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Efficient nonlinear Bayesian survey design using DN optimization

Darrell Coles1 and Andrew Curtis2

ABSTRACT

A new method for fully nonlinear, Bayesian survey

design renders the optimization of industrial-scale geo-

scientific surveys as a practical possibility. The method,

DN optimization, designs surveys to maximally discrimi-

nate between different possible models. It is based on a

generalization to nonlinear design problems of the D crite-

rion (which is for linearized design problems). The main

practical advantage of DN optimization is that it uses effi-

cient algorithms developed originally for linearized design

theory, resulting in lower computing and storage costs than

for other nonlinear Bayesian design techniques. In a real

example in which we optimized a seafloor microseismic

sensor network to monitor a fractured petroleum reservoir,

we compared DN optimization with two other networks:

one proposed by an industrial contractor and one optimized

using a linearized Bayesian design method. Our technique

yielded a network with superior expected data quality in

terms of reduced uncertainties on hypocenter locations.

INTRODUCTION

Statistical experimental design (SED) is the theory and prac-

tice of optimizing experiments to maximize the expected infor-

mation in data observations. A good experiment is one in which

recorded data are expected to discriminate maximally between

different possible models. The virtue of SED is that experiments

can be optimized before any data are collected, even where

existing knowledge about the model parameters is limited. This

surprising fact hinges on the use of prior information.

For our purposes, prior information describes any quantifiable

knowledge relevant to the data-model relationship, the expected

uncertainty in data observations, and the range of probable

model parameterizations. We restrict this article to model-ori-

ented design problems in which a theoretical relationship

between data and model is known and expressed as

d ¼ gðm; nÞ þ eðnÞ; (1)

where g is the theoretical function relating data and model, m is

the model parameter vector, n is a vector describing the design

of the experiment used to observe data d, and e is the data

noise, which may depend on the experimental design n. The

goal of SED is to optimize n before the experiment to obtain

maximum information about m after the experiment.

A Bayesian statement of the solution to the inverse problem

of constraining model m given any data set d is

pðmjd; nÞ ¼ pðdjm; nÞpðmÞ
pðdjnÞ ; (2)

where p(mjd, n) is the conditional posterior (postsurvey) model

probability density function (PDF) given data d and design n,

p(djm, n) is the conditional data PDF given model m and n,

p(m) is the prior (presurvey) model PDF (assumed to be inde-

pendent of d and n), and p(djn) is the marginal data PDF given

n (which equals the integral of the numerator on the right-hand

side over the entire model domain, i.e., this term normalizes the

right side of equation 2 to make the left side a valid PDF). Equa-

tion 2 accommodates quantitative prior information on the model

via the model prior PDF p(m) and information on data uncertain-

ties via the data-noise prior PDF p(djm, n). The model and data-

noise priors usually can be estimated before final data collection.

Because d implicitly depends on the theoretical data-model func-

tion g in equation 1, the conditional data PDF also incorporates

this theoretical prior information.

In geophysics, g normally expresses a nonlinear relation between

d and m (e.g., the relationship between heterogeneity in subsurface

electrical conductivity m and electromagnetic measurements d,

where n could describe the locations where measurements are
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made on the surface). The nonlinearity of g must be accounted for

in the design of geoscientific experiments because it strongly

affects post-inversion parameter uncertainties.

A few geoscientific design papers explicitly address the nonli-

nearity of g (van den Berg et al., 2003; Winterfors and Curtis,

2008; Guest and Curtis, 2009, 2010). These papers avoid local

linearization (approximation) of g, which is prevalent in most

other geoscientific design studies such as survey design for geo-

electrical methods (e.g., Coles and Morgan, 2009), bathymetry

inference (Narayanan et al., 2004), seismic borehole tomography

(e.g., Curtis 1999a, 1999b; Haber et al., 2008), seismic network

optimization (e.g., Steinberg et al., 1995), and oceanographic

experimentation (Barth and Wunsch, 1990). Avoiding lineariza-

tion is important because such a low-order approximation to g

can introduce systematic errors to the design optimization, com-

promising the quality of data from the resulting experiments.

The chief obstacle to nonlinear design is computing expense.

This is because the optimum design n* is that which maximizes

the expected information, which is typically calculated by an in-

tegral operation on the posterior model PDF given in equation 2.

We do not know which is the correct model m a priori, so it is

necessary to maximize the expectation or average a posteriori

model information over all probable models according to the

prior model PDF p(m) and over all probable data sets p(djm, n).

