

Software Sustainability Institute
The University of Edinburgh
James Clerk Maxwell Building
Mayfield Road
Edinburgh EH9 3JZ

tel: +44 (0) 131 650 5030
email: info@software.ac.uk
web: http://www.software.ac.uk

Benefits framework

CC443D006

7 December 2010

Cover + 74 pages

Neil Chue Hong
Steve Crouch

Simon Hettrick
Tim Parkinson
Matt Shreeve

Software Preservation

 Curtis+Cartwright Consulting Ltd
Main Office: Surrey Technology Centre,
Surrey Research Park, Guildford
Surrey GU2 7YG

tel: +44 (0)1483 685020
fax: +44 (0)1483 685021
email: postmaster@curtiscartwright.co.uk
web: http://www.curtiscartwright.co.uk

Registered in England: number

Registered address:
Baker Tilly, The Clock House,
140 London Road, Guildford,
Surrey GU1 1UW

Benefits framework

CC443D006-1.0

7 December 2010

pages

Neil Chue Hong
Steve Crouch

Simon Hettrick
Tim Parkinson
Matt Shreeve

Software Preservation

Registered in England: number 3707458

Registered address:
Baker Tilly, The Clock House,
140 London Road, Guildford,
Surrey GU1 1UW

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28963376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CC443D006-1.0 Page 3

Summary of framework

1 An investigation of software preservation has been carried out by Curtis+Cartwright Consulting
Limited, in partnership with the Software Sustainability Institute (SSI), on behalf of the JISC.1
The aim of the study was to raise awareness and build capacity throughout the Further and
Higher Education (FE/HE) sector to engage with preservation issues as part of the process of
software development. Part of this involved examining the purpose and benefits of employing
preservation measures in relation to software, both at the development stage and
retrospectively to legacy software. The study built on the JISC-funded ‘Significant Properties of
Software’ study2 that produced an excellent introduction and comprehensive framework to
software preservation.

2 This is a framework document that assists developer groups and their sponsoring bodies to
understand and gauge the benefits or disbenefits of allocating effort to:

– ensuring that preservation measures are built into software development processes;
– actively preserving legacy software.

3 We have condensed the key information from the framework into a two-side crib sheet3; this
document is the full, detailed version intended for reference.

Purposes, benefits and scenarios

4 A key challenge in digital preservation is being able to articulate, and ideally prove, the need
for preservation. A clear framework of purposes and benefits facilitates making the case for
preservation. Our framework also includes a range of scenarios for each purpose to give some
illustrative examples of where the purpose and accompanying benefits might be relevant.

Purpose Benefits Scenarios

Encourage software
reuse

Reduced development cost
Reduced development risk
Accelerated development
Increased quality and dependability
Focused use of specialists
Standards compliance
Reduced duplication
Learning from others
Opportunities for commercialisation

Continuing operational use in institution
Increasing uptake elsewhere
Promoting good software

1 <http://www.jisc.ac.uk/fundingopportunities/funding_calls/2010/02/softwarepreservation.aspx> accessed 4 April

2010.
2 The Significant Properties of Software: A Study, Matthews et al, STFC, March 2008.
3 See <http://www.software.ac.uk/resources> for the crib sheet and related materials.

CC443D006-1.0 Page 4

Purpose Benefits Scenarios

Achieve legal
compliance and
accountability

Reduced exposure to legal risks
Avoidance of liability actions
Easily demonstrable compliance lessens
audit burden
Improved institutional governance
Enhanced reputation

Maintaining records or audit trail
Demonstrating integrity and authenticity
of data and systems
Addressing specific contractual
requirements
Addressing specific regulatory
requirements
Resolving copyright or patent disputes
Addressing the need to revert back to
earlier versions due to IP settlements
Publishing research openly for
transparency
Publishing research openly as a condition
of funding

Create heritage
value

(Heritage value is generally considered to be
of intrinsic value)

Ensuring a complete record of research
outputs where software is an intermediate
or final output
Preserving computing capabilities
(software with or without hardware) that
is considered to have intrinsic value
Supporting the work of museums and
archives

Enable continued
access to data and
services

For research data and business intelligence:

– Fewer unintentional errors due to
increased scrutiny

– Reduced deliberate research fraud

– New insight and knowledge

– Increased assurance in results

For systems and services:

– Current operations maintained

– Opportunity for improved operations via
corrective maintenance

– Reduced vendor lock-in

– Improved disaster recovery response

– Increased organisational resilience

– Increased reliability

Reproducing and verifying research
results
Repeating and verifying research results
(using the same or similar setup)
Reanalysing data in the light of new
theories
Reusing data in combination with future
data
‘Squeezing’ additional value from data
Verifying data integrity
Identifying new use cases from new
questions
Maintaining legacy systems (including
hardware)
Ensuring business continuity
Avoiding software obsolescence
Supporting forensics analysis (eg for
security or data protection purposes)
Tracking down errors in results arising
from flawed analysis

5 We recommend that these purposes and benefits be combined with preservation plans
regarding data and hardware: digital preservation should be considered in an integrated
manner. For example, media obsolescence and recovery is often as much a part of a software
preservation project as a data preservation project.

1 Introduction

CC443D006-1.0 Page 5

Does this software need preserving?

6 We do not believe that there is a simple and universally applicable formula for determining if
your software needs to be preserved, and how to go about preserving it, so instead we
present thought-provoking questions and a range of factors which should be taken into
account. This should be read through and careful consideration given to those aspects relevant
to the software you are interested in.

7 The following questions should be considered:
– Is the software covered by a preservation policy / strategy?
– Is there a clear purpose in preserving the software?
– Is there a clear time period for preservation?
– Do the predicted benefit(s) exceed the predicted cost(s)?
– Is there motivation for preserving the software?
– Is the necessary capability available?
– Is the necessary capacity available?

8 Note that if at all possible, especially where the software is an enabler, it’s advisable to turn a
software preservation problem into a data preservation problem. These problems are invariably
easier to handle.

How should your software be preserved?

9 Seven different options for preservation and sustainability are presented:

– Technical preservation (techno-centric) - Preserve original hardware and software in
same state;

– Emulation (data-centric) - Emulate original hardware / operating environment,
keeping software in same state;

– Migration (functionality-centric) - Update software as required to maintain same
functionality, porting/transferring before platform obsolescence;

– Cultivation (process-centric) - Keep software ‘alive’ by moving to a more open
development model, bringing on board additional contributors and spreading knowledge
of process;

– Hibernation (knowledge-centric) - Preserve the knowledge of how to
resuscitate/recreate the exact functionality of the software at a later date;

– Deprecation - Formally retire the software without leaving the option of
resuscitation/recreation;

– Procrastination - Do nothing.

10 The following questions should be considered:
– How much access do you have? (Owner / developer / access to source code / access to

hardware / user)
– Do you have the necessary Intellectual Property Rights (IPR)?

CC443D006-1.0 Page 6

– What are you needing to preserve? (A few major pieces of functionality / Most of the
functionality, but tolerant of minor deviations / All functionality, but fixing errors when
found / Must perform exactly as original)

– What is your likely effort profile? (Something/nothing now, something/nothing in the
future)

– What is the maintainability of underlying hardware?
– Is maintaining integrity and/or authenticity an important requirement?
– How long do you want to preserve it for?
– Can you afford it?
– Are you also interested in further development or maintenance?
– What development effort has been invested into the software so far?
– Is the software already open source, or could it be made open source?
– Are there any barriers to making it open source?
– Is the proposed approach appropriate to every purpose?
– What are the relative advantages and disadvantages of each approach under

consideration?

CC443D006-1.0 Page 7

Document history

Version Date Description of Revision

0.1 4 October 2010 Incomplete draft circulated for internal progress review

0.2 8 October 2010 Draft for internal review and contributions by the study team

0.3 14 October 2010 Draft for independent review

0.4 15 October 2010 Draft for client review

1.0 7 December 2010 Issue release

CC443D006-1.0 Page 8

This page is intentionally blank

CC443D006-1.0 Page 9

List of contents

Summary of framework 3

Document history 7

List of contents 9

List of abbreviations 11

1 Introduction 13
1.1 General 13
1.2 Acknowledgements 13
1.3 Objectives 13
1.4 Scope 14
1.5 Approach 14
1.6 Terminology 14
1.7 Overview of this document 15

2 Software preservation and sustainability 17
2.1 Introduction 17
2.2 What is software? 17
2.3 What is software preservation and sustainability? 17
2.4 Is software preservation different from other kinds of preservation? 18
2.5 Is software engineering the same as software preservation? 19
2.6 Is software preservation only relevant to research software? 20
2.7 Does all software need to be preserved? 20
2.8 What are the drivers and inhibitors for and against software preservation? 21

3 Purposes and benefits 25
3.1 Introduction 25
3.2 Encourage software reuse 26
3.3 Achieve legal compliance and accountability 28
3.4 Create heritage value 33
3.5 Enable continued access to data and services 36
3.6 Software developer benefits 47

4 Making better decisions about software preservation 49
4.1 Introduction 49
4.2 Does this software need preserving? 49
4.3 How should this software be preserved? 55
4.4 Should preservation measures be built into your software development processes? 62

A Different approaches to software preservation 63
A.1 Summary 63
A.2 Technical preservation (techno-centric) 64
A.3 Emulation (data-centric) 66
A.4 Migration (functionality-centric) 67
A.5 Cultivation (process-centric) 70
A.6 Hibernation (knowledge-centric) 72
A.7 Deprecation 74

CC443D006-1.0 Page 10

This page is intentionally blank

CC443D006-1.0 Page 11

List of abbreviations

API Application Programming Interface

CAD Computer Aided Design

CARET Centre for Applied Research in Educational Technologies

CCG Computational Chemistry Group

CCPs Collaborative Computational Projects

CIO Chief Information Officer

COG Component Obsolescence Group

COTS Commercial Off The Shelf

CPOSS Crystal Prediction of the Organic Solid State

CSIRO Commonwealth Scientific and Industrial Research Organisation

CTO Chief Technology Officer

DCC Digital Curation Centre

DExT Data Exchange Tools and Conversion Utilities

DPHEP Data Preservation in High Energy Physics

EGRET Engaging Responses to Emerging Technologies

EPSRC Engineering and Physical Sciences Research Council

FAA Federal Aviation Administration

FE Further Education

GISS Goddard Institute for Space Studies

HE Higher Education

HEP High Energy Physics

HPC High-Performance Computer

IO Input / Output

IPAC Infrared Processing and Analysis Center

IPR Intellectual Property Rights

IR Infrared

JAR Joint Aviation Requirements

LOTAR LOng Term Archiving

LTA Long-Term Archiving

MOCA Mitigation of Obsolescence Cost Analysis

OA Open Access

OAIS Open Archival Information Systems

OEM Original Equipment Manufacturer

OSS Open Source Software

OU Open University

PARSE Permanent Access to the Records of Science in Europe

PDM Product Data Management

CC443D006-1.0 Page 12

PMC Project Management Committee

RESL Re-usable Educational Software Library

RRL Reuse Readiness Levels

SaaS Software-as-a-Service

SoURCE Software Use, Re-use & Customisation in Education

SPEQS Significant Properties Editing and Querying for Software

SSI Software Sustainability Institute

STFC Science and Technology Facilities Council

UCL University College London

UKDA UK Data Archive

CC443D006-1.0 Page 13

1 Introduction

1.1 General

1.1.1 An investigation of software preservation has been carried out by Curtis+Cartwright Consulting
Limited, in partnership with the Software Sustainability Institute (SSI), on behalf of the JISC.4
The aim of the study was to raise awareness and build capacity throughout the HE/FE sector
to engage with preservation issues as part of the process of software development. Part of this
involved examining the purpose and benefits of employing preservation measures in relation to
software, both at the development stage and retrospectively to legacy software. This study
was undertaken between April 2010 and October 2010.

1.1.2 This framework document forms one of a series of outputs from the project.5 This version of
the document (V1.0) is for public release. The content in this document is licensed under an
Attribution-ShareAlike 2.0 UK: England & Wales6. The rights to the design, layout and logos in
this report are wholly retained by the authors.

1.1.3 This framework document is intended for the varied and numerous groups working within (or
in collaboration with) the UK HE/FE community with a non-exclusive but primary focus towards
those working with open-source software.

1.2 Acknowledgements

1.2.1 The project team would like to thank everyone who contributed to this study. In particular the
SigSoft project team7 at the Science and Technology Facilities Council (STFC); Ross Gardler at
OSS Watch8; and the Component Obsolescence Group (COG)9 and Graeme Rumney (Sellafield
Limited) for their prior and parallel work in the area. Their work has provided a solid basis for
the main thrust of this study – namely to raise awareness. We see no need to duplicate their
excellent materials and would recommend them to all those interested in the topic.

1.3 Objectives

1.3.1 This is a framework document that assists developer groups and their sponsoring bodies to
understand and gauge the benefits or disbenefits of allocating effort to:

– ensuring that preservation measures are built into software development processes;
– actively preserving legacy software.

