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Uncertainty in predictions of forest carbon dynamics:
separating driver error from model error
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Abstract. We present an analysis of the relative magnitude and contribution of parameter
and driver uncertainty to the confidence intervals on estimates of net carbon fluxes. Model
parameters may be difficult or impractical to measure, while driver fields are rarely complete,
with data gaps due to sensor failure and sparse observational networks. Parameters are
generally derived through some optimization method, while driver fields may be interpolated
from available data sources. For this study, we used data from a young ponderosa pine stand
at Metolius, Central Oregon, and a simple daily model of coupled carbon and water fluxes
(DALEC). An ensemble of acceptable parameterizations was generated using an ensemble
Kalman filter and eddy covariance measurements of net C exchange. Geostatistical
simulations generated an ensemble of meteorological driving variables for the site, consistent
with the spatiotemporal autocorrelations inherent in the observational data from 13 local
weather stations. Simulated meteorological data were propagated through the model to derive
the uncertainty on the CO2 flux resultant from driver uncertainty typical of spatially extensive
modeling studies. Furthermore, the model uncertainty was partitioned between temperature
and precipitation. With at least one meteorological station within 25 km of the study site,
driver uncertainty was relatively small (;10% of the total net flux), while parameterization
uncertainty was larger, ;50% of the total net flux. The largest source of driver uncertainty was
due to temperature (8% of the total flux). The combined effect of parameter and driver
uncertainty was 57% of the total net flux. However, when the nearest meteorological station
was .100 km from the study site, uncertainty in net ecosystem exchange (NEE) predictions
introduced by meteorological drivers increased by 88%. Precipitation estimates were a larger
source of bias in NEE estimates than were temperature estimates, although the biases partly
compensated for each other. The time scales on which precipitation errors occurred in the
simulations were shorter than the temporal scales over which drought developed in the model,
so drought events were reasonably simulated. The approach outlined here provides a means to
assess the uncertainty and bias introduced by meteorological drivers in regional-scale
ecological forecasting.

Key words: carbon dynamics; data assimilation; ensemble Kalman filter; geostatistics; product–sum
covariance model; process-based modeling.

INTRODUCTION

Modern catchment scale studies of environmental

phenomena commonly use models for extrapolation and

prediction (Running 1994, Runyon et al. 1994, Law et

al. 2001a, Williams et al. 2001b, 2005). A key problem is

upscaling detailed observations made at a small number

of sites to a wider area, due to the expense and technical

difficulties associated with direct observation (Thornton

et al. 1997, Williams et al. 2005). Processed based models

formalize knowledge of ecological processes, and allow

observations at various scales to be incorporated into

regional analyses (Heuvelink and Webster 2001,

Canham et al. 2003, Williams et al. 2005). Such models

typically require estimates of rate parameters and initial

surface characteristics, along with a set of meteorolog-

ical driving variables, from which estimates of the state

vector are derived.

Regional analyses are complicated by the difficulty in

measuring and setting parameters, and finding adequate

data to drive the model. On one hand, parameters may

be difficult or impossible to measure in practice,

particularly if the rates of the processes they represent

are slow relative to the observational period, with time

constants greater than a few months (Williams et al.

2009). On the other hand, sourcing adequate data to

drive the model over the required spatiotemporal extent
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may be difficult due to sparse sensor networks and

missing observations resultant from sensor failure

(Thornton et al. 1997). In general, optimization proce-

dures are used to infer appropriate parameter sets (e.g.,

Williams et al. 2005), and interpolation schemes are used

to gap-fill meteorological drivers (e.g., Thiessen 1911,

Running et al. 1987, Hungerford et al. 1989, Daly et al.

1994, Hudson and Wackernagel 1994, Thornton et al.

1997, Goovaerts 2000). The errors resultant from these

activities are difficult to quantify, and in the case of

driver interpolation rarely explored (Fuentes et al.

2006).

Parameter errors can be quantified through a variety

of techniques, usually based on Monte Carlo analyses.

Parameters may be perturbed by a series of fixed

percentages to probe the effect on the state vector

(e.g., Van Oijen et al. 2005, Williams et al. 2005). More

formally, the model can be parameterized using a

Bayesian framework with parameter error determined

from its posterior distribution (Verbeeck et al. 2006,

Kennedy et al. 2008, Klemedtsson et al. 2008). Here we

explore an alternative Bayesian technique, whereby an a

priori parameter set is updated by comparing the model

trajectory with observations via data assimilation using

an ensemble Kalman filter. This technique has been

popular amongst meteorologists and oceanographers

(Evensen 1994, Eknes and Evensen 2002), and confers

the advantage of balancing the observation and model

error in an optimal sense (Maybeck 1979).

Quantification of error resultant from meteorological

driver uncertainty may be assessed through geostatistical

simulation techniques (Goovaerts 2001, Fuentes et al.

2006). Based on this uncertainty that these techniques

quantify, a moderately large (n ¼ ;1000) ensemble of

equi-probable meteorological fields can be constructed

from the available data, honoring the spatiotemporal

autocorrelation structure of the data. The error magni-

tude of the state vector is quantified after propagating

the ensemble through the model using Monte Carlo

analysis of the n model estimates (e.g., Fuentes et al.

2006).

Data scarcity can increase driver error when using

geostatistical upscaling of meteorological drivers over a

region (Spadavecchia and Williams 2009). However, it is

not clear how errors in the meteorological fields affect

the state vector, particularly because errors are reduced

with increasing temporal aggregation (Spadavecchia and

Williams 2009). Processes which respond instantane-

ously to the driver fields (e.g., temperature controlled)

are likely to have larger error magnitudes than those

which integrate driving variables over time (e.g., soil

moisture controlled). As a result, driver errors, which in

some cases are appreciable (Spadavecchia and Williams

2009), may in fact cancel out over the model run.