Estimating this expectation or average requires integration over

all m and d, a very significant computation. Hence, any work

that attempts to make nonlinear design practical must address

this computing expense.

Winterfors and Curtis (2008) address computing expense by

introducing an efficiently calculable measure of information in

the model space. The efficiency derives from the fact that data

uncertainty distributions describing variations of e in equation 1

are usually assumed to follow well-understood analytic forms

(e.g., Gaussian, Poisson). In such cases, part of the integration

can be performed analytically rather than numerically. Guest

and Curtis (2009, 2010) instead introduce a Monte Carlo inte-

gral method that performs more efficiently than previous meth-

ods. Its efficiency derives from successively removing from con-

sideration regions from the space of possible designs that are

statistically unlikely to contain n*.

We introduce a method of nonlinear Bayesian design that is

computationally efficient and, as with the methods above,

requires no linearization of g. We call the design objective func-

tion in this method the DN criterion; the process of optimizing

an experiment according to this objective is called DN optimiza-
tion. The D stands for the determinant criterion from linear

design theory (cf. Pukelsheim, 2006), which we extend to non-

linear design problems, whence comes the subscript N. Shewry

and Wynn (1987) show that a priori information in data space is

functionally related to a posteriori information in model space.

This makes it possible to optimize a design n* in data space

(through an appropriate choice of objective function) that is op-

timum over the expected posterior PDF of models in model

space. The ability to optimize designs in data space is computa-

tionally expedient because it precludes the need to perform

costly inversions as part of the optimization workflow (Shewry

and Wynn, 1987; Guest and Curtis, 2009). The efficiency of our

new method is derived is from this fact.

We demonstrate the method on two design problems. The first

examines a generic tomography problem in which the objective

is to optimize a set of source-receiver pairs to query an

unknown velocity model. The purpose of this example is to fa-

miliarize the reader with our theory. The second example

designs a real, industrial-scale, microseismic monitoring survey;

it shows that our method significantly outperforms designs con-

structed using current standard methods.

THE DN CRITERION

To begin the development, we introduce a simple hypothetical

scenario. Consider a set of 10 expected notional data sets,

recorded by two distinct experiments with designs n1 and n2 of

two observation points each. Each data set corresponds to a dis-

tinct model mi� p(m) through a notional theoretical function g.

The notation x� p(x) means that x has been sampled from, or is

distributed according to, the PDF p(x). The data sets can be

plotted as points in a 2D data space as in Figure 1. Additionally,

the data are expected to be noisy, so each data set has an uncer-

tainty region, as depicted by the ellipse around data set 5, which

represents the PDF of e. In this example, experiment 1 causes

the data sets to be close to one another in data space but experi-

ment 2 does not. The problem with n1 is that because the

recorded data are expected to contain errors e(n1), they may be

consistent with several different models from the sample, (e.g.,

several data sets fall within the uncertainty region of data set 5).

Therefore, data set 5 cannot be used to discriminate between the

distinct models corresponding to each of these data sets.

By contrast, in experiment 2, the data sets are expected to be

far enough from each other that the uncertainty region associ-

ated with e around any particular data set contains the expected

data corresponding to no other models from the sample. In this

sense, experiment 2 offers better model discrimination than

experiment 1 because it reduces model ambiguity; if any one of

the 10 data sets were actually observed, the model correspond-

ing to that data set would be readily identified (even accounting

for data uncertainty from noise), which cannot be claimed of

experiment 1. Thus we prefer design n2 to design n1.

This heuristic example highlights that model ambiguity can

be minimized by maximizing some measure of the expected dis-

tance between data sets, accounting for expected data uncertain-

ties. In fact, this is the main thesis behind work by Shewry and

Wynn (1987) on maximum entropy sampling: they prove that

Figure 1. Ten data sets (points) corresponding to the same 10 dis-
tinct models as observed by two different experiments, (a) n1 and
(b) n2, of two observations each. Each point represents the
expected data observations in 2D data space (d1 and d2) corre-
sponding to a single model. The ellipse represents a priori
expected data uncertainty, in this case around data set 5.
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when the data error is independent of the design, maximizing

the entropy of expected data (effectively a measure of data scat-

ter and hence, informally, a distance measure in data space) is

equivalent to minimizing the entropy of a posteriori expected

models (this is a well-known Bayesian SED objective that meas-

ures the a posteriori model uncertainty). Using that result, it is

evident in Figure 1 that experiment 2 is superior to experiment

1, as the entropy (scatter) of the mediated data is plainly greater.