1.3.2 The intention is that deeper understanding enables the reader to make better decisions about
the practicalities of software preservation. Because understanding the benefits by themselves
does not lead to better decisions, and because the exact mix of benefits depends on the
particular set of activities proposed rather than the end outcome, this framework also covers
costs and approaches to software preservation.

4 <http://www.jisc.ac.uk/fundingopportunities/funding_calls/2010/02/softwarepreservation.aspx> accessed 4 April

2010.
5 For details of the full set, please refer to the Completion Report for this study, document number CC443D007-0.5 and

dated 15 October 2010.
6 <http://creativecommons.org/licenses/by-sa/2.0/uk/> accessed 7 December 2010.
7 <http://www.e-science.stfc.ac.uk/projects/software-preservation/preserving-software.html> accessed 4 October 2010.
8 <http://www.oss-watch.ac.uk> accessed 4 October 2010.
9 <http://www.cog.org.uk/> accessed 4 October 2010.

CC443D006-1.0 Page 14

1.3.3 This framework documents the key practical constructs (purposes, benefits, scenarios and
approaches) uncovered and assimilated during this work. It is a synthesis of existing ideas and
approaches illustrated with examples and case studies throughout. It is not intended to be a
final and definitive answer, but a new step in the emerging practice of software preservation
and sustainability.

1.4 Scope

1.4.1 The scope of this framework is broad and includes all types of software in UK Further and
Higher Education (FE/HE). Such software includes ‘rough and ready’ code, agile developments
and robustly engineered code, from different development environments, at different levels of
the software stack (network, middleware, application) and for a whole range of purposes such
as administration teaching and learning, research, etc. It includes non-licensed code not
intended for release and closed code, but the focus is on open source software (and all
licences therein). Whilst not explicitly about hardware, some software is hardware-dependent.

1.4.2 It should be noted that this is not an introduction to more general digital preservation. Nor
does it set or advise on the organisational context for software preservation. Both of these are
covered in detail elsewhere.10 One of the study’s key messages is that preservation should be
considered in an integrated manner; so that if, for example, some data needs preserving then
the software used to interpret/manage that data is not forgotten, or if a particular instance of
some software runs counter to an organisation’s overall preservation policy then the problem
should be considered in the round.

1.5 Approach

1.5.1 The purposes and benefits given in this framework document are a synthesis from background
materials, interviews with stakeholders and those identified in the case studies. An initial list of
purposes and benefits was then tested and refined with developers at a Community
Engagement Workshop in July 2010. This framework document contains the refined set of
purposes and benefits.

1.5.2 It should be noted that there are many different ways one could organise and structure the
purposes and benefits. We have presented one view in this document which is amenable to
the wide range of audiences. Also, due to the paucity of robust research in this area we have
relied on stated benefits, rather than demonstrable benefits. Each instantiation of a cost-
benefit analysis, or business case, or benefits realisation plan, should, obviously, carefully
consider and justify each benefit they assert.

1.6 Terminology

1.6.1 A tremendous range of terminology is used across the sector to describe similar concepts,
practices, etc, in and around the longer-term aspects of software. To provide clarity to the
reader of this report we have tried to be consistent in our terminology and to use commonly
understood (if not preferred) terms.

1.6.2 In particular, we have chosen to use the following terms regarding software:
– Maturity: state of development and robustness of a particular software release; common

stages of maturity include prototype, proof of concept; alpha, beta, pilot, and production;

10 For a general introduction see, for example, the DPC's Digital Preservation Handbook

<http://www.dpconline.org/advice/preservationhandbook/introduction> or the DCC's Curation Reference Manual
<http://www.dcc.ac.uk/resources/curation-reference-manual>, both accessed 4 October 2010.

1 Introduction

CC443D006-1.0 Page 15

– Maintenance: the IEEE definition of maintenance is "The modification of a software
product after delivery to correct faults, to improve performance or other attributes, or to
adapt the product to a modified environment".

– Sustainability: in some of the this study’s outputs we have used this term as it is more
familiar, and therefore appropriate, to the target audience than preservation; sub-
section 2.3 explores the terms software preservation and software sustainability in detail.

1.7 Overview of this document

1.7.1 The rest of this report is set out as follows:

– Section 2 sets out the background to, and landscape of, software preservation;
– Section 3 provides a framework containing the purposes and benefits of software

preservation and various scenarios where preservation is pertinent;
– Section 4 presents guidance to improve decision-making about software preservation;
– Annex A sets out different approaches to software preservation.

1.7.2 As this is a framework there is little in terms of a connective narrative. However, there are
numerous case studies which relay real life stories of software sustainability and preservation.

CC443D006-1.0 Page 16

This page is intentionally blank

CC443D006-1.0 Page 17

2 Software preservation and sustainability

2.1 Introduction

2.1.1 This section sets out the background to, and landscape of, software preservation. The JISC-
funded ‘Significant Properties of Software’ study11, essentially the precursor to this study,
produced an excellent introduction and framework to software preservation. This is highly
recommended reading, particularly as it retains its relevance. To provide a background without
wasteful duplication, material has been liberally drawn from this study. All quotes in this
section, other than those indicated, are from this work.

2.2 What is software?

2.2.1 “Software is defined [on Wikipedia] as: ‘a collection of computer programs, procedures and
documentation that perform some task on a computer system.’ Computer programs
themselves are sequences of formal rules or instructions to a processor to enable it to execute
a specific task or function… The term [software] is sometimes used in a broader context to
describe any electronic media content which embodies expressions of ideas stored on film,
tapes, records etc for recall and replay by some (typically but not always) electronic device...
However, for the purposes of this study, such content is considered a data format for a
different digital object type, and is thus out of scope of this study.”11

2.2.2 “Software is a very large area with a huge variation in the nature and scale, with a spectrum
including microcode, real-time control, operating systems, business systems, desktop
applications, distributed systems, and expert systems, with an equally wide range of
applications and also constraints of the business model from personally coded systems (typical
in research), open-source systems, to commercial packages.”11 A recent trend has been for
third party companies to deliver software functionality in a virtualised manner, for example so-
called Software-as-a-Service (SaaS). In this instance, the architecture is such that the user of
the software does not have access to the software itself. Approaches to preservation of SaaS
require further research.

2.3 What is software preservation and sustainability?

2.3.1 Software preservation is intrinsically about reproducibility of functionality and results over time.
“Software preservation [is] a term that was not necessarily considered a great deal, and when
it [is], it means different things to different people.”11 We see two main cases:
– Active or living preservation, where software is continuing to be supported and

maintained, and in addition to the preservation benefits there is also immediate and
ongoing benefit from continued use;

– ‘Classic’ preservation, where the software lies dormant (certainly without active
development and releases, and potentially without use, support or maintenance) and the
aim is to keep software intact for future use.

2.3.2 The former supports the latter as the longer that software is active the easier it is then to
preserve. Though the term preservation is not in common use, many use the term
sustainability which is closely aligned to active or living preservation, but where there is less
focus on the need and benefits of preservation.

11 The Significant Properties of Software: A Study, Matthews et al, STFC, March 2008.

CC443D006-1.0 Page 18

2.3.3 Most approaches to either type of software preservation do not guarantee perfect
reproducibility – the fragility of software is generally too great. The ‘Significant Properties of
Software’ study11 therefore proposed the notion of adequacy12 of preservation, to complement
the notion of authenticity of preservation.13 At the top-level, three levels of adequacy are
given, namely that the preserved software:
– performs “exactly” as the original;14
– performs with small deviations from the original;
– performs only core functionality.

2.3.4 Preservation is for the long-term, but this time frame should be related to the purpose of
preservation. As noted in the Open Archival Information Systems (OAIS) Reference Model
(ISO 14721), when one talks about long-term preservation ‘long-term’ "is long enough to be
concerned with the impacts of changing technologies, including support for new media and
data formats, or with a changing user community". In the case of software, this might only be
a few years.

2.3.5 As the ‘Significant Properties of Software’ study11 sets out in detail, there are four aspects to
software preservation:
– storing a copy of a software product;
– enabling its retrieval in the future;
– enabling its reconstruction in the future;
– enabling its execution in the future.

2.3.6 A significant element of this is enabling an understanding of the software in the future.

2.4 Is software preservation different from other kinds of preservation?

2.4.1 Software preservation is a particular type of digital preservation. It has seen less attention
than data preservation and preservation of other digital objects, both in terms of research and
in terms of practice. But is there a fundamental difference between software and other digital
objects that are preserved? After all, software is a digital file. There is, with the rise of the
Internet and dynamic web content, also a growing grey area in even distinguishing between
software and data or content, for instance is an embedded Flash file better thought of as web
content or software?

2.4.2 We believe that there are some notable distinctions, and these include:
– All software is truly unique: there are usually file formats for data and other digital

objects, but all software differs massively;
– Software is usually very complex: data and other digital objects can be complicated

but software offers often subtle behaviour that can be dependent on many conditions;
understanding someone else’s software is a difficult task and it does not translate well;

– Software has more intricate and faster-changing dependencies: the ability of
software to compile or run, and the resulting behaviour, is dependent on many factors (eg
system configurations) and these change easily (eg seemingly small system changes can
result in non-functioning software); moreover, the technologies (system libraries,

12 The study stated that a software package (or indeed any digital object) can be said to perform adequately relative to a

particular set of significant properties, if in a particular performance (that is after it has been subjected to a particular
process) it preserves that set of significant properties to an acceptable tolerance. By measuring the adequacy of the
performance, we can thus determine how well the software has been preserved and replayed.

13 A preserved digital object can be said to be authentic if the object can be identified and assured to be the object as
originally archived.

14 Including any undesired behaviour due to bugs.

2 Software preservation and sustainability

CC443D006-1.0 Page 19

languages, compilers, etc) are changing quickly and new generations of technology occur
regularly. With no inherent ‘backwards compatibility’ complex and unique software very
often ends up non-functional without software maintenance.

2.4.3 Despite these distinctions, guidance on general digital preservation still holds. For example,
media obsolescence and recovery can be part of a software preservation project.

2.4.4 Perhaps the key reason for a different approach is that those who deal with software are often
less aware of other preservation and curation activities, and curators and archivists are
(generally) not familiar with software development.

2.5 Is software engineering the same as software preservation?

2.5.1 “It can also be observed that there is a large overlap between the requirements for software
preservation and those of software engineering, especially for large software development
which has a long lifetime in production and requires extensive adaptive maintenance. Both
require the high-integrity storage, and replay of software. However, there are also significant
differences.”

2.5.2 “Software engineers are mainly concerned with maintaining the functionality of current
systems in the face of software and hardware environment change, correcting errors and
improving performance, and in [changing] functionality.15 They will typically deprecate and
eventually obsolete past versions of the software. They are much less concerned with
maintaining reproducibility of past performance, which may be the concern of software
archivists. So in general, software preservation is not what most software developers and
maintainers do.”

2.5.3 “Nevertheless, we argue that many of the approaches to software preservation mean in
practice that the [practices] of software engineers are in fact appropriate to software
preservation, and many of the tools, techniques and methodologies of software engineers are
useful to software preservation, and good software preservation practice should adopt, adapt,
and integrate these techniques. Indeed, a conclusion which arises from [the ‘Significant
Properties of Software’] study can be summarised as: Good software preservation arises
from good software engineering.”11

2.5.4 Software engineering is thus a different and wider topic, but does enable software
preservation. Software engineering principles relevant to software preservation include:
– clear licensing;
– clear documentation;
– commonly adopted and modern programming language;
– modular design;
– clear revision management and change control;
– risk management;
– clearly established software testing regime and validated results;
– open and common standards;
– clear separation between data and code;
– clear understanding of dependencies.

15 The IEEE definition of maintenance is "The modification of a software product after delivery to correct faults, to

improve performance or other attributes, or to adapt the product to a modified environment". These different types
are formally classified as Corrective maintenance (fixing faults), Adaptive maintenance (adapting to changes in
environment), Perfective maintenance (meeting new/different user requirements), Preventative maintenance
(increasing maintainability).

CC443D006-1.0 Page 20

2.5.5 Use of significant properties16 of software, as part of a systematic and thorough approach to
documentation, is also recommended.

2.6 Is software preservation only relevant to research software?

2.6.1 Though the ‘Significant Properties of Software’ study11 concentrated largely on mathematical,
scientific and e-Science software (in order to limit the scope), software preservation potentially
applies to all software in FE/HE. For example:
– Learning and teaching domain: eg preserving software learning objects for increased

sharing;
– Research software: eg preserving software to retain a full record of research outputs or

to enable an audit of research activities or of research-derived policy;
– Administrative domain: eg preserving software to retain audit capability for key

records;
– Office functionality: eg the experience of using archived web material using the latest

web browsers is very different from that of using the web browsers of the time; this
indicates a need to preserve the browsers.