We present an analysis of the sources and magnitude

of model errors using the Data Assimilation Linked

Ecosystem Carbon model (DALEC); a simple process-

based ecosystem model of carbon dynamics, here

modified to include water fluxes and carbon–water

interactions. The model is multi-output, supplying

estimates of C stocks, soil moisture and fluxes of carbon

and water on a daily time step. The model is para-

meterized for a well-sampled ponderosa pine forest at

Metolius, in central Oregon, USA using the ensemble

Kalman filter (EnKF; Evensen 2003). Parameter un-

certainty is propagated into model outputs to determine

the associated uncertainty. The observed meteorology is

then replaced with an ensemble of geostatistical simu-

lations conditioned on observations surrounding the

study site. The parameterized model is run again

multiple times to sample the resultant uncertainty in

net ecosystem exchange (NEE) due to driver uncer-

tainty. Finally, a full uncertainty analysis is undertaken

using Monte Carlo sampling of both parameter and

driver sets, to examine the cumulative uncertainty of the

NEE.

The objectives of this paper are to examine and

compare the magnitude of model error resultant from

parameter uncertainty and driver uncertainty at a daily

timescale. Furthermore, the error magnitude resultant

from uncertainty in a variety of daily driver fields is

characterized to diagnose which fields are critical to

constrain model predictions. In doing so this study

addresses the following hypotheses:

H1) Driver error will be larger than the parameter

error, since the likely range of parameters are well

constrained locally by eddy flux data, while

meteorological simulations are conditioned on

patchy, spatially dispersed data.

H2a) Precipitation will contribute most to model

uncertainty. Precipitation has the largest inter-

polation error, and ecosystem production is

drought limited in the study region (Law et al.

2001a, Van Tuyl et al. 2005).

H2b) Temperature will contribute most to model

uncertainty. Errors associated with precipitation

will average out over time, as plant response to

precipitation is resultant from drought. Drought

integrates precipitation uncertainty over time

through soil moisture content, so instantaneous

temperature effects on heterotrophic processes

will dominate the NEE error signal.

METHODS

Study site

The Metolius young ponderosa pine site is located on

a private forestry concession near the Metolius Research

Natural Area (448260 N, 1218340 W, elevation ;1165 m),

about 10 miles (16.7 km) west of Sisters, Oregon, USA

(Fig. 1). The site was clear-cut in 1978, and since then

has naturally regenerated, with some thinning in 2002.

The average age of trees in 2000, before thinning, was 16

years. The canopy layer is exclusively composed of Pinus

ponderosa, with an understory of Purshia tridentata and
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Pteridium aquilinum, and an herb layer of Fragaria

vesca. From 2000 to 2002, the site had a continuously

functioning eddy covariance system, forming part of the

AmeriFlux observational network. Fluxes were meas-

ured at ;9 m above the canopy. The site is characterized

by warm dry summers and wet cool winters. Diurnal

temperature variation can be high (1.5–18.68C), and the

site is prone to drought (mean annual precipitation ¼
402 mm, mean number of dry days ¼ 224).

Observations from a nearby tower, at a pine stand of

intermediate age (USMe2) were used in the meteoro-

logical component of this study. At USMe2, precipita-

tion was measured using a rain gauge (model TE525WS;

Texas Electronics, Dallas, Texas, USA) on the tower at

32 m above ground level and in a small natural clearing

next to the main tower using the same type of rain gauge

equipped with a snowfall adapter during the winter and

spring months. Sensors of snow depth and air temper-

ature close to the ground (at 1.6 m, Ta,1.6m) were

mounted on a 2-m tower in the same location.

In the two decades encompassing the observation

period, the three driest years were 2002, 2000, and 2003

summed by calendar year, and 2001, 1994, and 2003

summed by water year (Oct–Sep). Because there were

several unusually dry years during the study period,

cumulative effects on carbohydrate reserves could

influence apparent responses to climate variables,

particularly in the relatively shallow-rooted young

forest.

Modeling daily exchanges of C and water

Canopy processes.—The model consists of a ‘‘big leaf’’

photosynthesis (GPP) and evapotranspiration (ET)

model (aggregated canopy model, ACM; Williams et

al. 1997) coupled to a module that tracks the allocation

and mineralization of carbon, and a module that tracks

the dynamics of soil moisture. This coupled model is

henceforth referred to as the Data Assimilation Linked

Ecosystem Carbon Model, or DALEC model (Fig. 2;

Fox et al. 2009).

The ACM calculates GPP and ET as a function of

vegetation properties (leaf area index, and foliar N for

GPP), meteorology (maximum daily temperature, daily

temperature range, maximum daily vapor pressure

deficit, total daily irradiance) and soil properties (soil

hydraulic resistance and soil water potential). The ACM

model was parameterized from locally calibrated soil–

plant–atmosphere model predictions of GPP and ET

(Williams et al. 1996, Schwarz et al. 2004), using the

approach laid out in Williams et al. (1997).

C cycling.—The carbon module apportions the pre-

dicted gross primary production (GPP) into autotrophic

respiration and the growth of plant C pools (DALEC;

Williams et al. 2005) and then tracks additions to and

mineralization of litter and soil organic matter (SOM).

DALEC requires the specification of ten carbon

parameters to control the fate of C in the ecosystem.

These parameters relate to the rate of decomposition,

fraction of GPP respired, fraction of NPP allocated to

FIG. 1. Metolius young ponderosa pine site and surrounding area, Deschutes County, Oregon, USA. Two other AmeriFlux
towers are situated to the north. The area is extensively forested with ponderosa pine and mixed coniferous vegetation (vegetation
data courtesy of USDA Forest Service, Sisters Ranger Station, Sisters, Oregon).
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foliage, fraction of remaining NPP allocated to fine

roots, turnover rates of foliage, wood, fine roots, litter,

and SOM, and the temperature sensitivity of litter and

SOM mineralization. DALEC also requires an initial

estimate of the C stock present in five pools: foliage, fine

roots, woody stems, litter, and SOM (see Williams et al.

2005).

The model takes daily inputs of minimum temper-

ature (Tmin), maximum temperature (Tmax), and precip-

itation (P). Temperature observations are converted to

daily average temperature (Ta), maximum daily vapor

pressure deficit (VPD), and solar radiation (RAD) using

well-tested relationships (Running et al. 1987, Thornton

et al. 1997). VPD is estimated using Murray’s formula

(Murray 1967), while RAD is predicted using the Allen

model (Allen 1997). Details of these models are provided

in the Appendix.

