, the diagnostic resolution of our DNA microarray could be 

extended for discriminating between HCV genotypes by adding additional capture probes to the DNA 

microarray. This would be of great assistance to physicians as genotype determination is used 

clinically as an indicator of expected patient response to ribavirin therapy
[46]

. 

 

Anti-HCV antibody protein microarray  

Artificial targets – A second line of investigation focused on the development of an HCV antigen 

microarray for the detection of human anti-HCV antibodies. Although the generation of protein 

microarrays is fundamentally both more expensive and technically difficult than DNA microarrays, 

they offer the distinct advantage of enabling protein biomarker identification (e.g. viral antigens, host 

antibodies and cytokines) which can often be carried out more quickly than nucleic acid analysis due 

to fewer processing steps. To demonstrate the specificity of the HCV core and NS4 antigens and to 

investigate the effect of wash duration on the dynamic range of sensitivity, a calibration curve based 

analysis of the dilution of recombinant anti-HCV core antibodies was performed (Error! Reference 

source not found.). 

(turn to next page →) 
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Fig. 5. Calibration plot for anti-HCV core antibody detection in 1:10 diluted human serum for the (A) 

“long” and (B) “short” protocol. HCV core, NS4 and Arabidopsis total plant protein negative control 

probes are represented by black diamonds, white diamonds and crosses respectively. n = 5. 

 

A shows that anti-HCV core antibodies bound specifically to the immobilized core antigen with a 

limit of detection (LOD) of 6.7 x 10
-11

 M (10 ng/mL) in 1:10 diluted human serum with minimal cross 

reactivity. The LOD was the same for both protocols. For anti-HCV NS4 antibodies similar 

calibration curves resulting in LODs of 3.35 x 10
-10

 M (50 ng/mL) and 6.7 x 10
-11

 M (10 ng/mL) for 

anti-HCV NS4 antibodies were observed when using the “long” and “short” protocols, respectively 

(see also supplementary data Fig. S-3). Although these detection limits are in accordance with most 

other protein detection technologies, well documented methods of signal amplification such as 

tyramide deposition and rolling circle amplification would be expected to further increase the 

analytical sensitivity (but also the time to result) of the HCV antigen microarray
[47]

.  
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Validation with HCV infected patient samples – A final experiment was designed to evaluate the 

clinical application and analytical sensitivity of the HCV antigen microarray with the same anti-HCV 

seroconversion panel as used for assessment of the DNA microarray. In a blinded experiment, target 

samples consisting of 1:10 diluted anti-HCV seroconversion plasma samples were incubated on the 

HCV antigen microarray (Fig. 6). 

 

 

Fig. 6. Normalized hybridization signals for the detection of anti-HCV antibodies in a commercial 

anti-HCV seroconversion panel using the (A) “long” and (B) “short” protocol. Negative control, NS4, 

core and positive control probes are represented by black, white, dashed and grey bars respectively. n 

= 25. 
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As can be seen in Fig. 6, the HCV core antigen enabled the successful serodiagnosis of panel 

members in contrast to the NS4 antigen. The normalized hybridization signal from HCV NS4 probes 

remained constant across each of the panel members, showing that they did not correlate with 

increasing antibody titres as described in the supplier data (see supplementary data Table S-1). This 

emphasizes the requirement of validation experiments with clinical samples. The applicability of 

using the presence or absence of anti-HCV core antibodies as a basis for serodiagnosis is supported by 

previous findings suggesting that anti-HCV core antibodies are amongst the first virus-specific 

antibodies to appear after acute infection
[48]

. As the HCV core antigen is thought to be the most 

abundant protein in the virion with highly conserved immunogenic epitopes, this antigen probably 

serves as the primary target for the selection of anti-HCV antibodies in vivo
[49]

. Under these 

conditions, all panel members were correctly identified as being either seropositive or seronegative in 

concordance with commercial assays when using the “long” protocol, representing a TTR of 134 min 

(Fig. 6A). The progressive increase in anti-HCV core antibody titre appears to be a temporal effect 

and fits with increasing antibody production during a typical immune response. When using the 

“short” assay protocol representing a TTR of 14 min, all of the panel members were again correctly 

serodiagnosed, with panel member 2 being classified as very weakly seropositive (S/N = 1.08; Fig. 