2.7 Does all software need to be preserved?

2.7.1 No. Not all software needs, or should, be preserved or sustained. As this benefits framework
will demonstrate, some software offers great benefit if it were to be preserved. To other
software, little such benefit could be ascribed – and given the costs of preservation – no case
could be made. Our intention with the purposes, benefits and questions set out later is to help
the reader make better decisions regarding preservation.

2.7.2 Not all artefacts associated with some software need to be preserved. “Software is inherently a
complex object, composed of a number of different artefacts. At it simplest, a piece of
software could be a single binary file; however, even in that case, it is unlikely to be
standalone, but accompanied by documentation, such as installation guides, user manuals and
tutorials. Further there may be test suites, specifications, bug-list and FAQs. More complete
software packages will also include source code files, together with build and configuration
scripts, possibly from a number of different systems and packages, with more complete
documentation, including specifications and design documents (including diagrams) and
Application Programming Interface (API) descriptions. Software will also have dependencies on
a wider environment, including software libraries, operating system calls, and integration with
other software packages, either for software construction, such as [development
environments], compilers or build management systems, or in the execution environment, for
example web-applications depending on web servers for execution and client browsers for user
interaction. Thus a complete software preservation task may seek to preserve some or all of
these artefacts, and, equally importantly, their dependencies upon each other.”11

16 The JISC-funded InSPECT project website, <http://www.significantproperties.org.uk> accessed 7 October 2010,

defines a useful description of significant properties: “Significant properties are those aspects of the digital object
which must be preserved over time in order for the digital object to remain accessible and meaningful. An institution
with curatorial responsibility for digital objects cannot assert or demonstrate the continued authenticity of those
objects over time, or across transformation processes, unless it can identify, measure, and declare the specific
properties on which that authenticity depends. Nor can it undertake the preservation actions required to maintain
access to those objects, unless it can characterise their current technical representations with sufficient detail.” The
Significant Properties of Software study applied this concept to software.

2 Software preservation and sustainability

CC443D006-1.0 Page 21

2.8 What are the drivers and inhibitors for and against software
preservation?

2.8.1 For the interested reader, and for context, the following table sets out illustrative drivers and
inhibitors for software preservation:

PESTLE factor Drivers Inhibitors

Political – ‘Right to data’ initiative supports data
preservation and creates demand for
software preservation

– Major structural change in the sector likely
to lead to loss of knowledge and
responsibilities

– Shared services agenda supports software
sharing

– Impact agenda may drive software reuse
by creating an economic imperative to
reuse

– Move to Commercial Off The Shelf
(COTS), outsourcing, cloud and shared
services reduces bespoke software
development within institutions, meaning
less software exists to preserve

– Impact agenda may drive towards short-
term benefits and away from long-term
preservation

Economic – Current funding cuts reinforce reuse
arguments

– Current funding cuts mean that capital
expenditure is delayed, meaning existing
software must be maintained for longer

– Concentration on a few strategic priority
areas (eg energy) changes balance of
funding (benefiting some areas via
greater infrastructure funding)

– Difficulties in finding new funding for
software preservation

– Current funding cuts harm preservation
efforts

– Concentration on a few strategic priority
areas (eg energy) changes balance of
funding (harming some areas via reduced
infrastructure funding)

– Benefits (and skills) are misaligned since
(1) Software maintenance is intrinsically
dull (for most developers) when compared
to new developments; (2) Software
developers aren't going to be around
long-term anyway as they move projects;
(3) Other parties benefit from reuse; (4)
Librarians and archivists typically don't
have the technical skills to preserve
software

– Software generally costs a lot to maintain

– Difficulties in predicting (re)use means
poor predictions of long-term value (and
uncertainty discourages action, and
uncertainty of value dissuades reuse)

– Short funding horizons discourage reuse

– Free-riding of openly shared software
discourages contributions

– Little economic incentive against ‘prestige
projects’ that redevelop existing
functionality rather than small projects
that make reuse of existing software

– Preserving all software would be
unaffordable

CC443D006-1.0 Page 22

Further information and useful resources
The Significant Properties of Software: A Study
http://www.jisc.ac.uk/media/documents/programmes/preservation/spsoftware_report_redacted.pdf

Sustainable economics for a digital planet: Ensuring long term access to digital information
http://brtf.sdsc.edu

Journal of Software Maintenance and Evolution: Research and Practice
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-SMR.html

Software Sustainability Institute
http://www.software.ac.uk/resources
http://www.slideshare.net/SoftwareSaved

Software Sustainability: Looking Past the Myths
http://www.omii.ac.uk/video/sustainability.jsp
http://www.slideshare.net/npch/software-sustainability-looking-past-the-myths

The Software Obsolescence Minefield (Component Obsolescence Group)
http://www.cog.org.uk

17 Consider, for example, increasing frequent software releases, software in perpetual beta, the demise of 'gold release',

shorter expected lifetimes and increasing trend towards disposability.

Social – Information society requires better
information management which can be
underpinned by long-term software and
data preservation

– Impact agenda may drive software reuse

– Impact agenda may drive towards short-
term benefits

– Much bespoke software and little culture
of software reuse

– Little culture of publishing and reusing
software - little social incentive against
‘prestige projects’ that redevelop existing
functionality (the ‘not invented here’
syndrome)

– Many find it difficult to share imperfect
code and do not want the burden of
polishing code and supporting users

– Lack of clear responsibility for software
preservation issues

– Researchers tend not to have software
engineering skills

Technological – Rise of virtualisation should make
emulation easier

– Trends towards standards (especially
open standards) and commoditisation
supports preservation efforts

– Trends towards higher-level languages
makes transferring knowledge about
software easier

– Software is inherently fragile (sensitive to
changes in environment)

– Accelerating technological change
changes software environment and
dependencies ever faster – thus
obsolescing software ever faster17

– Accelerating technological complexity
increases the preservation challenge

– Move to SaaS means binaries and source
codes are unavailable

– Move to agile techniques reduces
longevity of code

Legal – Regulatory environment toughening
(eg information retention requirements
tightening)

– Preserving data in a secure way (eg for
the Data Protection Act) is hard, especially
so when support and maintenance for the
underlying software is no longer available

Environmental – Environmental regulations on hardware
(especially disposal) may reduce
throwaways

– Minimising energy overheads is an
inhibitor to preserving indiscriminately

2 Software preservation and sustainability

CC443D006-1.0 Page 23

NSF Workshop on Cyber-Infrastructure Sustainability
http://cisoftwaresustainability.iu-pti.org/

Measuring Software Sustainability
http://doi.ieeecomputersociety.org/10.1109/ICSM.2003.1235455

JISC-funded resources on general sustainability
http://www.jisc.ac.uk/events/2010/07/jif10/virtualgoodybag/understandingsustainability.aspx
http://sca.jiscinvolve.org/wp/business-modelling-publications/

General digital preservation resources

http://www.dpconline.org/advice/preservationhandbook/introduction
http://www.dcc.ac.uk/resources/curation-reference-manual
http://jiscpowr.jiscinvolve.org/wp/guide/
http://blogs.ukoln.ac.uk/jisc-bgdp/

CC443D006-1.0 Page 24

This page is intentionally blank

CC443D006-1.0 Page 25

3 Purposes and benefits

3.1 Introduction

3.1.1 This section sets out the all-important purposes and benefits of software preservation. It
provides the basis for the next section, where the purposes and benefits are used, along with
other decision factors, to offer guidance on making better decisions about software
preservation. Case studies are provided throughout this section to highlight real-life purposes
and benefits, and also offer other people’s experience and lessons on how to, and how not to,
go about software preservation and sustainability.

3.1.2 A key challenge in digital preservation is being able to articulate, and ideally prove, the need
for preservation. As the Blue Ribbon Task Force final report says “The first challenge to
preservation arises when demand is diffuse or weakly articulated. Addressing the matter of
demand is always the first step in developing sustainable preservation strategies… The value
of digital assets is best understood as what digital materials are good for, and that is usually
understood as the ways that the materials are used—to advance knowledge, entertain or bring
pleasure, help solve problems, or inform public policy.”18 As there has been no prior attempt to
identify and categorise these benefits systematically, JISC funded this study partly to do so. As
a framework it is structured but extendable.

3.1.3 Our framework consists of purposes19, benefits20 and scenarios of software preservation:

– First, four (relatively orthogonal) purposes are identified. These are derived from
assessing stated reasons for preserving software; each provides the essence of a rationale
for software preservation. In reality, everyone should have their own purpose specific to
them, their individual circumstances and the software. Such a real-life purpose may not
be purely for software preservation – since there are other purposes with overlapping
activities (eg aiming for openness). However, our four purposes strictly to do with
software preservation are:
– Encourage software reuse (sub-section 3.2);
– Achieve legal compliance and accountability (sub-section 3.3);
– Create heritage value (sub-section 3.4);
– Enable continued access to data and services (sub-section 3.5).

– Second, a range of benefits are identified against each purpose. Due to a vast array of
different types of software and scenarios in which software preservation might be
considered there is a wide range of benefits. Only a few will apply in each case, but our
framework aims to be as broad and inclusive as possible. This also matches the principles
of the Blue Ribbon Task Force final report which says that “Each user community will
identify its own set of values and benefits in the digital materials they demand” –
therefore we do not attempt to describe these benefits definitively but list them for easy
review, selection and tailoring by user communities.

– Finally, a range of scenarios are also identified for each purpose, to give some illustrative
examples of where the purpose and accompanying benefits might be relevant.

18 Sustainable economics for a digital planet: Ensuring long term access to digital information, Final Report of the Blue

Ribbon Task Force on Sustainable Digital Preservation and Access, February 2010, <http://brtf.sdsc.edu> accessed 5
October 2010. The report also says on the matter of benefits that “…well-articulated demand starts with a clear and
compelling value proposition about the benefits to be gained by having, in our case, access to information [and
presumably software] at some point in the future”

19 For which the OED definition is “the reason for which something is done or for which something exists”.
20 For which the OED definition is “an advantage or profit gained from something”.

CC443D006-1.0 Page 26

3.1.4 Because there is potential misalignment between the benefits resulting from software
preservation and benefits accruing to the developer or maintainer of the software who might
be expected to contribute to software preservation, we also felt it important to present some
‘personal benefits’ to the developers too. These are given in sub-section 3.6.

3.2 Encourage software reuse

3.2.1 “The reuse of a software [artefact] is its integration into another context. The [reason for]
reuse is to reduce cost, time, effort, and risk; and to increase productivity, quality,
performance, and interoperability... The most common type of reuse is the reuse of software
components, but other [artefacts] produced during the software development process can also
be reused: system architectures, analysis models, design models, design patterns, database
schemas, web services, etc.”21

3.2.2 “Perhaps the prime motivation to preserve software for most people is to save effort in
recoding. Code from the past still needs to be used, due to its specialised function or
configuration and it is frequently seen as more efficient to reuse old code, or keep old code
running in the face of software environment change than to recode. This is certainly the
reason for most existing software repositories, and a significant part of the effort which is
undertaken by software developers both in-house to end-user organisation, and also within
software houses. Handling legacy software is usually seen as a problem, and many strategies
are undertaken in order to rationalise the process, to make it more systematic and more
efficient. As a consequence, an important source of information on [the] significant properties
[of software] for preservation is the best practice on software maintenance and reuse, a long
recognised part of good software engineering. If you can find an existing package or library
routine, why bother rewriting it? Of course in these circumstances you need assurance that the
software will run in your environment and provide the correct functionality.”22

3.2.3 Possible scenarios for reuse include:
– Continuing operational use in institution;
– Increasing uptake elsewhere;
– Promoting good software.

3.2.4 The benefits include one or more of the following covering software and resulting systems:
– Reduced development cost;
– Reduced development risk;
– Accelerated development;
– Increased quality and dependability;
– Focused use of specialists;
– Standards compliance;
– Reduced duplication;
– Learning from others;
– Opportunities for commercialisation.

21 <http://www.esdswg.com/softwarereuse/Resources/library/reuse-definitions/> accessed 8 October 2010. This

resource goes onto to say that the following does not count as reuse "(1) Software developed and used repeatedly by
the same people on the same project is regarded as "good programming practice" and is not typically counted as
reuse; (2) Product maintenance and new product versions; we do not usually claim the base code as reuse; (3) Use of
operating systems, database management systems, and other system tools is generally not regarded as reuse; (4) The
use of commercial off-the-shelf (COTS) software and its open source equivalents is generally not regarded as reuse."

22 The Significant Properties of Software: A Study, Matthews et al, STFC, March 2008.

3 Purposes and benefits

CC443D006-1.0 Page 27

3.2.5 These benefits accrue to the organisation hosting the software development and reusing
software, but software reuse will also make life easier for the developer. These benefits can
offer hard ‘savings’ to an organisation – the financial return on software reuse is well explored
by the literature.23 The extent of the overall benefit depends on the scale and complexity of
the reused software and, importantly its quality. For example, development risk can actually be
increased if reused code is poor, isn’t modular, uses global parameters, etc.

3.2.6 The end benefits are perhaps best summarised as:

– Greater efficiency;
– Increase flexibility and responsiveness;
– Increased community participation.