Modeling soil water dynamics and drought stress.—A

simple daily model of soil water dynamics was con-

structed based on intensive hourly modeling studies at

the site (Williams et al. 2001a, Schwarz et al. 2004). The

model tracks water inputs and outputs in a 10 layer

‘‘bucket’’ model extending to 3 m in depth. Moisture

drains from soil layers when water content exceeds field

capacity. We used relationships from Saxton et al.

(1986) and local measurements of soil texture to

determine porosity and field capacity. Soil hydraulic

resistance was determined based on soil texture, root

biomass, and water fraction in each soil layer (Williams

et al. 2001a). Soil water potential (Ws) was generated

from a locally determined empirical relationship (Ws ¼
�1.74þ3.997h) on soil water fraction (h). Rooting depth

was determined as a function of root biomass using data

from nearby ponderosa pine stands (Schwarz et al.

2004). More details of this modeling approach are

provided in Fisher et al. (2008).

Data

Meteorological observations.—The 13 closest mete-

orological monitoring stations with data available for

the period 2000–2002 were used to generate meteoro-

logical simulations at the study site location (Fig. 3).

These stations were selected so that there would be a

minimum of eight stations providing Tmin, Tmax, and P

observations each day, on which to condition meteoro-

logical simulations. Observations were filtered such that

the values would not exceed the state extremes for

Oregon (National Oceanic and Atmospheric Ad-

ministration (NOAA), Silver Spring, Maryland, USA).

Meteorological records for stations .25 km away were

also sourced to examine the effect of data scarcity on

NEE uncertainty (Fig. 3). Data from a total of 112

stations were available.

Flux observations.—Three years of data from the

Metolius young ponderosa pine plot (Law et al. 2001c,

d ) were used to parameterize DALEC. The data

consisted of records of net ecosystem exchange (NEE),

total ecosystem respiration (Re), evapotranspiration

(ET), and a set of meteorological observations, sampled

at the daily time step. Direct observation of Tmin, Tmax,

Ta, P, VPD, and RAD were made simultaneously with

the flux data. Gaps in the data resulted from sensor

failure and filtering to remove observations with low

friction velocity (u*), or physically implausible magni-

tudes (NEE . 25 lmol�m�2�s�1). Short gaps in daytime

NEE were filled using the lookup table method (Falge et

al. 2001). Gaps in latent heat exchange were filled using

an empirical relation to measured net radiation. We

generated daily net ecosystem exchange of CO2 (NEE)

data for days in which ,25% of the 48 possible half hour

measurements were gap filled; for the three year period

of this study, this amounted to 684 daily NEE values.

Soil respiration was measured using six automated

chambers installed in 1999 (Irvine and Law 2002); total

FIG. 2. Data assimilation linked ecosystem carbon (DALEC) C and water dynamics model. Pools are shown as boxes, while
fluxes are represented as arrows. The left-hand plot illustrates the C module: GPP (gross primary production) is allocated to foliage
(f), roots (r), or woody (w) material. Allocation fluxes are marked A, while losses are marked L. C loss is through respiration fluxes
(R), split between autotrophic (a) and heterotrophic (h) sources. The right panel details the flow of water through the model:
Precipitation (P) is allocated between 10 soil water layers (W1–W10). Vertical drainage flows (F1–F9) occur when soil layers are
saturated. Water may be lost through gravitational drainage (Fg) to groundwater or evapotranspiration (ET).
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daily effluxes were recorded on 401 days during 2000–

2002.

Canopy density observations.—Observations of the

leaf area index (LAI) of the forest canopy were used to

constrain the parameterization of DALEC. Data were

collected at four times during the three-year period,

using an LAI-2000 plant canopy analyzer (LI-COR,

Lincoln, Nebraska, USA; Table 1). Observations were

collected on a 10-m2 grid over 1 ha, and were corrected

for clumping at the needle, shoot, and stand levels (Law

et al. 2001b, c). These observations were related to the

model foliar carbon estimate via direct measurements of

the specific leaf mass from foliage samples, see Williams

et al. (2005) for further details.

DALEC parameterization

Many of the parameters associated with the processes

of photosynthesis, evapotranspiration and soil water

physics have been derived from the literature or from

previous research at the study site (Williams et al. 2001a,

2005, Schwarz et al. 2004). The most uncertain

parameters are the 10 associated with respiration,

turnover, and allocation of C among plant and soil

pools. We added an eleventh parameter to these, the

parameter from the ACM GPP model that relates foliar

N content to photosynthetic capability, to include an

estimate of uncertainty in the GPP calculations.

We used an ensemble Kalman filter (EnKF, Williams

et al. 2005) to estimate the likely distributions for these

uncertain parameters. The EnKF combines a model of a

system (i.e., DALEC) with observations of that system

over time (i.e., NEE and LAI observations). The model

generates predictions of the state vector (C pools and

fluxes, soil moisture and water fluxes) for each time step.

NEE and LAI predictions are then compared with

FIG. 3. Meteorological monitoring stations surrounding the Metolius young ponderosa pine site, indicated as a gray point.
Crosshairs represent the 13 core stations used for the simulations, while auxiliary stations at increasing distance from the study site
are indicated as open circles. Light gray lines indicate county boundaries. The extent of the area within the conterminous United
States is indicated as a hatched black rectangle in the inset map.

TABLE 1. Summary of total leaf area index (LAI) estimates for
the young ponderosa pine site for four survey dates.

Date LAI

19 Jul 2000 1.0
19 Aug 2001 1.46
22 May 2002 0.85
17 Sep 2002 1.67

Note: LAI estimates were derived by combining both tree
canopy measurements (ponderosa pine) and understory sur-
veys.
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independent observations. Based on an assessment of

model forecast and observational uncertainty, the

predicted NEE and LAI are adjusted. The model error

covariance matrix, as determined in the EnKF, is then

used to adjust the full state vector accordingly.