Thus, design optimization can be carried out in data space rather

than in model space, where it is traditional to address model

uncertainty.

In reality, the set of permissible models is usually continuous

and not discrete as in Figure 1, so some model ambiguity is

unavoidable. Moreover, it is not just the distance between data

sets (points in data space) that should be maximized but rather

the degree to which the uncertainty distributions around poten-

tial recorded data sets overlap. By including these uncertainty

distributions, the expected characteristics of the data noise are

naturally integrated into the design problem.

Assuming e(n) is a multivariate Gaussian (hereafter multinor-
mal), the conditional PDF of a data set corresponding to model

mk is of the form pkðdjmk; nÞ � N½gðmk; nÞ;RdðnÞ�, where

N(l, C) denotes a multinormal distribution with mean l and

covariance C, and where Rd(n) is the expected data-noise covar-

iance matrix of e(n), which in this work may be design depend-

ent. The ellipse centered on data set 5 in Figure 1 represents an

example pk; its size, orientation, and position symbolize the

multinormal distribution N[g(mk, n), Rd(n)] from which the data

are expected to derive.

Now consider a pair of data sets di and dj with conditional

PDFs pi and pj, respectively. Based on the foregoing develop-

ment, the objective is to minimize the overlap between them. A

natural way to do this is to maximize their relative entropy or

Kullback-Leibler divergence D (cf. Cover and Thomas, 1991):

DðpiðdÞkpjðdÞÞ �
ð

C
piðdÞln

piðdÞ
pjðdÞ

dd; (3)

where C is the data domain over which pi and pj are defined

(the notation in equation 3 is conventional and native to infor-

mation theory). Informally, relative entropy is a nonnegative

measure of the distance between two PDFs that only equals zero

when the PDFs are identical. The relative entropy between mul-

tinormal distributions is analytic (Goldberger et al., 2003) and

in the case of pi and pj is

DðpikpjÞ ¼
1

2
½gðmj; nÞ � gðmi; nÞ�T½RdðnÞ��1

� ½gðmj; nÞ � gðmi; nÞ�: (4)

Notably, equation 4 is an instance of the squared Mahalanobis

distance (Mahalanobis, 1936), a general statistical distance mea-

sure equal to the squared Euclidean distance between probable

data sets, normalized by the expected data uncertainties RdðnÞ.
Because equation 4 is valid for any pair of models sampled

from pðmÞ, gðmi; nÞ and gðmj; nÞ can be treated as random vari-

ables; so by virtue of the central limit theorem, gðmj; nÞ � gðmi; nÞ
is more Gaussian than the distributions of gðmi; nÞ or gðmj; nÞ for

random variations in mi and mj (Hyvärinen et al., 2001). We

henceforth assume that gðmj; nÞ � gðmi; nÞ is approximately multi-

normal over the domain of probable models and hence has (it is

readily demonstrated) mean

Emi;mj
½gðmj; nÞ � gðmi; nÞ� ¼ 0 (5)

and (it is also readily demonstrated) covariance

RgðnÞ ¼ Emi;mj
f½gðmi; nÞ � gðmj; nÞ�½gðmi; nÞ � gðmj; nÞ�Tg

¼ 2Emf½gðm; nÞ � �gðm; nÞ�½gðm; nÞ � �gðm; nÞ�Tg;
(6)

where Ex is the expectation operator with respect to p(x) and
�gðm; nÞ � Emgðm; nÞ. Hence, gðmj; nÞ � gðmi; nÞ � N½0;RgðnÞ�.
We call RgðnÞ the theoretical data covariance matrix because it

corresponds to the deterministic component of the data, gov-

erned by the theoretical function g, and to distinguish it from

the purely stochastic data component, which corresponds to the

data-noise covariance RdðnÞ. The factor of two in equation 6 is

henceforth suppressed without any loss of generality.