Re-usable Educational Software Library (RESL) (www.resl.ac.uk)

RESL is an online database of resources centred around re-using educational software. RESL was
developed as part of a project entitled Software Use, Re-use & Customisation in Education
(SoURCE).24 SoURCE was run by the Open University with partners the University of Wales at
Bangor, De Montfort University and Middlesex University. SoURCE ran from September 1998 to
December 2001. Its lessons and findings are written up in a final report.25

RESL "set out to investigate the feasibility of a national re-usable educational software library to
provide access to software resources, guidelines and other materials relevant to the adoption and
adaptation of educational software." Whilst originally intended to include mostly software it ended up
having "little software compared to case studies about using software... This is because participants
from across UK HE have indicated this is more useful. Software dates quickly, and is often hard to re-
use. However, peoples' experience in trying to re-use it is valuable and transferable. Hence [case-
studies, articles, reports etc] of good practice make up most of RESL's content."

Some of the lessons identified were:26,27,28

- One of the key benefits of academics customising software is that it encourages them to reflect on
their educational practice.

- Decisions taken early in the lifecycle of software development have a profound impact on its
reusability and range of contexts for use.

- The experience of customisation in SoURCE suggests that decisions to develop re-usable software
are only taken under fairly exceptional circumstances.

- The main barriers to software customisation and reuse appear to be cultural at both individual and
institutional levels.

- The greatest opportunity for, and cultural acceptance of, reuse seems to occur when content-
specific objects at a very low level of granularity can be identified and fitted flexibly into the
curriculum.

23 See, for example, The business case for software reuse, Poulin et al, IBM Systems Journal, Vol 32, No 4, 1993.
24 <http://www.source.ac.uk> accessed 4 October 2010.
25 SoURCE Evaluation Report, Beetham et al, MET-DEL-2, August 2001.
26 <http://www.source.ac.uk/software_development.htm> accessed 4 October 2010.
27 <http://www.source.ac.uk/customisation_&_reuse.htm> accessed 4 October 2010.
28 Note that whilst the SoURCE project began over a decade ago it is surprising how many of the findings and lessons

appear to be as relevant today.

http://www.resl.ac.uk/

CC443D006-1.0 Page 28

- Once a decision to customise and reuse has been taken there are often many pragmatic barriers to
be overcome at the site of reuse. In addition to problems involving the software itself, including
lack of appropriate facilities, lack of technical support, integration with existing technical systems
etc, there are generic barriers to any change in the mode of delivery of learning. These include
inflexible timetables, inflexible teaching facilities and lack of time to undertake curriculum
development.

There does not appear to have been any resources added to RESL after 2002.

Further information and useful resources
NASA's approach to software reuse
http://softwarereuse.nasa.gov/
http://www.esdswg.com/softwarereuse/Resources/library/reuse-definitions/
http://www.esdswg.com/softwarereuse/Resources/rrls/

3.3 Achieve legal compliance and accountability

3.3.1 Software preservation can be necessary to achieve legal compliance and accountability. A
greater use and reliance on information has led to new laws and regulations that organisations
must abide by. Minimising the burden of compliance is key to freeing up time and money to
focus on an organisation’s ‘real business’. Some possible scenarios where software may need
to be preserved for compliance or accountability reasons include:
– Maintaining records or audit trail;
– Demonstrating integrity and authenticity of data and systems;
– Addressing specific contractual requirements;
– Addressing specific regulatory requirements;
– Resolving copyright or patent disputes;
– Addressing the need to revert back to earlier versions due to IP settlements;
– Publishing research openly for transparency;
– Publishing research openly as a condition of funding.

3.3.2 Legal compliance is mandatory and the benefits of preserving software in this context should
be self-evident, but would include:
– Reduced exposure to legal risks;
– Avoidance of liability actions;
– Easily demonstrable compliance lessens audit burden;
– Improved institutional governance;
– Enhanced reputation.

3.3.3 Accountability is more subjective and variable than legal compliance, but the benefits of
preserving software in this context include:
– Social expectations met;
– Sense of responsibility;
– Demonstrable leadership.

3.3.4 Most of these benefits accrue to the organisation concerned; though sometimes the society
benefits (eg widespread accountability of research or other public funding benefits the public).

3 Purposes and benefits

CC443D006-1.0 Page 29

Legal and regulatory requirements in the aerospace industry29

“The objective of LOTAR International is to develop an auditable process for the long-term archiving
(LTA) of digital data, eg 3D CAD and Product Data Management (PDM) data... The LOng Term
ARchiving (LOTAR) project [is necessary because of] the legal and business requirements … within the
aerospace industry.

A general demand for long term archiving [of] all legal and certification relevant documents is a result
of [the] Aircraft Certification requirements of Authorities (Joint Aviation Requirements (JAR)30,
Federal Aviation Administration (FAA) and others), national laws and legal practice concerning with
product liability and guarantee. Therefore basic requirements independent from 2D or 3D product
documentation are:

- to ensure continued readability, authenticity and identity of the records;

- to demonstrate to the authorities proper functioning of the records system, and;

- to maintain the capability to retrieve type design data in a usable form over the validity period of
the Type Certificate.

The life cycle of applications and storage technologies has to be considered by setting up a long term
archiving and retrieval standard. Approximately every three years a change in the application
technology happens, for the technology of storage and retrieval this is every ten years. In comparison
with an archiving period of fifty up to one hundred years in the aerospace industry, the technology life
cycle plays a major role... Besides the challenges caused by different technology life cycles the risk of
data migration has to be considered. The use of a native CAD-format may lead to wrong or even no
results when loading in a new generation of CAD-Systems.”

With CAD in aerospace applications it has proved hard to separate data from software, as modern
CAD software does not just passively display drawings. Instead, the software and the data together
provide a model that is active and can be manipulated and queried to draw out behaviour of the model.
This means that LOTAR validates after data is read by the software. The coupling between data and
software is exacerbated by the proprietary and closed file format of the predominant CAD software.

The legal and regulatory requirements that demand some form of software preservation come from
the mix of short and very long timeframes involved. The time between CAD versions can be only six
months, and the life of a CAD system is ten years. This can be compared [to] the life of the product
which is seventy years or more (eg 30 years of production, followed by many more decades of
servicing, spares and modifications for such a long lifespan). So whilst the CAD system will be obsolete
after ten years, and probably forgotten after twenty years, the legal liability goes on and on.

Some of the relevant tenets from the LOTAR project are:

- sustaining models not drawings;

- model is data plus algorithms;

- preservation planning is about the governance.

29 All quotes taken from <http://www.prostep.org/en/project-groups/long-term-archiving-lotar.html> accessed 5 October

2010, supplemented with notes taken from a LOTAR presentation at the DPC event “Designed to Last” on 16 July 2010
(<http://www.dpconline.org/events/designed-to-last-preserving-computer-aided-design.html> accessed 20 July 2010).

30 "The Civil Aviation Authorities of certain European countries have agreed common comprehensive and detailed
aviation requirements (referred to as the Joint Aviation Requirements (JAR) with a view to minimising Type
Certification problems on joint ventures, and also to facilitate the export and import of aviation products. The JAR are
recognised by the Civil Aviation Authorities of participating countries as an acceptable basis for showing compliance
with their national airworthiness codes." <http://en.wikipedia.org/wiki/Joint_Aviation_Requirements> accessed 5
October 2010.

CC443D006-1.0 Page 30

Software and records preservation for Moodle31

Context

The following is an extract from a news story on the UCL website :

“[The] inquiry panel was set up in January 2010 following the arrest of Mr Abdulmutallab in the US on
25 December 2009 on suspicion of attempting to bomb a US civil aircraft, and the subsequent criminal
charges brought against him.

The inquiry panel was asked to explore the nature of Mr Abdulmutallab’s experience as an
undergraduate student of UCL between 2005 and 2008, including his period as President of the student
Islamic Society.

Sir Stephen Wall, Chair of UCL Council, said: “Given the seriousness of the charges against him, UCL
announced earlier this year it would be establishing a panel to explore the nature of Mr
Abdulmutallab’s experience as an undergraduate student of UCL, investigate whether there were at
UCL at that time conditions that might have led to Mr Abdulmutallab’s engaging in acts of terrorism,
and whether there are at UCL today conditions that might facilitate the possibility of other students
doing so in future.

‘The panel collected evidence from across the institution, and interviewed a wide range of members of
the UCL community who were well placed to offer insights on the issues addressed. We welcome the
central conclusion that there is no evidence to suggest either that Umar Farouk Abdulmutallab was
radicalised while a student at UCL or that conditions at UCL during that time or subsequently were or
are conducive to the radicalisation of students.’”

Software preservation

UCL uses Moodle for its virtual learning environment. Moodle at UCL runs on Apache web server
running PHP and uses a MySQL database. It provides many features such as the uploading of
assignments, forums, chat and blogs. The Learning Technology and Support team were not approached
to provide details of Mr Abdulmutallab’s Moodle activities but the requirement to be able to access
Moodle data for students who had left UCL became apparent at this time.

This poses some software preservation issues. Moodle data is saved in a MySQL database. The
database and associated datafiles (eg files related to assignments) are backed up nightly. One of the
team says “If we were asked to retrieve all the data for student we would need to restore the database
to a MySQL server, and Moodle on to an Apache web server. Since MySQL is upgraded periodically we
can’t guarantee that an older database will be readable on newer versions of MySQL. Likewise PHP on
the Apache web server will inevitably have been upgraded and older versions of Moodle may not be
compatible with new versions of PHP.” To address these issues UCL is now putting together a
proposal to archive a read-only instance of Moodle on a virtual machine.

Clear Climate Code initiative32

Context

“ccc-gistemp is a software project started in 2008 by Nick Barnes and David Jones. It is a
reimplementation of GISTEMP, a piece of software developed by NASA Goddard Institute for Space
Studies (GISS) that produces an estimate of historical global average temperature trends.

31 Personal communication with Jo Matthews at UCL.
32 Case study contributed by David Jones (Ravenbrook and Clear Climate Code).

3 Purposes and benefits

CC443D006-1.0 Page 31

NASA GISS published the source code to GISTEMP in 2007, but it was found to be too obscure to be
of much public benefit. Clear Climate Code was founded and we started the ccc-gistemp to address
that problem (Clear Climate Code has now gone on to be an activity of the new Climate Code
Foundation). As software engineers we could improve the published GISTEMP code and thereby it’s
public benefit (in particular pointless debates about unclear bits of Fortran were disrupting the public
discussion of policy issues).

Aim and plan

Our aim in making ccc-gistemp was to make the implementation of the algorithm (described in various
peer-reviewed published papers) as clear as possible. We also wanted to the results of ccc-gistemp to
be as close as possible to GISTEMP so that there was no doubt that ccc-gistemp and GISTEMP
implemented the same algorithm (hopefully this allows the discussion to move forward and consider
the algorithm itself rather than an unclear implementation of it). The GISTEMP code as is certainly fit
for the purpose for which it was created: implementing a calculation in support of a series of scientific
papers. However, this code came, by accident or otherwise, to gain a prominent place in public debate,
and was certainly not fit for such scrutiny (what code produced under publishing deadline
circumstances over a period of 30 years would be?).

We decided that the best way to proceed would be a line-by-line rewrite of the original GISTEMP
code. We chose to do the new implementation in the programming language Python. Some of the
reasons we chose Python were: clarity, familiarity, and longevity.

Programming for reproducibility

In programming for reproducibility we were quite fortunate. The GISTEMP algorithm was divided into
a small number (six) of serial steps, and the steps communicated via intermediate files. Each step would
take the output of the previous step (in a small number of files), process the data, and produce a new
set of intermediate files. The steps were variously written in bits of shell, C, Fortran, and Python. Our
initial work proceeded by taking a step and rewriting all of it in Python while maintaining the same
inputs and outputs. Because of this arrangement, we didn't have to attack any particular step first, and
different people could be working on different steps at the same time. During this phase of
development (until we had completely rewritten the program in Python) we had a system where we
could run any step using either the original GISTEMP code for that step, or our replacement code
where we had written it.

We attacked the larger more complex steps first, in order to give us some idea of the hard problems
we would face and to minimise risk (‘tackle the largest risks early’). The files handled and produced by
each step were usually some novel Fortran binary format (or sometimes some novel text format), and
we had to write modules to handle these files in Python. Python proved remarkably flexible, it was
straightforward to handle binary Fortran files in Python (which we had identified as one of the larger
risks).

Some of the steps in the GISTEMP code were ‘integer to integer’ steps in that they took large
ensembles of integer data (weather station records) and produced large ensembles of integer data. By
carefully reproducing various Fortran rounding algorithms (which we reverse engineered from the
input and output data!) we were able to recreate these steps exactly. Other steps processed floating
point data. We could not reproduce the output of these steps exactly as getting ‘all bits exactly the
same’ would mean matching the exact precision (32-bit versus 64-bit versus internal 80-bit) for the
operands and matching the exact order of floating point operations. No Fortran compiler guarantees
these things, so it would be hopeless to try and replicate it. The best we can hope for is that we've
implemented the same algorithm and the results are consistent with variations in floating point
calculations (this is quite a tricky area). We had to write tools to compare files in the novel formats,
for example to compare two gridded datasets to check that the differences were as small as we would
expect.