We adjusted the EnKF approach used in Williams et

al. (2005) from a state estimation problem to a

parameter estimation problem. We added the 11 model

parameters to the state vector supplied to the EnKF. We

set the model error on the fluxes and pools of C and

water to relatively low values (0.01%) compared to the

uncertainty on the 11 parameters (0.2%). In the EnKF

the model error is added to each member of the state

vector at each time step, causing a divergence in the

parameter distribution around the mean for each

member of the state vector. Assimilated observations

adjust the mean state and the distribution around the

mean, generally reducing its spread. The parameter

uncertainty was selected so that its divergence was more

than one order of magnitude larger than the state

uncertainty, so that over time the filter sampled a greater

proportion of parameter space than state space. Thereby

the analyses adjusted parameter values, rather than

states. The absolute magnitude of the parameter

uncertainty was selected to allow shifts in parameters

values of ;75% over an annual cycle, which we expected

to encompass the likely uncertainty in initial estimates of

parameters, while avoiding sharp shifts in parameter

values at daily timescales, that disrupt the mass balance

of the modeling.

To assess uncertainty in the estimate of short-term

flux due to random sampling errors, we used the relative

random flux error defined as the ratio of the standard

error to the absolute value of the record mean flux.

Random flux errors averaged 20% (Vickers et al. 2009),

and the majority of the uncertainty is due to random

sampling errors, not nonstationarity. Systematic errors

are generally expected to sum to 12% (Falge et al. 2001).

However, the nature of NEE (it can be positive or

negative) means that defining errors by a coefficient of

variation is unsuitable in data assimilation, so instead

errors are set at 0.7 g C�m�2�d�1, approximately 20% of

the typical summer NEE values. The coefficient of

variation on LAI observations at the site was 10%, and

so the error was set at this value (Law et al. 2001d). In

earlier analyses we found an ensemble of 200 was

adequate; here, with an enhanced state vector, we

increased the number to 400.

The initial EnKF analysis used parameter estimates

from an earlier study as prior estimates (Williams et al.

2005). After the initial analysis, the posterior parameter

estimates were used to reinitialize the parameters, and

the EnkF was run again. This process was repeated once

more, at which point the parameter ensembles had

stabilized. The model was then run in forward mode,

with each of the final posterior parameter ensembles

used in turn to evaluate the effect of parameter

uncertainty on the NEE estimate (experiment 1).

Meteorological simulation

Sequential Gaussian simulation (SGS; Goovaerts

1997) was used to quantify the uncertainty of interpo-
lated driving variables at the Metolius site. SGS may be
regarded as an extension of the commonly used kriging

technique (e.g., Hudson and Wackernagel 1994, Ashraf
et al. 1997, Goovaerts 2000, Spadavecchia and Williams

2009). Kriging estimates represent the most likely value
of the estimate given the surrounding observations,

based on a probabilistic model. Kriging estimates have
attached variances which are a valid measure of

uncertainty when taken in isolation; however they are
less useful for assessing the uncertainty of the region-

alization as a whole (Goovaerts 1997). SGS expands on
kriging by drawing equally possible realizations of the

whole field from the probabilistic model, preserving the
surface roughness of the estimated field and avoiding the

characteristic smoothing effect of kriging (Goovaerts
1997,1999, 2001, Deutsch and Journel 1998). For

complete details on the approaches, see the Appendix
and Spadavecchia and Williams (2009). The approach

outlined does not account for covariance between
driving variables. Methods for co-kriging to account
for these covariances have not to our knowledge been

implemented in the space–time domain. Complications
of achieving stable covariance matrices for inversion in

the kriging calculations are a major challenge, and
further research is required to implement such an

approach.

Precipitation simulations

Due to the stochastic nature of rainfall events it was

necessary to simulate precipitation in a two-stage
process. First the probability of a rainfall event was

simulated from a binary recoding of the observations
data (precipitation indicator Pi) representing the prob-

ability of an event (i.e., Pi¼ 0 if P¼ 0, Pi¼ 1 if P . 0).
Precipitation events were dispersed across the simulation

grid by comparing the simulated probability (Pi
*) of

rainfall with a draw from a random number generator

(r). Grid nodes were coded for an event if Pi
* . r.

Having established the grid nodes where precipitation

takes place, we then simulated the amount of precip-
itation at these points using the methods outlined in the
Appendix. See Spadavecchia and Williams (2009) for

more details.

Partitioning driver uncertainty

1000 simulations of Tmin, Tmax, and P were generated

at the Metolius site for the full three years of the study,
conditioned on data from the eight closest spatial

neighbors over a temporal window of 610 days (88
observations) via SGS. Previous analyses have shown

that temporal information from such a window im-
proves the regionalization of precipitation data, it has

no significant impact on temperature regionalization’s
(Spadavecchia and Williams 2009). Meteorological

observations at the study site were excluded so as to
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explore the uncertainty resultant from modeling C

dynamics over sparsely sampled regions. The para-
meterized model was run with each of the 1000

simulations in turn, to inspect the variability in the
predicted NEE ensemble (experiment 2). Two subsidiary

experiments were run, calculating NEE using (experi-
ment 2.i) locally observed temperatures, VPD, and RAD
with simulated precipitation and (experiment 2.ii) locally

observed precipitation with simulated temperatures,
VPD, and RAD. Finally, having generated a parameter

ensemble and 1000 equi-probable meteorologies, a
sample of 1000 parameter and meteorology permuta-

tions was generated to test the combined effect of
parameter and driver uncertainty on the model (experi-

ment 3).
To test H2, the precipitation regime of the data was

compared with the simulated rainfall trajectories. The
number of days since a precipitation event (nP¼0) was

calculated for the 1000 simulations generated in experi-
ment 2.i. The number of days since a precipitation event

in the local observations was substracted from nP¼0 to
generate a metric of drought (DP). Data where DP was

positive (i.e., simulations with longer dry spells than
observed in the data) were used to examine the effect of

drought on the uncertainty of the NEE trajectory.