It is a property of multinormal variables (Wunsch, 1996) that

for each gðmj; nÞ � gðmi; nÞ � N½0;RgðnÞ� there exists a

dðnÞ � N½0; I� such that

dðnÞ ¼ ½RgðnÞ��1=2½gðmj; nÞ � gðmi; nÞ�; (7)

where

½RgðnÞ�1=2
dðnÞ ¼ gðmj; nÞ � gðmi; nÞ; (8)

Thus, expression 4 reduces to

DðpikpjÞ ffi
1

2
dðnÞTRðnÞdðnÞ; (9)

where

RðnÞ � ½RgðnÞ�1=2½RdðnÞ��1½RgðnÞ�1=2: (10)

We call RðnÞ the nonlinear data covariance matrix.
Equation 9 is (an approximation of) the relative entropy

between any two conditional data PDFs, and it would seem nat-

ural to maximize its expectation over all d because relative en-

tropy is a distance measure between data sets. This expectation

is easily shown to be

Ed½dTRd� ¼
ð

dTRdpðdÞdd ¼ trR: (11)

However, expression 11 has a problem: the integral can be

maximized even if DðpikpjÞ ¼ 0 (i.e., the integrand is zero) for

some distinct pairs of models (recalling that d corresponds to

model pairs through equation 7). This is undesirable; by maxi-

mizing tr R, we would like all data sets corresponding to distinct

models to be themselves as distinct as possible. Thus, an objec-

tive function based on the expected relative entropy between

data sets, as in equation 11, is inadequate for SED because it

does not prevent an optimum experiment from yielding a nonun-

ique theoretical relationship between data and model (at least

for some distinct model pairs).

The integrand in expression 11 can be zero if dðnÞ ¼ 0 as a

consequence of mi equaling mj (see equation 7) or if RðnÞ has a

nontrivial null space. The former case is trivial because the rela-

tive entropy between the uncertainty PDFs of two data sets cor-

responding to the same model must be zero. However, the latter

Q3Efficient nonlinear survey design



case signifies undesirable nonuniqueness in the theoretical data-

model function. It is possible to prevent the singularity of RðnÞ
by modifying equation 11 to penalize experiments n that allow

it. One way to do this is to define the design objective function:

UDNðnÞ � EdfdðnÞT½ln RðnÞ�dðnÞg
¼ tr ln RðnÞ ¼ ln det RðnÞ; (12)

where ln R is the matrix logarithm of R defined as QðlnKÞQT.

Here, QKQT is the spectral decomposition of R and

ln K � diagfln kig, with ki being the eigenvalues of R. Any

experiment n for which RðnÞ is singular will cause UDN to be

negative infinity because RðnÞ then has one or more zero eigen-

values, causing ln det RðnÞ ¼ �1 and irreversibly eliminating

that experiment from candidacy as a maximizer.

Equation 12 is the D criterion (cf. Pukelsheim, 2006) com-

mon to linearized design theory, except that it has now been

generalized for nonlinear Bayesian design. That is, R is defined

with respect to the nonlinear function g — no linearization is

used to define the DN criterion in equation 12 — and incorpo-

rates prior model information p(m) and prior data uncertainty

information N½0;RdðnÞ� through its dependence on Rg and Rd,

respectively. We call an experiment maximizing this criterion

Bayesian DN optimal or just DN optimal for short. We could

also define AN, EN, and TN criteria, equivalent to linear A, E,

and T criteria (cf. Atkinson et al., 2007), by using the appropri-

ate operators from the design literature on R.

LINEARIZED SEQUENTIAL DESIGN

The utility of the DN criterion lies in the fact that efficient se-

quential design algorithms from linearized SED (e.g., Curtis

et al., 2004; Stummer et al., 2004; Coles and Morgan, 2009;

Coles and Curtis, 2011; Khodja et al., 2010) exist for D optimi-

zation (the AN, EN, and TN criteria remarked upon above could

also be maximized/minimized using these algorithms). When

combined with a linearized sequential design algorithm (LSDA),

the DN criterion renders nonlinear Bayesian design computation-

ally feasible for large-scale industrial applications, a feature

shared by no other geoscientific nonlinear design technique

without recourse to cluster computing or reparameterization of

the design space (e.g., Ajo-Franklin, 2009; Guest and Curtis,

2009, 2010). We expand upon this point in the Discussion.

Additionally, Coles and Curtis (2011) show that LSDAs can be

many orders of magnitude faster than global search techniques.

Details on implementing LSDAs can be found in Coles and

Curtis (2011) or Coles and Morgan (2009). Briefly, LSDAs take

three basic inputs: a matrix A, a design criterion (here, the DN

criterion), and a scalar n that indicates the number of observation

points desired. Technically, A can contain any information rele-

vant to experimental design, subject to the requirement that its

rows correspond to the set of candidate observation points or

types (henceforth just points) for the design problem. For exam-

ple, if there are 100 total observation points to choose from in a

design problem (of which some subset will be selected for the

optimum experiment), then A has 100 rows, each corresponding

to one observation point in discrete experiment space. LSDAs

operate by iteratively adding and/or deleting observations to/from

an experiment, which amounts to rows of A being switched on

or off. The goal of each addition/deletion is to extremize the

quality of the experiment as measured by the specified design

criterion (we refer to this as the objective value).