CC443D006-1.0 Page 32

Once we had got to the point where we had an all Python version and each step had outputs that
matched (or matched as closely as was reasonably possible) the GISTEMP code, then we proceeded to
simplify the Python code, and this started with removing lots of unnecessary rounding (to integer, for
file output), and removing the passing of data via files. We still retain the ability to write intermediate
files, but the computation now passes data internally.

Source code management

In order to bring in more community involvement the project we moved the source code repository
from an internal Perforce repository at Ravenbrook to a public Subversion repository on Googlecode.
We did not take very great care in selecting Googlecode as a repository, but it turns out to have many
useful features. Because the Subversion repository is itself public, anyone can access any revision of the
source code, and see every change that is made. This means we do not need to make formal releases
so frequently, as anyone who was more than a little interested could access the public repository
(though we do try and make frequent releases, having made five releases in 2010).

Another benefit of Googlecode is that someone else is doing the maintenance, and user-access-control
is relatively simple. We don't have to look after the servers, and we don't have a special system for
managing users. External contributors are identified and managed using their Google identities. No
doubt other systems (github springs to mind) offer similar advantages. The bottom line is that existing
online systems that are free to use are adequate, and in many cases better, then commercial systems
that we would use in house.

Use of the code

GISS have said they want to use our new code, but this has not yet happened. Possible causes are the
differences in training and the two groups respective "favourite toolboxes". ccc-gistemp is very much a
fairly modern sort of Open Source project using a hip new language.

The corresponding GISTEMP project at GISS occupies only a small amount of their effort (10% of one
FTE), and the group as whole is heavily invested in traditional large scale scientific programming of
complex physical model simulations using specialised hardware (IBM AIX mainframes) and industrial
quality commercial Fortran compilers. The impedance mismatch is considerable, but we hope to bridge
it.

Lessons

- Understand the scale and complexity of the task by tackling the biggest risks first;

- Perfect reproducibility may well be impossible for some applications;

- Have a clear aim that gives a range of benefits; from encouraging software reuse, through
improved maintainability and longevity, to the public policy benefits arising from scrutiny and
transparency;

- A complete rewrite in another programming language is probably at least as expensive as the
original software: the closer a degree of reproduction you desire (and we went for quite a high
degree), the more expensive any preservation / emulation will be.”

Further information and useful resources
Records management infoKit
http://www.jiscinfonet.ac.uk/InfoKits/records-management

Legal Guidance for ICT Use in Education, Research and External Engagement
http://www.jisclegal.ac.uk

3 Purposes and benefits

CC443D006-1.0 Page 33

3.4 Create heritage value

3.4.1 Software preservation can create heritage value, because software can be culturally,
aesthetically, historically, and politically significant. There is some intrinsic benefit from
preserving software that offers this significance. Whilst difficult to articulate this could be
expressed as enabling a greater understanding of culture and history, learning from past
mistakes, etc. These benefits accrue mostly to society, and are generally non-financial.33

3.4.2 Some possible scenarios for this purpose include:

– Ensuring a complete record of research outputs where software is an intermediate or final
output;

– Preserving computing capabilities (software with or without hardware) that is considered
to have intrinsic value;

– Supporting the work of museums and archives.

3.4.3 The ‘Significant Properties of Software’ study recognised this purpose and commented: “A
small but significant constituency of software preservation is those museums and archives
which specialise on preserving aspects of the history of computing and its influence on the
wider course of events. These institutions thus want to preserve important software artefacts
as they were developed at the time of their creation or use, so that future generations of
historians of science (and the general public) can study and appreciate the computers available
[at] that particular period, and trace its development over time.”

Cultural significance and the preservation of Digital Games

Loughborough University's Department of Information Science published a paper in 2008 entitled "The
Barriers to the Preservation of Digital Games: Questions on Cultural Significance".34 It concluded that
“Digital media is changing many aspects of our lives and digital games, with their position as a lead
technology and the influence they have had on computing technology and other media. Yet, as part of
our every-day lives, they have been overlooked as a valuable aspect of our cultural heritage and their
preservation has received little attention in the literature on digital preservation. Despite this, their
continued growth in popularity and an ever-increasing interest from academia suggest that they should
be recognized as ‘something with a history worth preserving and a culture worth studying’”. Offering a
view on the challenges of preservation, it states that “Emulation, which is seen as the heart of software
preservation, is the approach most often taken by games enthusiasts [...] Nevertheless, these activities
are unstable forms of preservation because they are individual initiatives without long-term support”.

Sir Salman Rushdie's archive at Emory's Manuscript, Archives, and Rare Book Library35

Emory University houses Sir Salman Rushdie’s archive: “The celebrated writer's computer files, private
journals, notebooks, photographs and manuscripts provide insight into his creative process, campaigns
for human rights and celebrity.”

33 Expressing and measuring the ‘value of culture’ is a deep and varied research topic. For a flavour see Capturing the

Public Value of Heritage, The Proceedings of the London Conference, 25-26 January 2006.
34 <https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/4988> accessed 29 September 2010.
35 <http://www.emory.edu/home/academics/libraries/salman-rushdie.html> accessed 5 July 2010.

CC443D006-1.0 Page 34

The groundbreaking story of the archive, and its software preservation activities due to the donated
computers, has been documented by the archiving team.36 The archive contains both paper and
electronic material: “the archive is a hybrid, meaning that [Emory] received not only one hundred
linear feet of his paper material, including diaries, notebooks, library books, first-edition novels, notes
scribbled on napkins, but also forty thousand files and eighteen gigabytes of data on a Mac desktop,
three Mac laptops, and an external hard drive.” This presented new challenges as the archiving team
did not want just to preserve the data. Instead they wanted to preserve the experience of the writer’s
environment. “[Erika Farr, the Emory libraries’ director of born-digital initiatives] is a big believer in
preserving the whole ecosystem, or ‘biostructure’, of the author’s digital archive: the hardware,
software, programs, and applications, all the files and file names, search histories—even the order in
which everything was installed. ‘There is something fundamentally interesting about the computers
themselves,’ she says, ‘as the medium between the user and the digital media.’ … [Peter] Hornsby, who
extracted the data from Rushdie’s hard drives, felt it was crucial to emulate the author’s working
environment, creating a perfect duplicate that researchers could explore while safeguarding the
original: ‘The imprint of the writer’s personality,’ he says, ‘lies within his computer.’”

Emory is providing multiple points of access into Rushdie’s digital archive, including emulations of
Rushdie’s computers and searchable databases of files pulled off of his computers. An Open Source
PowerMac Emulator called SheepShaver has been used for this, so that experience of using the
terminals is as close to using Rushdie’s computers as possible, including the now obsolescent word
processors and even the desktop games.

Preserving Virtual Worlds for cultural reasons37

“Interactive media are highly complex and at high risk for loss as technologies rapidly become obsolete.
The Preserving Virtual Worlds project […] explore[d] methods for preserving digital games and
interactive fiction.” The project was undertaken by a partnership of US universities led by the
University of Illinois at Urbana-Champaign and was a National Digital Information Infrastructure
Preservation Program project administered by the Library of Congress.38

The final report39 highlights the cultural significance of virtual worlds: “As software artifacts exhibiting
complex dependencies on platform, operating system, and network environment, virtual worlds are
undoubtedly among the most imperilled forms of interactive digital content. As communities—shared
spaces and places—they are defined by no less delicate and idiosyncratic skeins of people, relationships,
memories, and folklore akin to those found within oral cultures. Virtual worlds are not virtually—that
is, “almost”—real. They are instead, to borrow a phrase from Jesper Juul (2005), precisely half-real:
they are human products, scripted and engineered out of millions of lines of code written by dozens or
hundreds or even thousands of individuals, but they are also focalizers for powerful collective acts of
the imagination that rely on the same willing suspension of disbelief that characterizes immersion in
other media, like novels and films.”

The final report details the challenges to preservation of virtual worlds, which were summarised as:

“Hardware obsolescence – The original console or computing platform used to run the game may
cease to be supported or even available in the aftermarket.

36 <http://www.emory.edu/EMORY_MAGAZINE/2010/winter/authors.html> accessed 1 October 2010.
37 <http://pvw.illinois.edu/pvw/> accessed 30 September 2010.
38 Project partners are the University of Illinois at Urbana-Champaign (lead), the University of Maryland, Stanford

University, Rochester Institute of Technology and Linden Lab. Second Life content participants include Life to the
Second Power, Democracy Island and the International Spaceflight Museum. The Preserving Virtual Worlds project is
funded by the Preserving Creative America initiative under the National Digital Information Infrastructure Preservation
Program (NDIIPP) administered by the Library of Congress.

39 <http://hdl.handle.net/2142/17097> accessed 30 September 2010.

3 Purposes and benefits

CC443D006-1.0 Page 35

Software obsolescence – The original software needed to run the game - operating system, drivers,
frameworks - may lose support, cease development, or become incapable of running on future
hardware/software configurations.

Scarcity – Some video games are produced in limited quantities and are subject to the dangers of
media decay. This is especially likely to be the case for special editions and releases, recalled games, or
art games.

Third party dependencies – Currently most emulators are developed by the game community and
are of questionable legality. They are also typically created without the benefit of the original
specifications and are themselves at risk of becoming obsolete.

Complex, proprietary code – And an associated lack of documentation. Digital games are generally
released as compiled binaries with no documentation of the compiling process, or even the
programming languages used. Not having access to the source code or language specifications makes
migrating or emulating software far more difficult.

Authenticity – The elephant in the digital preservation room, proving that a digital object is what it
claims to be, free from tampering or corruption. Digital games enjoy many versions between the first
prototype, the official release (on multiple platforms), and cracked or otherwise altered unauthorized
editions. Especially for older games, the only extant copy may exist in a fan-run web repository, making
the authenticity impossible to establish.

Intellectual Property Rights – The game development industry is highly creative and competitive,
leading developers to be conservative with their intellectual property. Most have instituted restrictive
shrink-wrap licenses reflecting this. And yet, once a game is no longer actively marketable, they are less
likely to respond to inquiries about licensing for it.

Significant properties – What are the significant properties of a game that must be maintained with
each transformation/preservation action? What makes Mario Mario? How important are font size and
colour palette? What about the speed of text scrolling or sprite movement? What about controllers?
How faithful must we stay to the original code? Significant properties are essential to define, as they
play a major role in determining authenticity.

Context – Although not an immediate threat to the preservation of games, building contextuality is
important to creating understanding for future users. This is truer for digital games than many other
record types because, as technology advances, game players who have only been exposed to the latest
and greatest may be apt to play an older game and say, “so what?” even though the game might have
been revolutionary for its time. For example, Sierra’s Mystery House was the first text adventure to
incorporate graphics. An amazing breakthrough in its day, it seems crude in comparison to today’s
virtual environments.”

The final report also has eight archiving case studies covering early video games, electronic literature
and Second Life, the interactive multiplayer game.

CC443D006-1.0 Page 36

Stephen M. Cabrinety Collection in the History of Microcomputing40

“The Cabrinety Collection on the History of Microcomputing [at Stanford University] is a collection of
commercially available computer hardware, software, realia and ephemera, and printed materials
documenting the emergence of the microcomputer in the late 1970s until 1995. Specifically, the
collection documents the rise of computer games, with a focus on games for Atari, Commodore,
Amiga, Sega, Nintendo, and Apple systems. As such, the software collection documents the increased
technical ability of computer software programmers and the growing sophistication of computer-
generated graphics from the early days of games like Pong to the current era of game systems like
Nintendo 64.”

Further information and useful resources
The Specimen Case and the Garden: Preserving Complex Digital Objects, Sustaining Digital Projects
http://dh2010.cch.kcl.ac.uk/academic-programme/abstracts/papers/html/ab-626.html

Preserving Digital Worlds
http://pvw.illinois.edu/pvwSoftware carpentry - wide range of advice for developing software research

3.5 Enable continued access to data and services

3.5.1 Preserving software can enable continued access to data and services. Without preservation,
software data can be ‘locked up’ and inaccessible, and services must be discontinued due to
obsolete software.

– Continued access to data: Software is used to create, interpret, present or otherwise
manipulate and manage data and other digital objects. In this sense, software underpins
data and other digital objects. Software preservation should be a consideration where the
software cannot easily be separated from the data or digital objects. For instance,
preservation of data (documents, images, etc) can require the preservation of format
processing and rendering software in order to make the content accessible to future
users. Ideally the two can be separated and the data or digital objects can be preserved
independently of and without the software.41 However, sometimes the two are more
tightly coupled; for instance if the software and data come together to form an integrated
model so the data by itself is meaningless, or if data in its raw form isn’t in an open,
human readable format. Where this is the case, it is necessary to preserve the software
as well, since preserving the data but not the software makes very little sense.