Sparsity of meteorological conditioning data

Interpolation uncertainty is related to the distance to
the nearest neighbors (Spadavecchia and Williams

2009). The effect of increasing data sparseness was
investigated by conditioning simulations on data from

increasing search radii (Fig. 3), ignoring weather
stations closer than the threshold distances of 25, 50,

75, and 100 km. In each case, the closest four stations
beyond the threshold distance were used to condition

the simulations. The model was run with each of these
meteorological ensembles to test the robustness of the

comparison of meteorological and parameterization
uncertainties on the uncertainty of the final NEE

analysis (experiment 4).

RESULTS

DALEC parameterization

Parameter optimization and confidence intervals.—The
EnKF assimilated observations of NEE and LAI into

an ensemble of 400 state vector predictions from
DALEC, thereby generating estimates of the 11

parameters included in the state vector. The ensemble
was subject to a chi-squared goodness of fit test, by

comparing forward predictions of NEE against the
NEE observations, as a check on the parameteriza-

tions. The chi-squared test was applied on the
predictions and observations of daily NEE to test their

similarity. Of the 400 parameter sets, 375 passed this
test (v2 , ¼ 717, df ¼ 656, P . 0.95) and were used in
further analyses.

The posterior parameter means were similar in most

cases to the parameter priors (Table 4), themselves

outputs of an earlier optimization study. There were

slight increases in magnitude of the mean estimate for

some parameters (e.g., fraction of photosynthate re-

spired, and fraction of NPP allocation to foliage),

decreases for others (turnover rate of foliage) and no

clear changes for some (e.g., heterotrophic respiration

sensitivity). Visual inspection of the temporal evolution

of the parameter ensembles over time (data not shown)

revealed strong growth in the confidence intervals on the

parameters during the first year of assimilation, indicat-

ing that prior ensemble variances were too narrow.

Some parameters saw stabilization in confidence inter-

vals by years 2 and 3 (e.g., turnover rate of foliage,

heterotrophic respirations sensitivity) while others saw

slower but continued growth (e.g., turnover rate of

wood and mineralization rate of litter). The final

distributions of the parameter ensembles at the end of

the assimilation period, and the resultant total NEE

distribution, were generally normal (Fig. 4), largely as a

result of using relatively tight prior parameter estimates.

State estimation with optimized parameters.—The

mean ensemble trajectory for four major components

of the flux reasonably matched the observations of NEE

and LAI, as expected due to optimization. The

trajectories of total ecosystem respiration (Re) and

evapotranspiration (ET), data not used in the assim-

ilation, were reasonably replicated also (Fig. 5).

Quantitative tests revealed the model to be performing

well with respect to all data streams (Table 2). We have

previously noted that phenology module introduces

mismatches with the data (Williams et al. 2005). This

phenology problem results in lower amplitude of leaf

area variation over each year than was observed, and

causes an underestimate of maximum rates of C

sequestration and evapotranspiration each summer.

The optimized model estimated a total carbon uptake

of 422 g C/m2 over three years, with a 95% confidence

interval of 6211.2 g C. The NEE uncertainty was

determined as the 95% ensemble CI, excluding the high

and low 2.5% tails from the acceptable ensemble (n ¼
375). The uncertainty resultant from parameterization

was therefore substantial, representing 51% of the total

net flux. A detailed analysis of the NEE error indicated

relatively unbiased estimates, with ;60% of model

errors ,0.5 g C�m�2�d�1 (Fig. 6). A simple linear

regression between the estimates and observations

indicated a slope of 0.302 and an intercept of �0.299
(Fig. 6), suggesting that the model tended to smooth the

NEE trajectory, underestimating the distribution at the

extremes, with a small bias towards underestimation of

the daily C uptake.

Meteorological simulation

One thousand simulations were drawn from the

meteorological data using the specified covariance

models (see Appendix for details). Estimates of VPD

and RAD were generated from Tmin and Tmax via
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Murray’s formula (A ¼ 0.978, B ¼ 22.23, C ¼ 243.95,

where A, B, and C are empirical constants; see

Appendix) and the Allen model (Kr ¼ 0.17; where Kr is

an empirical constant, see Appendix), which were

calibrated locally. The observed meteorology was

reproduced successfully for all variables (Fig. 7), with

r2 values . 0.8 for all variables except P, which had an

r2 of 0.63 and a considerable positive bias (Table 3).

The 1000 meteorological realizations were propagated

through DALEC to sample the NEE uncertainty

resultant from driver uncertainty. All experiments were

run using the mean parameter set retrieved from the

FIG. 4. Marginal parameter distributions retrieved from an ensemble of 375 elements derived from the ensemble Kalman filter
and passing a goodness-of-fit test against the observed net ecosystem exchange (NEE) time series 2000–2002. The resultant total net
ecosystem exchange (g C/m2) over three years is also indicated. Numbers on the x-axis should be multiplied by the factor in
parentheses. Abbreviations are: SOM, soil organic matter; temp., temperature.
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EnKF (Table 4). With all meteorological observations

replaced with simulated values, the model predicted a

total NEE of �379 g C/m2 with a 95% confidence

interval of 631.36 g C/m2. Replacing only P with

simulated values (experiment 2.i) resulted in a total flux

of �479 6 10 g C/m2. Replacing all temperature (Tmin,

Tmax, Ta) and temperature-derived variables (VPD,

RAD) with simulated values (experiment 2.ii) resulted

in a total NEE of�339 6 14 g C/m2 (Table 5). Although

NEE uncertainty attributable to the drivers was

relatively small (typically ,10%), larger differences in

the total flux were observed. The directions of bias for P

and temperature were opposite (33.3 and 13.3 g

C�m�2�yr�1, respectively), and seemed to counter each

other to some extent when the full meteorological

uncertainty was propagated through the model (Table

5): The total NEE estimated in experiments 1 and 2 were

well within one standard deviation of each other, but

were found to be significantly different (t ¼ 7.76, P ,

0.0001).