LSDAs are greedy algorithms that make local, rather than

global, updates to an experiment undergoing optimization. Con-

sequently, they trade global optimality for computational effi-

ciency (Coles and Morgan, 2009; Coles and Curtis, 2011). Three

LSDAs are commonly used: construction, decimation, and

exchange. Construction adds observation points (one at a time

or in groups) to the experiment, conditional on its current state,

until it comprises n such points. Decimation deletes observation

points from the experiment, again conditional on its current

state, until n remain. The exchange algorithm cycles through the

n observation points in the experiment, performing a test

replacement with all candidate observation points; the test

replacement that extremizes the objective value of the experi-

ment is exchanged for the current observation point. As men-

tioned, sequential design algorithms do not guarantee global

optimality, but exchange can approach this in practice (Coles

and Curtis, 2011).

DESIGN WORKFLOW

Experiments optimized according to the DN criterion can be

found by linearized sequential design algorithms by executing

the following workflow:

1) Generate an ensemble of probable models fmi j mi � pðmÞg
2) Denote the set of all q candidate observation points N; project

each model through the theoretical function and over N to

create an ensemble of probable theoretical data sets

fdi j di ¼ gðmi;NÞg � pðdjNÞ.
3) Numerically estimate the theoretical data covariance matrix

RgðNÞ 2 Rq�q of the data ensemble, as in equation 6.

4) Evaluate RðNÞ according to equation 10 (expedients to this

and step 3 are discussed later).

5) Use an LSDA to find the experiment n� 	 N using s
 q
points that maximizes UDNðnÞ in equation 12.

The covariance matrices are with respect to the set of all can-

didate observation points N. This is by convention because very

efficient LSDAs exist (Coles and Morgan, 2009; Khodja et al.,

2010; Coles and Curtis, 2011) that require RðNÞ as an input

(they actually require ½RðNÞ�1=2
).

EXAMPLE 1: GENERIC TOMOGRAPHY DESIGN

Our first example designs a DN optimal experiment for a

generic tomography problem. The purpose is to solidify under-

standing of the basic theoretical machinery before introducing a

more sophisticated example. Figure 2 illustrates the problem, the

objective of which is to design a tomography experiment consist-

ing of four source-receiver (circles and squares, respectively)

pairs along which traveltime measurements will be observed. The

medium is divided into four square cells, each with unit-length

edges and each assumed to span a region of constant velocity.

The objective of the experiment is to estimate these velocities.

The traveltimes ti are modeled as t1 ¼ 1=V1 þ 1=V2;

t2 ¼ 1=V3 þ 1=V4; t3 ¼
ffiffiffi
2
p

=V1; t4 ¼
ffiffiffi
2
p

=V2; t5 ¼
ffiffiffi
2
p

=V3; and

t6 ¼
ffiffiffi
2
p

=V4. These equations express the theoretical data-model

relationship, given by g in our notation. The set N contains six

candidate observation points (the source-receiver pairs that give

Q4 Coles and Curtis



rise to the preceding six theoretical functions), and from this N
an experiment n � N will be designed. Four of the six will be

chosen to comprise a DN optimal experiment, so there are 15

distinct experiments to consider. Because the design problem is

small, an exhaustive search can be conducted easily, so no

LSDA is used in this case.

Individual elements of the data noise eðNÞ are assumed to be

independent and identically normally distributed, with zero

mean and unit variance, so RdðNÞ ¼ I. The model parameters Vi

form parameter vector m ¼ ½V1;V2;V3;V4�T and are assumed to

be independent and identically uniformly distributed over the

interval from 2 to 5 km/s, which constitutes the model prior dis-

tribution p(m).