– Continued access to services: Software systems underpin services too, by being part
of a process that a service provider uses to engage with users. Software preservation is a
consideration where otherwise that service could not operate.

3.5.2 The ‘Significant Properties of Software’ study identified this purpose and commented:
"[Sometimes] it is necessary to preserve software to support the preservation of data and
documents, to keep them live and reusable. In this case, the prime purpose of the
preservation is not to preserve the software per se, so it may not be necessary […] to […]
ensure that that software is reproduced in its exact form, but only sufficient to process the
target data."

40 <http://library.stanford.edu/depts/hasrg/histsci/index.htm> accessed 5 July 2010.
41 If possible, turn a software preservation problem into a data preservation problem, as these are generally easier to

handle. Data migration is invariably easier than software preservation.

3 Purposes and benefits

CC443D006-1.0 Page 37

3.5.3 Software preservation for enabling continued access to data and services is a potential issue
across further and higher education. For instance, it is applicable to research data, business
intelligence from corporate data, and learning objects for learning and teaching.

3.5.4 Some possible scenarios where this purpose might be relevant include:

– Reproducing and verifying research results;
– Repeating and verifying research results (using the same or similar setup);
– Reanalysing data in the light of new theories;
– Reusing data in combination with future data;
– ‘Squeezing’ additional value from data;
– Verifying data integrity;
– Identifying new use cases from new questions;
– Maintaining legacy systems (including hardware);
– Ensuring business continuity;
– Avoiding software obsolescence;
– Supporting forensics analysis (eg for security or data protection purposes);
– Tracking down errors in results arising from flawed analysis.

3.5.5 The benefits resulting from software preservation around research data and business
intelligence include:

– Fewer unintentional errors due to increased scrutiny;
– Reduced deliberate research fraud;
– New insight and knowledge;
– Increased assurance in results.

3.5.6 The key end benefits from these benefits are improved research outcomes and greater
efficiency.

3.5.7 The benefits resulting from software preservation around systems and services include:

– Current operations maintained;
– Opportunity for improved operations via corrective maintenance;
– Reduced vendor lock-in;42
– Improved disaster recovery response;
– Increased organisational resilience;
– Increased reliability.

3.5.8 The last four of these benefits are indirect. The key end benefit from the set of benefits is
‘reduced operational and strategic risk’ to the organisation. This may be seen as mainly risk
mitigation, but it could offer competitive advantage (eg customers may value reliability).

42 In particular this benefit stems from being able to keep older software (and hardware) running and thus being able to

avoid/delay upgrade cycles; and from opening up source code to the community which can reduce dependence on a
vendor.

CC443D006-1.0 Page 38

OU Knowledge Network – 10 years of a successful repository service43

The Knowledge Network is a web-based information system that allows OU staff 'to find and share
OU expertise about teaching and learning'. After being developed in a three year project back in 2000
it has seen continued growth and impact. Changes in the way it can be supported eventually forced a
decision on if and how to sustain the service and preserve the valuable knowledge within. After a
formal options assessment the service is being migrated to a new platform to be delivered and
supported by a central systems team within the OU as part of a new enterprise content system. The
original software developer has been involved throughout and “felt ownership of the service", and is
now helping it to be ‘cultivated’ by the new team.

Early life

The system was developed in 1999/2000 as part of a £200k HEFCE-funded project on knowledge
sharing and management (UNLOCK Project, Josie Taylor and Patrick McAndrew). The design of the
application was developed by Doug Clow, James Aczel and Will Woods, with Alex Little doing the bulk
of the programming. The service was launched in 2000 and subsequently run by the Learning &
Teaching Technologies Team. It was a successful project with over 50% of the intended target audience
using it. Such success has been attributed to the fundamental appeal of the service, and the lightweight
metadata policy offering a 'low hurdle' for participation and the good access controls that separated
early draft versions of content from content intended for wide release.

Mid-life

The project funding lasted for 3 years and so external funding stopped in 2003. After 2003, there were
still lots of ideas of how to develop the service further, but less software developer effort to do this.
Using an internal budget a post was funded until 2009 to:

- support users;

- develop the service based on user feedback;

- champion the service within a 'departmental evangelist' model.

In 2005 the OU started to look at an enterprise-level content management system. Through a
tendering process it procured such a system that would be deployed and operated as a centrally run
managed service. However the enterprise system was not immediately compatible with the Knowledge
Network service: the Knowledge Network is an Adobe ColdFusion based platform, whereas the
enterprise system was going to be a Drupal PHP-based web system with EMC Documentum managing
the enterprise content and document life-cycle management. Also, part of the enterprise approach was
to rationalise the number of supported platforms and so the support overheads of the Knowledge
Network would run counter to this ethos. At the same time the Learning & Teaching Technologies
Team lost some key support personnel and it became clear there was a reliance on specific skills that
required frequent refresh.

In 2008, further development to the Knowledge Network was stopped, although the service was still
available to use unsupported (ie ‘as is’) and still considered very successful, with:

- 16000 distinct users;

- 11000 active users accessing content;

- 2000 document requests a month;

- 7000 distinct documents and 5000 workspace pages.

43 With special thanks to Will Woods who contributed to this case study in August 2010.

3 Purposes and benefits

CC443D006-1.0 Page 39

Deciding the future

Since the Knowledge Network represented "institutional information that we didn't want to lose" the
decision was made to migrate the Knowledge Network over to the enterprise system. This followed a
mid-2009 options appraisal that considered the following options:

1 - Migration onto new platform (providing some functionality, plus all the content);

2 - No migration and gradually phase the service out;

3 - Ground-up redevelopment of the service in PHP;

4 - Migrate content only.

Migration onto the new platform was presented as the preferred option, and demonstrated the
importance of the functionality, and not just the content. Since the enterprise system had not gone live,
the migration of a familiar system first was thought to help with getting buy-in for the enterprise
system. The fallback in that option was to make the content searchable and taggable in the enterprise
system if the functionality couldn’t be implemented. Ground-up redevelopment of the service was
considered risky as the bespoke code would lead to support costs and the central enterprise team may
not be willing to support it, particularly if the code doesn't integrate with the enterprise system.

A new-life

Migration thus far has consisted of working with the central enterprise system team to prioritise
Knowledge Network requirements and to map the current functionality over to PHP equivalents. Much
of the current service is bespoke code since, in 2000, repository, collaboration, commenting, etc
functionality was not available 'off the shelf'. Fortunately nowadays it is, and almost all of the high-
priority functionality maps across to standard Drupal components or modules. The medium-level
functionality can be implemented through customising Drupal modules. This means that the migration
project should not be a massive development project. With the functionality planned to be ready in
early 2011, content migration will then take place. User 'orientation' time has also been planned in
order to win users' 'hearts and minds' for the migration. Eventually the team are looking to switch off
the Knowledge Network altogether in July 2011. Thought is also being put into ensuring the high
visibility of KN content (for example ranked highly in Google searches etc.) can be managed across to
ensure that the external prominence of the information is maintained.

Lessons identified

Always plan for sustainability: always plan that services will continue to exist after funding stops
since an institution can't just turn popular services off. Considering the scenario in 5-6 years time
should help.

Start sustainability planning early: start the process a lot earlier than you would think. The team's
planning has been informed by the experience of migrating an online survey tool, that it takes 18-24
months to do this properly.

CC443D006-1.0 Page 40

Enforced technical preservation of an atmospheric model reduced research integrity

An atmospheric model was developed by an institution and ran on an institutional High-Performance
Computer (HPC) resource. However, an upgrade to the HPC resource meant that the software no
longer ran. Instead the team continued to maintain the old hardware for six months. As a precaution
they took an archive of the entire disk to allow recovery.

Eventually the model’s code was adapted so that it runs on the new hardware. However it doesn’t run
in all configurations and the team can’t guarantee its integrity. At least one similar model in another
organisation faced the same problem, but here the large up-front cost of migration to a new HPC
platform was deemed affordable and the outcome much more desirable.

Long-term migration of a research critical aphid database44

Introduction

Back in the early 1960s a group of entomologists wanted to monitor moth populations using traps
distributed all over the UK. They started doing this and extended data collection to aphids in the
1970s. Over time the research has been expanded further, for instance to include EU data. A key
research finding is that aphids are a good indicator of climate change and so specific parameters of
aphid populations are now used to track climate change. The research has also had an economic and
social benefit in enabling the Aphid Bulletin System that is used to notify farmers of particular changes
in crop-affecting aphid populations.

The research has only been possible because of careful data management and the evolving systems and
software that supported, managed and exploited the data. Notable changes in these systems include:

- In the 1960s the original population data was kept in simple files in a standard format.

- In 1983 the data was put onto a small microcomputer using dBase III.

- Later on, an IBM System/4 was used with a magnetic tape system that gave an editable file system with
the raw data. Fortran programmes were written to access, analysis and report.

- In the early 90s the system moved to a 1032 database package running under VAX VMS. This was
because the microcomputers became too limited and had 'been under notice of death for six or seven
years'. The other benefit of this system was that it got all the data (moth, aphid, and three other
species of insect) together.

- In the late 1990s EU funding was used to combine UK trap data with data imported from EU states.
The primary objective was to 'integrate existing observing systems at 73 sites in 19 countries to
provide a standardised, long term, consolidated, Europe-wide database on aphid incidence'. A Microsoft
SQL server and web interface was implemented to allow self-import of data. This system upgrade also
permitted substantial analysis and reporting facilities.

Latest developments

Since the EU project, data collection has continued. A known problem has been that over the years
'people have bent the data format' to suit new species and uses. The data curators have seen people
'massaging the data without looking at the underlying software'. As a response to this, in 2009 a new
project was initiated to develop a Java application from scratch and to undertake a big data cleanup
effort in the process.

44 Personal communication with Paul Verrier at Rothamsted Research.

3 Purposes and benefits

CC443D006-1.0 Page 41

Another benefit is that the research team wanted to include other kinds of insect, and so a generalised
data format and processing functionality is needed.

After 40 weeks of software development effort - and over 3000 lines of code - the project is at the
point of being able to load and use data.

The in-house development approach is to have one software engineer per project so that they can see
the project through from beginning to end.

This approach lets the engineer become the expert and minimises miscommunication. Although there
is a recognised risk that when people move on important knowledge is lost, there is also the belief that
the true understanding of the data is manifested in the scientists, rather than the software engineers -
thus mitigating the risk.

The main software packages concern the management of data, since there is a lot of metadata (type of
trap, location, etc) that needs to be recorded properly, and a 'huge number' of validation rules. The
system is still using Microsoft SQL on a single server, though this will be migrated in time to an in-
house MySQL server farm. Significant testing is planned including a comparison between the old system
and the new systems to see if any data has been left behind or if the basic analysis changes.

Conclusion

The system and software evolution outlined above has maintained access to the data, and provided
new functionality and broadened the system's scope. This has allowed new and better research to take
place. In practice there have been few 'headaches' around the software, and more around the aging
VAX hardware and around the data management. The ongoing software issues are technical problems
such as how to get better performance, how to map different data formats to a standardised format,
etc.

The final sustainability challenge has been that the lead software engineer is now retiring, and due to
budget cuts will not be replaced. He is working after his official retirement to ensure that the project
finishes and access to data maintained.

Lessons from the software engineering and research project

- Keep it simple: for example, describe anything complicated in the code, and use classes and
encapsulate wherever possible.

- Keep track of issues: this can be simple as the use of a notebook here demonstrated!

- Generalise from day one: some of the data management issues arose from […] originally handling
different species as different data. Similarly, the data format for a long while was reliant on 80 columns
of data as per the original punchcards.

- Consider 'missing values': the original system didn't record zero counts when the traps were
operating, so in retrospect it was impossible to tell whether nothing was found that day, or whether
the traps weren't used. This has now been addressed by including additional data, for instance what
people were looking for, and what they weren't looking for. Zero filling the data table is still infeasible
as the data and compute requirements would be too large.

- Keep your records: the team had kept the original handwritten records from the traps. This meant
that the data curators could go back and look up particular results.

- Design for reuse: some of the underlying classes have been used in a different project for curating
plant / pathology interactions. This has saved time and money.

CC443D006-1.0 Page 42

Institutionalising education software led to sustainability, and reuse elsewhere45

Talks.cam46 was designed as a clearing house of user-generated event information, to help academics
easily publicise seminars they organise, and to learn about intellectually stimulating events in Cambridge
which they might be interested in. Organisers of lectures or seminar series can submit details of their
events, which are put online on a public website, and which are shared via various methods including
RSS feeds, Calendar feeds, email reminders, embeddable website widgets, etc.