The importance of drought stress was assessed by

comparing the number of days since the last predicted

rainfall event for each simulation against the observed

rainfall regime (DP). Positive values of DP indicated that

the model was going into drought while the observed P

was .0 (misspecification). The maximum value of DP

was 87 days, while the mean DP was 1.2, indicating an

overall negative bias in the number of simulated rainy

days: Thus, despite an overall overestimation of P

(Table 3) there is an underestimation of rainfall

frequency, with a mean simulated P frequency ¼ 102

6 31 vs. mean observed P frequency of 141 days per

annum. Misspecified droughts had a mean length of 6.5

days with a standard deviation of 8.2 days. The mean

FIG. 5. Model data comparison for four fluxes. In all cases, the dark gray line indicates the mean trajectory of the 375-element
ensemble trajectory retrieved from the ensemble Kalman filter. Observations are indicated as black crosses. The modeled LAI is
compared with ground based Li-Cor LAI2000 (Li-Cor, Lincoln, Nebraska, USA) observations and MODIS satellite retrievals.
Leaf area index (LAI) error bars are included to show the high variability of the satellite retrievals.

TABLE 2. Summary of model fits for various model outputs

Data source r2 RMSE Kendalls s Bias Gain

NEE (g C�m�2�d�1) 0.39 8.70 0.44 �0.299 *** 0.302 ***
ET (mm) 0.55 9.90 0.55 0.126 *** 0.503 ***
LAI 0.70 0.12 0.67 0.75 (NS) 0.34 (NS)
Re (g C�m�2�d�1) 0.78 13.00 0.67 0.967 *** 0.654 ***

Note: NEE stands for net ecosystem exchange; LAI stands for leaf area index (unitless); Re is total ecosystem respiration.
** P , 0.01; *** P , 0.001.
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number of days between rainfall events for the

observations was 4.1, with a standard deviation of 6.9.

Increasing DP was linearly related to a decrease in

modeled soil water content (r2¼ 0.81, P , 0.0001). The

RMSE of modeled vs. observed NEE decreased with

increasing drought stress (r2 ¼ 0.31, P , 0.0001).

Drought was initiated after approximately 30 dry days,

as indicated by the step change in Fig. 8. The

background RMSE attributable to precipitation uncer-

tainty was 0.7. When DP , 30 the RMSE was

approximately equal to background levels (0.71).

However, as DP . 30 the RMSE dropped to 0.56.

Monte Carlo sampling of NEE uncertainty

One thousand permutations of parameter and driver

combinations were generated at random from the pool

of 375 parameter sets and 1000 driver sets (sampling

with replacement) and used to generate forward model

runs. These runs predicted a NEE for 2000–2002 of

�363 6 105 g C/m2 (mean 6 SD; Table 5). A

comparison of the daily flux estimates for the main

experiments (1, 2, and 3) revealed broadly similar

ensemble trajectories with expected variation in param-

eters, drivers, and in both (Fig. 9). However, the range

of experiment 2 (driver variation only) was asymmetrical

about the mean, with a greater deviation in the positive

(weaker uptake) direction. As such, the summer

extremes in uptake appear to be less well replicated in

experiment 2 than experiment 1 (parameter variation

only). Furthermore, winter uptake appeared weaker in

experiment 2 in comparison with experiment 1.

NEE variability with expected parameter variation

(experiment 1) exceeded that with expected meteoro-

logical variation (experiment 2). The robustness of this

result was tested by increasing the variability of the

meteorological ensemble in experiment 4. The amount

of conditioning data was reduced to four spatial

neighbors (i.e., met stations), while sequentially increas-

ing the minimum distance to an observation (Table 6).

In all cases, the NEE uncertainty attributable to

meteorological uncertainty was less than the uncertainty

attributable to parameter uncertainty (9–17% and 50%,

respectively). The results of experiment 4 indicate a

general increase in NEE uncertainty with increasing

distance to conditioning data, although results from the

25-km threshold distance were more uncertain than the

results from the .50-km threshold (Table 6).

A comparison of the cumulative NEE allowed an

examination of the growth in uncertainty over time for

the three main experiments (Table 5, Fig. 9). Again, the

mean ensemble trajectories were broadly similar, with

little difference in total uptake for inter-annual compar-

isons, which were approximately within one standard

deviation of each other. However, the greater variability

in NEE imposed by parameter uncertainty compounds

to a much larger annual uncertainty than for driver

uncertainty. The total cumulative uncertainty (experi-

ment 3, Fig. 9c) was not very different from experiment

1, except for exaggerated extremes and a more

pronounced end of season die-back, also exhibited in

experiment 2 (Fig. 9b).

DISCUSSION

We were able to parameterize DALEC using the

EnKF, resulting in a total net C flux estimate consistent

with the data and previous literature for the site (Law et

FIG. 6. Net ecosystem exchange (NEE) model data comparison. Model values are the 375-element ensemble means retrieved
from the ensemble Kalman filter. The model error distribution is indicated in the right panel. The heavy right hand tail indicates an
underestimate of the summer C uptake.
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al. 2003, Williams et al. 2005). There was a large range

of permissible parameter sets, resulting in cumulative

NEE uncertainties over the three years of the study

corresponding to ;50% of the total net flux (95%

confidence interval of NEE expressed as a percentage of

the total flux). The cumulative NEE over three years

using EnKF for parameter estimation was 423 6 109 g

C/m2 (mean 6 SD of ensemble). This mean analysis is

FIG. 7. One thousand meteorological time series derived from geostatistical simulation. Each element of the meteorological
ensemble is indicated as a gray line, while observations are indicated as black crosses. Variables are: daily minimum temperature,
Tmin; daily maximum temperature, Tmax; average daily temperature, Tav; maximum daily vapor pressure deficit, VPD; and solar
radiation, RAD.
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very close to that reported in an earlier study using the

EnKF at the same site for state (rather than parameter)

estimation, 419 6 29 g C/m2 (Williams et al. 2005). The

smaller uncertainty associated with the state estimation

approach was largely due to assimilation of a larger and

more varied set of data; NEE data were supplemented

with ecosystem respiration estimates from chambers, sap

flow data to constrain GPP, and biometric data to

constrain LAI.