In this example, the theoretical data covariance over all candi-

date source-receiver pairs (observation points) can be calculated

analytically and is, rounded at the fourth decimal place,

RgðNÞ ¼

0:0134 0 0:0095 0:0095 0 0

0 0:0134 0 0 0:0095 0:0095

0:0095 0 0:0134 0 0 0

0:0095 0 0 0:0134 0 0

0 0:0095 0 0 0:0134 0

0 0:0095 0 0 0 0:0134

2
6666664

3
7777775
; (13)

where, to be clear, the ijth element of Rg is covðti; tjÞ over the

domain of p(m). Because the data noise covariance in this case

is the identity, the nonlinear covariance matrix RðNÞ is just

RgðNÞ. Note that any time the data noise is assumed a priori to

be independent and identically distributed, RdðNÞ can be set to

the identity because this only differs from the true covariance

by a multiplicative factor, which leaves the critical points of

UDN unchanged.

An evaluation of the DN value of all 15 candidate experiments

reveals that the DN optimal experiment selects the four diagonal

source-receiver pairs corresponding to traveltimes t3, t4, t5, and t6
(Table 1). This result is intuitive; each source-receiver pair in the

DN optimal survey constrains the velocity in exactly one cell,

uncomplicated by sensitivity to adjacent cells. Six experiments

have DN values of negative infinity. It is evident upon inspection

that each of these fails to constrain the velocity uniquely in at

least one cell, demonstrating that the log-modified relative en-

tropy measure (equation 12) indeed precludes experiments that

yield nonunique data-model relationships.

In practice, RgðNÞ usually will not be analytic and must be

estimated by sampling the data marginal PDF, mediated by a

sampling from p(m), which raises the question, “How many

samples are sufficient?” This is explored briefly in Table 2,

which reports the rms error in the approximation of the elements

of RgðNÞ compared to the analytic matrix for different sample

sizes. Also shown is the DN optimum experiment, found by

using each approximation of RgðNÞ. The approximation error

reduces roughly as the inverse square root of the number of

samples; importantly, the DN optimum experiment in all cases is

identical to the one arrived at by using the analytic theoretical

data covariance matrix.

EXAMPLE 2: MICROSEISMIC MONITORING

NETWORK DESIGN

A more realistic demonstration of the methodology is to opti-

mize a seafloor microseismic receiver network for monitoring

an offshore petroleum field. The model m represents the hypo-

central coordinates of a microseismic event, and data d are the

expected arrival times at a set of candidate receiver stations.

Microseismic events are assumed to originate primarily around

major faults, so p(m) assigns uniform probability to events

Figure 2. Generic tomography design problem in which four cells
with unknown velocities v1–v4 are to be optimally queried by four
of the six source (circle)-receiver (square) pairs shown, which
mediate traveltimes t1–t6 along the raypaths shown (dashed).

Table 1. DN value (after equation 12, using log10 instead of ln)
of the 15 experiments of four source-receiver pairs possible in
Figure 2. Left four columns indicate the subscripts of the
traveltimes observed by each experiment. The DN optimal
experiment is highlighted.

Experiment DN value

1 2 3 4 �1
1 2 3 5 �8.1405

1 2 3 6 �8.1405

1 2 4 5 �8.1405

1 2 4 6 �8.1405

1 2 5 6 �1
1 3 4 5 �1
1 3 4 6 �1
1 3 5 6 �7.8395

1 4 5 6 �7.8395

2 3 4 5 �7.8395

2 3 4 6 �7.8395

2 3 5 6 �1
2 4 5 6 �1
3 4 5 6 �7.5384
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along faults in the reservoir interval (4–6 km below the seafloor)

and zero probability elsewhere.

Six hundred example microseismic sources were randomly

sampled from p(m) (Figure 3), forming the model ensemble in

step 1 of the design workflow, and their arrival times at each

candidate receiver were calculated to form the data ensemble

defined in step 2. The set of candidate receiver positions was a

41 � 41 grid with 1-km spacing on the seafloor (4 km above

the top of the fracture network), centered on the

reservoir. The overburden is treated as homoge-

neous. A modified version of Hutton and

Boore’s (1987) attenuation was used to model

expected signal-to-noise ratios (S/N), which are

accommodated in the data-noise covariance

RdðNÞ. The modification causes S/N to drop off

by three orders of magnitude at a distance of 20

km relative to a station positioned at the epicen-

ter of a microseismic event. This builds in a

trade-off between placing receivers far away to

maximize the angular aperture of the array and

nearby to maximize S/N and hence microseis-

mic detectability.