Talks.cam broke the traditional university software development model, being a grass-roots
development project initially, created by academics to meet a need they themselves perceived. As such,
it broke several of the traditional tenets of institutional software design and development; for instance,
it was not built by a central IT provider or with thought to an eventual place within institutional
systems and was not built following traditional ‘large IT system’ planning and processes. Instead
Talks.cam’s creators identified their personal needs and rapidly prototyped a system which met them,
deploying it on local computers which they had access to through their departmental computer
officers. There was no official support for the system, only that provided by the creators in their ‘own
time’. Some departments and thematic research initiatives began to use Talks.cam wholeheartedly and
provided some modest and fairly informal support to the system in terms of staff time. In the long
term, this was found not to be sustainable as Talks.cam grew popular and people began to depend on
it, without realising in many cases that it was not a fully official and supported system.

In response a project was undertaken to build sustainability of the software and service. A JISC-funded
project (~£50k of external funding) the ‘Engaging Responses to Emerging Technologies’ (EGRET)
project successfully institutionalised Talks.cam, a user-generated content and events syndication
system. The project had various strands, including technical work to improve the codebase, but also
operational (as the organisation absorbing Talks.cam had not prior experience of the Ruby on Rails
system) and governance (as control and oversight moved more from the creators to the organisation).
From its origins as a grassroots software experiment created by academics, but with potential value to
the whole institution, Talks.cam now has been successfully and completely absorbed into CARET, an
innovation unit within the University which supports teaching, learning and research activity. This is an
exemplar project, demonstrating the process of service handover, from initial idea to full institutional
service.

Development, preservation or sustainment?

Though the opportunity was taken to improve the codebase at the same time, it was the need to
sustain the service that drove the project. Because only the core functionality needed to be migrated, it
could be said that this was preserved.

Lessons

One of the major realisations of the project team (who are now looking to institutionalise other
services) is that a robust process is required to ensure that universities are supporting the best
applications only, and not committing resources to those of limited utility or high running cost. Useful
categorisations for them are software tools that (a) with work may make it; (b) which may look
suitable but which settle at a lower stage of growth; and, (c) which although their authors are
passionate about them, may never achieve the requirements needed for institutionalisation.

Software reuse

Furthermore, because Talks.cam source code continues to be publicly available under an open source
licence it has seen uptake elsewhere, including at the University of Birmingham and at Imperial College.

45 Taken and adapted from JOS Work Programme: Second Evaluation Report, Curtis+Cartwright Consulting, V1.0, 17

May 2010 and EGRET Final Report, Laura James, V1, 20 August 2009.
46 <http://talks.cam.ac.uk> accessed 4 October 2010.

3 Purposes and benefits

CC443D006-1.0 Page 43

PARSE.Insight47 explores preservation for research

“Researchers consider the possibility of re-analysis of existing data as the most important driver for
preservation of research data (91%), closely followed by future validation purposes (90%), the
advancement of science (89%), and public funding (87%).

At the same time, researchers (as a whole) regarded 'lack of sustainable hardware, software or support
of computer environment may make the information inaccessible' as the most important threat to
preservation out of the seven threats presented (though this varied by discipline). This is the same as
for data managers.”48

“When asked why data become unusable, all [data manager respondents] reported experiencing
situations in which data was lost because the software to interpret the data was no longer available.
The lack of contextual information (eg manuals, notes, documentation) was also a problem.”49

The High Energy Physics (HEP) research community responds

“In HEP, preservation of the data is usually pursued only a few years beyond the end of data taking,
allowing the analysis to be completed. In most cases the experiment’s heritage thus disappears soon
after due to the rapid changes in storage technology, computer hardware and software systems.

For any experiment, the potential use-cases define the level of complexity at which the data shall be
preserved. The Study Group for Data Preservation in High Energy Physics (DPHEP) came up with
different […] levels of increasing complexity (higher-level models, below, include the use-cases of all
the lower-level models):

- Level 1: Provide additional documentation. An enhanced [level of] documentation would be
a recommendation to any preservation model. This could include more information associated to
publications, analysis code, detailed information on systematic errors, internal reports, minutes,
slides, etc. ...

- Level 2: Preserve the data in a simplified format. A simple [data] format could be useful for
education and outreach purposes but would not be sufficient to perform a full re-analysis. In terms
of person-power, this option would require a dedicated expert effort to define the relevant
information set for a relatively modest technical implementation and long-term maintenance.

- Level 3: Preserve the analysis level software and data format. This level introduces a
supplementary dependence on the longevity of the experiment-specific software. More person-
power is thus required, and issues of backward compatibility (within the lifetime of the
experiment) arise. However, this option would be sufficient for a complete analysis, provided that
the existing data is sufficient for the pursued goal.

- Level 4: Preserve the reconstruction and simulation software and basic level data.
High-level analyses may require “raw”, detector-level data and the full simulation and
reconstruction software. Significant person-power is needed to prepare for preservation at this
level of complexity and to maintain long-term access and usability of the data. However, the clear
benefit is the enabling of a full-fledged re-analysis and combination with new data, thus maintaining
the full physics potential.

47 PARSE.Insight was a two year European project that started in March 2008.
48 <http://www.parse-insight.eu/downloads/PARSE-Insight_D3-6_InsightReport.pdf> accessed 11 October 2010.
49 <http://www.parse-insight.eu/downloads/PARSE-Insight_D3-3_CaseStudiesReport.pdf> accessed 11 October 2010.

CC443D006-1.0 Page 44

The Study Group recommends that the preservation effort should be built into the experiment
strategy at an early stage, such that the archival phase is done with a reduced effort. Open software
should be used as much as possible. The data preservation project should start early in order to benefit
from the expertise during the lifetime of the collaboration. In the longer term, it should be taken as a
permanent activity, implemented in the host laboratory or computing centre associated to the
experiment.”50

Decades of Software Sustainability at the Infrared Processing and Analysis Center51

The Infrared Processing and Analysis Center (IPAC)52 was established in 1986 and originally provided
expertise and support for the processing and analysis of data from the Infrared Astronomical Satellite.
IPAC was designed to be a center staffed by a team of scientists, development specialists, and
administrative staff that would work together closely, and to facilitate frequent interactions with both
CalTech and the astronomical community at large.

This concentration of scientific and technical expertise led to IPAC becoming the U.S. science support
center for the European Infrared Space Observatory, Wide-field Infrared Explorer, Midcourse Space
Experiment, and the Two-Micron All-Sky Survey. As these missions came to an end, IPAC continued its
archiving activities and institutional support of the US-based community.

This means that IPAC operates as a long term archive for data from a number of infrared and sub-
millimeter astronomy programs handling both the curation of the data, and its dissemination to the
community. As a result IPAC has had to take an active approach to software sustainability that seeks to
continuously develop the software tools used by the astronomy community, whilst retaining support
for all the data archives.

Build an engaged user community that is encouraged to contribute

IPAC embarked on a concerted program of user engagement to attract new users and build a user
community. This included user surveys, an end user group (drawn from the community), exhibits and
demos at conferences and workshops, advertisements in newsletters, and even “coffee pot”
conversations.

Contributions from the user community were not normally code contributions. Instead, the IPAC team
actively sought feedback eg watching users as they tried services and seeing where they got stuck, and
undertaking user surveys where respondents were asked to write down their views, rather than
answer questions. This is a more time-intensive approach to start with, but more successful in the long-
term: the number of IPAC end-users has increased to 18,000 and 12% of peer-reviewed papers in the
area cited IPAC archives or data. This is because IPAC have listened to their users – particularly the
advice they didn’t want to hear! – and undertaken an active migration approach to software
preservation and sustainability.

Legacy software can have a legacy: Modernisation of Scanpi53

Written in 1983, the Scanpi analysis code developed and supported by IPAC co-adds scans from the
previous far-infrared IRAS survey. It gives a much improved sensitivity gain over survey data products
and improves spatial resolution of extended or confused sources.

50 <http://www.parse-insight.eu/downloads/PARSE-Insight_D3-3_CaseStudiesReport.pdf> accessed 11 October 2010.
51 Synthesised from <http://astrocompute.wordpress.com/2010/09/23/software-sustainability-workshop-stories-and-

strategies/>, <http://astrocompute.wordpress.com/2010/06/12/one-model-for-software-sustainability/> and
<http://astrocompute.files.wordpress.com/2010/09/cardiff_slides.ppt> accessed 3 November 2010.

52 <http://ipac.caltech.edu> accessed 3 November 2010.
53 <http://astrocompute.wordpress.com/2010/06/20/a-case-study-in-software-modernization/> accessed 3 November

2010.

3 Purposes and benefits

CC443D006-1.0 Page 45

However, Scanpi is also a classic legacy code: written in Fortran 66, it had evolved into a patchwork of
scripts and bug fixes, and was a maintenance nightmare. Several dependent modules (eg for data
compression) were no longer supported, the software was stranded on Solaris 2.8 and the developer
was retiring.

In most cases, it might be assumed that the right approach for Scanpi would be to retire it gracefully,
but the IPAC user panel strongly recommended modernisation because of its value in supporting
interpretation of data from the current Spitzer and Herschel IR missions.

The software was rewritten from the ground up in C and developed as a workflow application which
gave visibility to the processing steps. Several existing components were isolated and refactored for
better reuse, leading to a reduction in the code base from 102,000 lines of code to just 21,000 again
making the software easier to sustain.

This has led to a legacy application finding a new use, and also represents a compelling argument for
user-led migration of software: the existing software took 0.5 FTE to support but by investing a slightly
larger effort of 1.25 FTE over a year that maintenance cost has been reduced to 0.1 FTE.

Size and usage of the IPAC archives have grown, but the software and effort to support it has scaled
because it’s based on common hardware and software architecture, driven by user input.

Lessons in good practice in software sustainability:

- Design for sustainability, extensibility, re-use and portability;

- Build an engaged user community that encourages users to contribute to sustainability; in
particular listen to the advice you don’t want to hear;

- Be careful about new technologies: do a cost benefit analysis before adopting them;

- Use rigorous software engineering practices to ensure well-organized and well-documented code;
in particular control your and manage your interfaces and make source code and test and
validation data available.

Collaborative Computational Projects: in it together54

The Collaborative Computational Projects (CCPs) bring together leading UK expertise in key fields of
computational research to tackle large-scale scientific software development, maintenance and
distribution projects. Each project represents many years of intellectual and financial investment.

The aim of the CCPs is to capitalise on this investment by encouraging widespread and long term use
of the software, and by fostering new initiatives such as linking to high end computing consortia.

The focus of the CCPs are to provide and support a software infrastructure on which important
individual research projects can be built. This means that CCPs are typically grouped around particular
research areas, eg electronic structure of molecules, protein crystallography or biomolecular
simulation, and they support both the R&D and exploitation phases of computational research projects.
CCPs support a relatively small set of researchers (~1000 in total) but represent the majority of the
leading groups in each area, which leads to over 500 papers a year (12% in high-impact publications)
based on CCP software. This high impact in turn leads to improved chances of sustaining the software.

The main activities of the CCPs are to:

- Carry out flagship code development projects;

54 <http://www.ccp.ac.uk> accessed 3 November 2010.

CC443D006-1.0 Page 46

- Maintain and distribute code libraries;

- Organise training in the use of codes;

- Hold meetings and workshops for users of the codes;

- Invite overseas researchers to engage in collaboration;

- Issue regular newsletters.

A good example is CASTEP.55 This is a software package which uses density functional theory to
provide a good atomic-level description of all manner of materials and molecules. In 1999 a group of
UK academics came together to develop a new plane-wave density functional code. This group was to
become the CASTEP Development Group. The aims of the project were to produce a clean, stable,
portable code which would be easy to maintain and develop. In particular the code was to be designed
and specified in advance, with a consistent design philosophy throughout. Since then many new features
have been added and continues to be developed actively. CASTEP is marketed commercially by
Accelrys, along with Materials Studio, their graphical frontend for Microsoft Windows. In the UK there
is an academic distribution, which is available from CCPForge.

The flagship and library model is an interesting approach to ongoing software preservation. Flagship
projects represent innovative software developments at the leading edge of a CCP’s area of science or
engineering. They normally last for three years, funded by research councils, and may support a
researcher associated with the project. At the end of a flagship project, the resulting software usually
becomes part of the code library supported by the CCP. In some cases, code is released under closed-
source licenses which allow income to generated to support ~ 1FTE of staffing specifically for software
maintenance.

This flagship model suits most CCPs. It provides a mechanism for responding to advances in the
appropriate subject area and maintains the interest of participating staff in cutting-edge research. Other
CCPs, especially those involved closely with experimental research (CCP4, CCP14, CCPN), focus
more on the collation, standardisation, and development of data analysis codes. Here, it is vital to keep
pace with rapid developments in instrumentation.

The CCPs are funded competitively through regular Research Council grants. They have also benefited
from support by staff at STFC's Daresbury Laboratory, funded via an agreement with the Research
Councils. Such staff provide expert technical and administrative support, including the CCPForge
development infrastructure, and are frequently involved in large-scale program development projects.
This centralisation of some technical and administrative functions enables more efficient support for the
software, but also ensures that best practice can be passed between individual CCPs.

This collaborative approach makes the community able to adapt and respond to developments in
computer science, information technology and hardware. One of the strengths of the model is that the
focus of each CCP has evolved to maintain international scientific (not just technical) topicality and
leadership within its community, whilst supporting the continued use and development of software for
over three decades.