6B). This classification is still consistent with supplier data in which some commercial assays indicate 

a seropositive/seronegative classification for panel member 2 (e.g. Roche/Boehringer Mannheim 

Cobas Core Anti-HCV EIA; Table S-1). As expected, the normalized hybridization signals from the 

positive control and negative control probes remained at a relatively constant level across all panel 

members when using both the “long” and ”short” protocols (Fig. 6A & B).  

Implementation of the current DNA and HCV antigen microarrays into a microfluidic platform for 

‘point-of-care’ diagnostics would be expected to further reduce the TTR of these assays. In such 

platforms, hybridization/incubation speeds are accelerated owing to the reduced distance target 

molecules must diffuse before reaching the microarray probes
[50-53]

.  

 

Conclusion  

The goal of the current study was to determine whether it is possible to use microarray technology to 

detect HCV RNA and human anti-HCV antibodies in clinical samples within a timeframe required for 

‘point-of-care’ diagnostics. A DNA microarray comprising arrays of a universal HCV oligonucleotide 

detection probe which covers all six genotypes was designed based on a sequence alignment of the 5’-

UTR of 113 HCV isolates. Initial microarray characterization showed artificial HCV target could be 

detected with picomolar sensitivity with only a 10 minute hybridization step. The capability of the 

DNA microarray to analyse real clinical samples was tested with RNA isolates from HCV-positive 
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patients. These experiments showed that all patient samples were correctly identified in concordance 

with real-time PCR performed at the Royal Infirmary of Edinburgh. All samples of a commercial 

HCV seroconversion panel test were identified correctly with the “long” protocol. Applying the 

“short” protocol six out of seven serconversion samples were identified correctly. Only the first 

sample which was identified positive with the commercial CHIRON HCV RNA test (Novartis, Basel, 

Switzerland) was slightly below the cut-off using the “short” protocol. These data suggest that our 

DNA microarray has sufficient clinical sensitivity for the correct discrimination of seropositive and 

seronegative patients.  

A second stream of development included designing an HCV antigen microarray for the detection of 

anti-HCV antibodies in clinical samples. Calibration curves from optimization experiments showed 

the LOD for anti-HCV core and NS4 antibodies to be 6.7 x 10
-11

 M (10 ng/mL) and 3.35 x 10
-10

 M (50 

ng/mL) in 1:10 diluted serum respectively, with a TTR of only 14 minutes. The test performance was 

validated with an HCV seroconversion panel. Seroconversion panels are the ‘Gold Standard’ for the 

assessment of novel detection systems and are used to decide whether to introduce them into the 

clinical setting. A blinded experiment showed that the HCV antigen microarray using the HCV core 

protein as probe correctly serodiagnosed all panel members and exhibited an analytical sensitivity 

comparable to that of commercial systems with a TTR of only 14 minutes. It is abundantly clear that 

at the present, protein microarray technology offers the most realistic opportunity for developing a 

rapid, microarray-based, ‘point-of-care’ diagnostic platform. This is because the length of time 

required for sample processing (e.g. RT-PCR) currently prohibits the use of DNA microarrays for 

time-sensitive applications such as disease diagnosis and the extra handling steps associated with 

sample pre-treatment (e.g. nucleic acid extraction), can potentially contaminate/damage precious low 

yield template. Prevention of operator-specific variation and improvements to the TTR and analytical 

sensitivity of DNA microarrays could be achievable with automated modules for sample preparation. 

In conclusion, the results presented in this study constitute a significant step forward in reducing assay 

time for microarray-based diagnostics and provides a proof-of-concept for the integration of protein 

and DNA microarrays into ‘point-of-care’ diagnostics for the serodiagnosis of human infectious 

diseases. 
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