We compare three receiver networks: a net-

work of 13 receivers proposed by a well-known

industrial contractor, designed using heuristics

(rules of thumb); a comparably sized network

found using the linear dependence reduction schema described

by Curtis et al. (2004), called LDR optimal, which uses a linear-

ized Bayesian sequential design method; and a comparably sized

DN optimal network optimized by the exchange algorithm. To

compare the receiver networks, average post-inversion model

variances were estimated for hypocenters at 5-km depths over a

region (in map view) slightly larger than the footprint of the frac-

ture network. Average uncertainty was calculated by taking the

mean of the diagonal of the linearized model covariance matrix

for each receiver network, 1=3traceðGTGÞ�1
, at each point on a

dense grid of potential hypocenters over the region described,

where G is the Jacobian of the traveltime function with respect

to the hypocentral coordinates, evaluated for each receiver net-

work and each potential hypocenter.

Results are shown in Figure 4; the fracture network is

included for reference. Of the three networks, the DN optimal

network mediates the lowest overall expected hypocentral uncer-

tainties over the fracture network (the region where

Table 2. Misfit between analytic and estimated RgðNÞ for various model space
sample sizes, calculated as the rms error between the elements of the approxi-
mated and analytic matrices. Also shown is the DN optimal experimental
design in each case in brackets (bottom row), following the subscript conven-
tion described in Table 1.

# samples 16 64 256 1024 4096 16,384 65,536

Misfit 0.0285 0.0092 0.0066 0.0025 0.0014 0.0010 0.0005

Design {3,4,5,6} {3,4,5,6} {3,4,5,6} {3,4,5,6} {3,4,5,6} {3,4,5,6} {3,4,5,6}

Figure 3. Map of a fractured and faulted (black) petroleum field
with 600 possible microseismic sources (dots) randomly selected
along faults in accordance with the model prior PDF.

Figure 4. Contour maps of the expected post-inversion model variance (uncertainty) for three survey designs — (a) heuristic, (b) LDR
optimal (Curtis et al., 2004), (c) DN optimal — of 13 receivers (triangles). The maps are reported in log10 variance (log10 km2), and isolines
are labeled with white numbers. For example, the –0.5 isoline indicates the locations at which a hypocentral estimate would have expected
model variance of 10–0.5 km2

. The two larger triangles in (c) are referred to in Figure 5.
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microseismic events are assumed to be most probable). The

entire fracture network falls within the 10–0.5-km2 isoline, mean-

ing that the average expected uncertainty in the hypocentral esti-

mate of any event originating on a fault is never greater than

6562 m (i.e., the square root of 10–0.5 km2). In contrast, the

largest expected hypocentral estimation error for fault-originat-

ing events is approximately 750 m and >1 km for the LDR op-

timum and heuristic networks, respectively.

Table 3 reports the percent difference in the expected post-

inversion standard deviation of each hypocentral coordinate esti-

mate for the heuristic and LDR optimal networks relative to the

DN optimal network. These were estimated by calculating the

percent difference in the mean root of the diagonals of the line-

arized inversion model covariance matrix ðGTGÞ�1
for each re-

ceiver network (over the set of 600 example microseismic

events) relative to the mean root of that for the DN optimum

network. The DN optimum design plainly produced the smallest

expected uncertainty in each hypocentral coordinate, particularly

in the depth coordinate, where the heuristic and LDR optimal

networks yielded uncertainties at least 150% greater than the DN

optimum network on average.

In summary, the DN optimal network clearly produced lower

expected hypocentral uncertainties over the targeted fracture net-

work as well as a more homogeneous distribution of uncertainty

in the region of expected microseismicity.

DISCUSSION

Example 1 offers a heuristic case to familiarize the reader with

our design theory, and it suggests an important possibility: that

DN optimization might be fairly robust to imperfect sampling of

the marginal data PDF, as demonstrated by the DN optimum

designs in Table 2. It is possible that relatively small sample

sizes are sufficient to optimize designs by the DN criterion, which

translates to added computational efficiency, especially for high-

dimensional design problems. It would be useful to explore this

possibility in future work.

In example 2, the DN optimum network is plainly superior to

the other two networks in terms of overall and coordinate hypo-

central uncertainties. Example 2 demonstrates that the DN crite-

rion and attendant LSDA are suitable to optimize experiments

efficiently when the data-model relationship is nonlinear and

when the expected model parameterization and the expected

data noise can be characterized probabilistically a priori.