There are still outstanding issues in model-data fusion

studies concerning the estimation of model confidence

intervals (Fox et al. 2009, Williams et al. 2009). The

algorithm chosen here, EnKF, has been shown to

produce narrower CI than algorithms that randomly

sample parameter space, such as the Metropolis

approach. In our EnKF applications we have set

Gaussian priors on parameters in the state vector,

whereas Metropolis approaches often set uniform

priors. The advantage of Gaussian priors is that the

algorithm avoids areas of unrealistic parameter space.

The disadvantage is that a poor prior can prevent

important areas of parameter space from being ex-

plored. In our case, we had considerable information for

setting priors, based on previous analyses (Williams et

al. 2005). We used the EnKF to determine to what

degree the priors were reasonable, given data and their

associated uncertainties. We found in all cases that

parameter uncertainties grew during the assimilation

process. Some parameter uncertainties stabilized but

others continued to grow, for instance that on wood

turnover. Thus, the parameter estimates from the EnKF

should be used with care in any prognostic analyses, i.e.,

beyond 3 years. The information content of the eddy

flux observations is not enough to constrain processes

with longer time constants, like wood turnover. The

relatively large parameter uncertainty could be reduced

by, for instance, assimilation of wood increment and fine

root turnover data, i.e., those data largely orthogonal to

flux data.

Meteorological simulations for the three-year period

had a high degree of variability, which decreased in the

final year (Fig. 7). This decrease in uncertainty was due

to observations at the nearby Metolius ‘‘intermediate’’

tower starting on project day 732 (1 January 2002).

Geostatistical simulation techniques are able to repro-

duce the roughness of the driver fields, preserving data

extremes, which may be particularly important for

regionalization of precipitation. The precipitation signal

is comprised of a background fluctuation ;0 mm, with

rare but sizable events which may be on the order of 100

mm/d. Thus, reproduction of extreme events over the

average behavior may be critical, and it is in this respect

that SGS confers an advantage over kriging techniques.

In general, the meteorology was satisfactorily replicated

for the site, but issues of bias arose, particularly for

precipitation. This finding may be associated with the

location of the site, which is in the rain shadow of the

Cascade Mountains where there is a steep gradient in

precipitation from west to east over about 25 km (2200

mm/yr at the Cascade crest to 350 mm/yr near Sisters,

Oregon).

TABLE 3. Simulation vs. observation comparison for the daily meteorology at the Metolius young ponderosa pine site.

Driver Simulated Observed Bias Gain r2

Tmin (8C) 2.8 (6.6) 1.3 (5.6) 0.95 0.79 0.88
Tmax (8C) 12.8 (9.2) 13.6 (9.8) �0.34 1.04 0.96
Tav (8C) 7.78 (7.7) 8.7 (7.9) �0.88 1.01 0.97
Precipitation (mm) 639.6 (164.0) 402.4 (60.9) 1.05 0.63 0.63
RAD (MJ�m�2�d�1) 12.4 (7.5) 13.6 (8.5) �0.78 1.03 0.82
VPD (kPa) 1.2 (1.0) 1.3 (1.2) �0.04 1.13 0.91

Notes: Simulated and observed values are daily means with standard deviations in parentheses. Precipitation is mean annual
precipitation. Variables are: daily minimum temperature, Tmin; daily maximum temperature, Tmax; average daily temperature, Tav;
maximum daily vapor pressure deficit, VPD; and solar radiation, RAD.

TABLE 4. Summary of prior parameter estimates and the posterior mean and standard deviation generated by the ensemble
retrieved from EnKF (ensemble Kalman filter) fitting.

Name Parameter Prior mean Posterior mean Posterior SD Scale

t1 decomposition rate 3.75 3.80 0.40 310�6

t2 autotrophic respiration fraction 4.27 4.54 0.22 310�1

t3 foliar allocation fraction 3.0 3.50 0.25 310�1

t4 root allocation fraction 4.48 4.76 0.19 310�1

t5 foliar turnover rate 4.14 3.64 0.37 310�3

t6 woody turnover rate 1.54 1.96 0.26 310�4

t7 root turnover rate 6.41 6.74 0.58 310�3

t8 litter mineralization rate 1.59 1.81 0.19 310�2

t9 SOM mineralization rate 0.97 1.14 0.12 310�5

t10 heterotrophic process temperature sensitivity 6.8 6.70 0.22 310�2

t11 photosynthetic scalar 8.0 8.2 0.39

Note: Values for priors and posteriors should be scaled by the values in the Scale column.
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Positive bias in precipitation simulations resulted in a

positive bias in NEE estimates when all other meteoro-

logical drivers were held at their observed values. While

precipitation variability was comparatively large, its

effects were temporally buffered by the effect of soil

capacitance (Fig. 8). A reduction in RMSE was

observed with increasing drought stress, reflecting a

decrease in the positive bias imposed by the simulated

precipitation. Drought stress manifested itself after ;30

days without rain. The mean length of misspecified

drought events was 1.2 days, while on average the

simulations had an decreased frequency of precipitation

events with respect to the observations. On average,

simulated dry spells were 6.5 days longer than those

measured at the site. This difference indicates that the

time scales on which precipitation errors occur in the

simulations are much shorter than the temporal scales

over which drought operates in the model. Thus the

uncertainty in the meteorological ensembles is small

enough to avoid misspecification of drought events with

a significant impact on primary production.

Despite considerable uncertainty in the simulated

driver sets, the resultant NEE uncertainty was 9% of the

total flux, contributing only ;7% to the total combined

NEE uncertainty, and well within the uncertainty

attributable to parameterization. This result was robust

under significant degradation of the meteorological data

set, with a maximum driver uncertainty of ,20% when

conditioning simulations on four neighbors separated by

distances greater than 100 km from the study site. We

therefore reject H1, that the dominant source of NEE

uncertainty is due to driver uncertainty.

Experiments on the effect of data scarcity indicated a

general increase in NEE uncertainty with increasing

distance to conditioning data (Table 6). When the

nearest station was .100 km from the study site, rather

than ,25 km, uncertainty in NEE predictions intro-

duced by meteorological drivers increased by 88%.

Examining the error contribution of each driver to the

NEE trajectory revealed interesting bias effects. The

positive bias in simulations of precipitation elevated the

estimated C uptake by ;30 g C�m�2�yr�1, while

TABLE 5. Total NEE estimates from various uncertainty sources.

Experiment Source of variation

NEE (g C/m2)

2000 2001 2002 Total 95% CI�

1 parameters �120 (28) �148 (44) �155 (41) �422 (107) 50
2 meteorology �95 (8) �129 (9) �155 (8) �379 (16) 9
2.i precipitation �128 (3) �166 (5) �185 (6) �479 (10) 4
2.ii temperature VPD and RAD �84 (6) �114 (8) �140 (6) �339 (14) 8
3 total �95 (25) �125 (36) �144 (49) �363 (105) 57

Note: Values reported are means with standard deviations in parentheses.
� The 95% confidence interval of NEE, expressed as a percentage of the total flux.

FIG. 8. Effect of drought on NEE error. DP is the number of days simulated as dry on which precipitation events were
measured: DP records the number of days that Psimulated¼ 0 while Pobserved . 0. As DP increases the model goes into misspecified
drought, as indicated by the modeled soil water fraction (right axis). The deviation in modeled and observed NEE trajectories
attributable to misspecified drought is plotted on the left axis as the root mean squared error (RMSE). The background RMSE of
the model resultant from precipitation uncertainty is ;0.7, indicated as a dot-dash line.
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smoothing of the temperature signal (overestimation of

mean Tmax, underestimate of mean Tmax) resulted in

underestimation of C uptake by ;10 g C�m�2�yr�1.
These opposing signals act to cancel out when consid-

ering the total meteorological uncertainty, resulting in a

less biased estimate of total NEE with respect to

experiment 1 (observed meteorology), with a small

uncertainty (Table 5). Bias issues in the meteorological

simulations are a concern, and while in this study the

opposing directions of precipitation and temperature

bias reduce overall bias, it is not clear whether this was

by chance alone. It is likely that the bias cancellation

was fortuitous for our study site, and there may be

significant bias problems for other locations and

ecosystems. A broader study of these bias issues for

regional meteorological drivers is thus vital.

Of the meteorological drivers considered, temperature

appeared to have the largest impact on NEE uncer-

tainty, as opposed to bias, with approximately twice the

influence of precipitation on the signal (Table 5). As

such we reject H2a, and accept the alternative propo-

sition that instantaneous temperature variability domi-

nates the flux uncertainty. This is likely due to the

sensitivity of both GPP and heterotrophic respiration

(via a Q10 relationship) to daily air temperature in

DALEC. Interestingly, decoupling the effect of deriving

VPD and daily insolation from temperature drivers in

DALEC indicates that indirect estimation of these

drivers have a minimal impact on the total NEE.

CONCLUSIONS

We were able to retrieve statistically permissible

parameter sets at a data rich location, but still faced

FIG. 9. Cumulative NEE estimates over three years (2000–2002) under different sources of uncertainty. The ensemble mean is
indicated in black, while its uncertainty is represented as a dark gray region. The individual ensemble members are indicated in light
gray. Ensemble uncertainty is resultant from (a) 375 parameter sets, (b) 1000 geostatistical simulations of meteorology, and (c) 1000
combinations of panels (a) and (b). Mean total uptake for each year is indicated at the bottom of the plots in g C/yr, with standard
deviations indicated in parenthesis.
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appreciable uncertainties in flux estimates resultant from

parameter uncertainty. As such, spatially explicit mod-

eling exercises may struggle to characterize the regional

flux without considerable fieldwork, or investment in

remote sensing methodologies to retrieve well-con-

strained parameter sets for the region of interest.

Modeling the young ponderosa pine site at Metolius is

challenging, because the system is aggrading rapidly.

Observed annual increases in LAI result in increasing

rates of C cycling. So the model parameterization must

be able to allocate C to grow the plant tissues realisti-

cally. Further, parameters change with stand age and its

associations with root access to soil water (Irvine et al.

2004, Schwarz et al. 2004).

We found considerable variability in simulated driver

trajectories resulted in a small contribution to the net

uncertainty. Issues of bias in meteorological upscaling

are of much greater concern, but seemed to cancel out

over time when propagated through the model. It is

likely that the cancellation of bias due to temperature

and precipitation is by chance alone, and further

research into issues of bias in driver fields is warranted.

In areas with very sparse meteorological stations (.100

km separation), then uncertainty in meteorological

drivers becomes a more significant problem. The time

scales on which precipitation errors accumulated in the

simulations were shorter than the temporal scales over

which drought operated in the model, and so there was

little likelihood of misspecifying drought events.

We have presented a robust analysis of the relative

magnitude of parameterization and driver errors using

novel techniques. Quantification of the uncertainty

associated with regionalized meteorological fields at

relevant resolutions for catchment scale studies has been

presented for the first time, and represents a key step in

the application of data assimilation approaches on the

catchment scale. Improved model parameterizations and

calculations of bias in meteorological fields are a

research priority for spatially explicit regional modeling

exercises, especially where data may be sparse. Climate

forecasts produce mean meteorological values for

discrete grid-cells across a landscape. These mean values

can be used to drive ecological forecasts at a similar

spatial resolution. Our results here, using local mete-

orological data, emphasize the problems associated with

ecological modeling using simple characterizations of

landscape meteorology (i.e., sparse data), particularly in

areas with complex terrain. Climate forecast data, used
as drivers in ecological forecasts, need to be carefully

assessed for non-linear effects. For instance, the mean
grid cell meteorology may not produce the same

ecosystem response as the mean output of ecosystem

responses based on a statistical downscaling of the mean
climate to the finer resolution of stand scales (Williams

et al. 2001b) and an ensemble of model simulations. The
geostatistical approach outlined here provides a means

to assess such sub-grid scale variations in meteorology

and to quantify their ecological effects. Ecological
forecasts using gridded climate data will, of course,

include an additional bias due to forecast error.
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