The value of our methodology is that it offers a means to

optimize large-scale nonlinear geoscientific designs in a fraction

of the normal time. Consider that the largest (nonreparameter-

ized) nonlinear geoscientific design published to date includes

10 observation points (Guest and Curtis, 2009). Optimizing a

nonlinear design the size of example 2 by Guest and Curtis’s

method is at the computational limit of existing nonlinear design

methods (Guest, personal communication, 2009). In contrast, the

DN optimal network in example 2 is optimized in a few seconds,

including time needed to compute RðNÞ. By borrowing from the

efficiencies of linear methods, our method makes it computa-

tionally feasible to optimize experiments of many hundreds or

possibly thousands of observation points in a matter of minutes,

a major advance in nonlinear geoscientific SED. To demon-

strate, we timed the DN optimization workflow while designing

a microseismic monitoring network (using the same priors as in

example 2) of 320 receiver stations, which took just over 4.5

minutes on a personal laptop. The linearized sequential design

algorithms discussed previously are also theoretically paralleliz-

able, so much larger DN optimum experimental designs might

be found using distributed computing.

It is notable that our method does not require evaluation of

the Jacobian matrices (required for standard linear D optimal

design, for example), which can be expensive to compute and

formidable to store in memory, especially for Bayesian methods

that require Monte Carlo integrations involving many Jacobian

matrices (e.g., Chaloner and Verdinelli, 1995). Our technique

requires only forward calculation and storage of the theoretical

function g and is therefore limited only by the expense of this

calculation.

Continuing with the points of efficiency and storage, it is advis-

able to use a method to approximate RðNÞ (or ½RðNÞ�1=2
, which is

used in practice with many LSDAs) directly and efficiently

(avoiding step 3 of the design workflow) as successive random

models are sampled from p(m). We recommend recursive princi-

pal component analysis (PCA) (Peddaneni et al., 2004), which can

update the estimate of RðNÞ iteratively and thereby avoid a bulk

computation (after all samples have been collected) — a formida-

ble task if many data samples are taken. PCA also facilitates data

compression because it identifies the degrees of freedom of the

nonlinear theoretical function over the domain of probable models.

Properly applied, PCA can save on storage and boost the compu-

tational efficiency of LSDAs, especially if ½RðNÞ�1=2
is used. This

is because ½RðNÞ�1=2
often can be expressed more compactly than

RðNÞ because of a limited degree of freedom in g, given the set

of candidate observation points N and the model prior p(m). Re-

cursive PCA was used in the microseismic example. It is also

readily shown that the DN criterion is identical to maximum en-

tropy design criteria (Shewry and Wynn, 1987; Sebastiani and

Wynn, 2000; van den Berg et al., 2003; Guest and Curtis, 2009,

2010) when data and model are related linearly and the data noise

is Gaussian (c.f., Chaloner and Verdinelli, 1995).

The DN criterion assumes that gðmi; nÞ � gðmj; nÞ is approxi-

mately multinormal. We tested the validity of this assumption in

the microseismic example by using a Shapiro-Wilk test for nor-

mality (Shapiro and Wilk, 1965). The correlation between the lin-

ear fit of the quantiles of gðmi; nÞ � gðmj; nÞ (for each candidate

receiver) and the quantiles of a normal distribution (of the same

mean and variance) was always greater than 0.99. Thus, the mul-

tinormal assumption was valid in this case, as shown in Figure 5.

Even if the multinormal assumption were invalid, it would only

mean that UDN is a poor approximation of the relative entropy.

The DN criterion is nonetheless a measure of the expected Maha-

lanobis distance between data sets; so the DN criterion is poten-

tially a viable design objective regardless of multinormality.

Table 3. Percentage difference in the mean post-inversion
uncertainty of each hypocentral coordinate using Heuristic
and LDF optimal designs relative to those mediated by the DN

optimal network. Positive numbers represent increased cer-
tainty from the DN-optimal designs.

x y z

Heuristic þ44.7% þ16.7% þ174.0%

LDR optimal þ88.3% þ63.5% þ164.2%
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CONCLUSION

We have presented a new method for nonlinear Bayesian sta-

tistical experimental design based on a generalization of the D
criterion to nonlinear Bayesian design. The method takes advant-

age of efficient linear methods and has lower data-storage

requirements than other nonlinear algorithms. It also appears to

be robust to sampling errors, although more research is needed to

confirm this. The method makes robust, industrial-scale, geo-

scientific survey optimization computationally feasible for nonlin-

ear problems. When optimizing a seafloor microseismic monitor-

ing network, our technique demonstrably reduces spatial bias and

hypocentral uncertainty more than networks optimized using a

linearized Bayesian design method and those designed heuristi-

cally by an industrial contractor.
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