Further information and useful resources
Sustainable economics for a digital planet: Ensuring long term access to digital information
http://brtf.sdsc.edu

55 <http://www.castep.org> accessed 3 November 2010.

3 Purposes and benefits

CC443D006-1.0 Page 47

3.6 Software developer benefits

3.6.1 The benefits given in the sub-sections above accrue mostly to the users of the software, or
their organisation, or the higher education sector, or (most broadly) society itself.56 In order to
redress the balance somewhat to the developers who are likely to be contributing to software
preservation efforts, some personal level benefits are given below. These, necessarily, are
subjective and apply selectively in each situation.

– skill mastery at making longer-lived, more durable software;

– kudos from continued (and wider) use;

– recognition of creativity and problem solving skills (the ‘technical challenge of software
preservation’);

– personal satisfaction from full lifecycle engineering;

– nostalgia value in revisiting old software;

– time and effort savings from better software engineering (that could be used on more
interesting problems);

– personal satisfaction from seeing organisational, sector-level or societal benefits
(‘contributing to the greater good’);

– personal satisfaction in formally finishing a task (‘achieving closure’);

– professional satisfaction in forging new partnerships (eg working with archivists or
members of an open source community).

56 Misalignment of incentives was a key theme in the Blue Ribbon Task Force Final Report: “Misalignment of incentives

among stakeholders may occur between communities that benefit from preservation (and therefore have an incentive
to preserve), and those that are in a position to preserve (because they own or control the resource) but lack
incentives to do so.” We believe there is a risk of this with software preservation, and so present some benefits to the
developer.

CC443D006-1.0 Page 48

This page is intentionally blank

CC443D006-1.0 Page 49

4 Making better decisions about software preservation

4.1 Introduction

4.1.1 This section sets out guidance to help you decide if your software needs to be preserved, and
how to go about preserving it. We do not believe that there is a simple and universally
applicable formula for determining this, so instead present thought-provoking questions and a
range of factors which should be taken into account. This section is best used by reading
through and giving careful consideration to those aspects relevant to the software you are
interested in.

4.1.2 Note that if at all possible, it’s advisable to turn a software preservation problem into a data
preservation problem. These problems are invariably easier to handle.

4.1.3 This section is divided into the following three sub-sections that seek to guide on the question
posed:

– Does this software need preserving?
– How should this software be preserved?
– Should preservation measures be built into your software development processes?

4.1.4 Considering these three questions should help you decide your strategy and immediate
actions for preservation. The first two are interrelated questions, not least because examples
have been found where things have been preserved because it was relatively easy to do so57,
and so both should be answered in turn. The first two questions should also answer the
question of whether it is viable for the software to be preserved in its current state. In some
cases this will be yes, in other cases further development work, further documentation or
other activities will be required.

4.1.5 The second of the questions refers to different approaches to software preservation. Our set
builds and elaborates on the traditional three used within digital preservation. The set of
approaches (and hence options to choose from) are described in Annex A.

4.2 Does this software need preserving?

4.2.1 This question is best answered by considering a set of sub-questions. If clear, positive and
compelling answers are available for each, then there is a good case for preservation.

Is the software covered by a preservation policy / strategy?

4.2.2 Firstly, every organisation should have a preservation policy or strategy that covers software.
Check whether you have an institutional duty to preserve the software. Where there are
external funders involved, there may be small print in your funding agreement.

57 If the cost of preservation is low and the benefits uncertain but potentially significant then it makes sense to

preserve.

CC443D006-1.0 Page 50

4.2.3 When an organisation’s preservation policy or strategy is first developed and applied, it may
require an audit of all used and held software. The Component Obsolescence Group (COG)
details a risk management-based process for undertaking such an audit in an operational
computing environment. It is applied by reviewing each system in turn.58 The process
diagram is repeated for illustrative purposes, with kind permission, below:

Accept that software
obsolescence will occur!

Identify the system to be
supported, the term of

support and any regulatory
requirements

Identify software associated
with the system

Identify the software
obsolescence risks

Continuous Upgrade

Deal with the software
obsolescence risks

Upgrade at Mid-life for
defined intervals

Freeze (Do Nothing)

Maintain skills in-house

Support Contracts

Ensure Essential
Processes are
implemented

Configuration
Management

Fully Documented
System

Change Control

Media Management

Disaster Recovery

Review Regularly and look for
Changes!

Figure 4-1: COG Process Overview

58 The Software Obsolescence Minefield, COG and Graeme Rumney, Issue 1, 2007.

4 Making better decisions about software preservation

CC443D006-1.0 Page 51

Is there a clear purpose in preserving the software?

4.2.4 Whereas an organisational preservation policy or strategy will have been written with
organisational purposes in mind, there may be one or more purposes specific to your
situation that then demands preservation. Reviewing the four purposes from the previous
section may identify one as particularly relevant. If one can be identified, how compelling is
it? A clear and compelling purpose is an absolute must for choosing to invest in software
preservation.59

4.2.5 With respect to the four purposes from the previous section, some additional pointers are:

– Encourage software reuse: The key point here is if the software is suitably mature
for reuse. The NASA Reuse Readiness Levels (RRLs)60 can be used to assess if
something is mature enough to release for reuse. If the RRL is 3 or above then reuse is
a consideration. If the RRL is 1 or 2, and even at 3 and 4, then further work is required
to make it ready for reuse.

– Achieve legal compliance and accountability: It should be self evident if there is a
mandatory requirement for preservation. What type and degree of accountability are
necessary should already be a consideration in all activities, especially publicly funded
ones. Working with valuable or sensitive data (eg corporate data, medical research,
projects relevant to government policy) may fall into this category.

– Create heritage value: Based on work by Sellam Ismail at the Computer History
Museum61 some selection criteria for software might be:
– could reasonably be considered an important example of its type;
– introduced a new paradigm, product family or launched a new industry;
– developed using a new and significant software development methodology;
– serves to demonstrate a significant and colossal failure;
– significant copies sold or large install base;
– underlying code has qualities of merit worth preserving;
– was utilised in something of historical or cultural importance;
– sufficiently antiquated;
– supports other preserved software.

– Enabled continued access to data and services: This purpose explicitly shifts the
focus to the data and/or services that the software supports, and the nature of the
relationship between the data/services and software. Software preservation might be
essential when data and software can’t be decoupled, and when there may be a future
requirement to verify results. Software preservation may be desirable when considerable
investment has been put into software, and when there is a strong need or motivation to
reuse data, for instance where data was expensive to obtain or is non-reproducible.

59 "Articulate a compelling value proposition", in the words of the Blue Ribbon Task Force report <http://brtf.sdsc.edu>

accessed 7 October 2010.
60 < http://www.esdswg.com/softwarereuse/Resources/rrls/> accessed 14 October 2010.
61 A list of the Software Selection Criteria developed by Sellam Ismail was included as part of a May/June 2005

interview published at <https://softwaretechnews.thedacs.com/stn_view.php?stn_id=1&article_id=30> accessed 30
September 2010. It was noted that the prospective software “must meet one or more, preferably two, of the […]
conditions”.

CC443D006-1.0 Page 52

Is there a clear time period for preservation?

4.2.6 Ideally as part of a requirement for preservation (rather than a ‘nice to have’) there would be
an associated time period in which the software is stored, retrievable, reconstructable and
executable. For instance, if software forms part of a particular records or audit system then
there should be a defined retention period. Some Research Councils have mandated certain
periods of preservation for research outputs (including software).

4.2.7 Note that the answer does not need to be ‘long’. Short or mid-length decisions are fine. As
the Blue Ribbon Task Force report says, “a decision to preserve now need not be thought of
as a permanent or open-ended commitment of resources over time. In cases where future
value is uncertain, choosing to preserve assets at low levels of curation can postpone ultimate
decisions about long-term retention and quality of curation until such time as value and use
become apparent.”

Do the predicted benefit(s) exceed the predicted cost(s)?

4.2.8 Despite the inherent uncertainty in digital preservation issues, some sense of whether the
predicted benefit(s) exceed the predicted cost(s) is useful for informing whether some
software should be preserved. Benefits were outlined in the previous section, and some of
the costs principles associated with particular approaches are set out in Annex A. This report
has tried to outline many factors and, as stated earlier, each instantiation of a cost-benefit
analysis, or business case, or benefits realisation plan, should, obviously, carefully consider
and justify each benefit they assert.

4.2.9 A good question to ask is: how much use is there, and how many users are there? Is this
different from anticipated use or users in the future? Usually ‘classic’ preservation (rather
than active development, maintenance or sustainability) is a consideration where the number
of users is zero, low or on the decline. Active preservation is more applicable where the
number of users is increasing, or could increase, and so there could be immediate benefits
from use as well as preservation benefits.

4.2.10 It is not just a question of quantity of use and users, since the utility, impact, dependence,
etc are all indicators of the value of use. For instance, having many users of a software
package that is useful and not critical, and where many alternatives exist, is a different
situation from where there are fewer users but where the software offers a unique function
and that function is critical to the users’ work.

4.2.11 The Blue Ribbon Task Force final report also usefully points out that “The value proposition is
not a one-time declaration. Benefits can decline or be eclipsed by other priorities, and the
value proposition must be revisited and re-articulated over the course of the digital asset
lifecycle. But in all cases, the ultimate threat to persistent access to digital assets occurs
when those responsible for preserving the materials decide that the cost of preservation
exceeds the perceived benefits to them of long-term access.”

4.2.12 The principal disbenefits of allocating effort to software preservation are the costs
involved.62,63 Each approach (see Appendix A) requires some, if not considerable, effort and

62 The ITT for this study called for inclusion of ‘disbenefits’. These can be thought of as disadvantages. The Office of

Government Commerce defines a ‘disbenefit’ as ‘an outcome perceived as negative by one or more stakeholders;
disbenefits are actual consequences of an activity, whereas a risk has some uncertainty about whether it will
materialise’.

63 As the Blue Ribbon Task Force final report states “In some cases, the benefits of preservation may be most
compellingly expressed in terms of negative benefits—the costs incurred if data are not preserved. These costs may
reflect the time and effort needed to recreate the information or, if it cannot be recreated, the kinds of uses that
would then not be possible. For classes of data that carry ethical issues—human subject and animal research,

4 Making better decisions about software preservation

CC443D006-1.0 Page 53

perhaps financial investment too. Also important is the opportunity cost – ie if not used for
preservation, what outcomes could have been achieved with the best alternative use of the
effort and money? For instance, if a researcher who has coded some software for their
academic use and then polished the code and archived it on sourgeforge.net but then it sees
no further use – could that time have been better spent conducting research, formulating
new ideas, attending a conference, etc? The potential loss of not preserving software (ie all
the activity that it could have enabled) also bears consideration. All costs are important given
the often inherent uncertainty about the long-term value from software preservation.

Is there motivation for preserving the software?

4.2.13 With digital preservation there is often a misalignment of incentives. And, even if the person
with responsibility, power or expertise has the incentives they still may not be interested in
using their time for software preservation. Finding someone with drive and enthusiasm would
help.

Is the necessary capability available?

4.2.14 Certain technical capability (systems, skills, etc) and non-technical capability (information,
soft skills, support, etc) might be required for a particular preservation approach.
Understanding whether the right capability is available is important.

archaeological sites, or extinct species and languages—the benefits of preservation are often better framed as
mitigating the risks of unacceptable loss—unacceptable because the loss violates shared ethical standards.”

CC443D006-1.0 Page 54

4.2.15 A good example of this is the decision flowchart from the SigSoft team. This highlights the
importance of whether the significant properties are available and elicitable (via personnel,
documentation, etc). This flowchart is repeated below:

Figure 4-2: SigSoft Process Overview

4.2.16 Project management capability (eg planning and risk management skills) may well be
required, especially if the proposed preservation activities are substantial.

4 Making better decisions about software preservation

CC443D006-1.0 Page 55

Is the necessary capacity available?

4.2.17 This question addresses whether preservation is affordable, both in terms of effort and
money. You could consider different models, for example bringing in specialists if the
necessary capacity is not available in-house.

4.2.18 It should be noted that availability and affordability of capacity changes over time, another
justification for viewing preservation activities as an ongoing review process, not a one-off
decision.

4.3 How should this software be preserved?

4.3.1 So, you have decided to preserve your software. How should you go about it? Seven different
approaches to preservation are detailed in Annex A, and are summarised here as:

– Technical preservation (techno-centric) - Preserve original hardware and software
in same state;

– Emulation (data-centric) - Emulate original hardware / operating environment,
keeping software in same state;

– Migration (functionality-centric) - Update software as required to maintain same
functionality, porting/transferring before platform obsolescence;

– Cultivation (process-centric) - Keep software ‘alive’ by moving to a more open
development model, bringing on board additional contributors and spreading knowledge
of process;

– Hibernation (knowledge-centric) - Preserve the knowledge of how to
resuscitate/recreate the exact functionality of the software at a later date;

– Deprecation - Formally retire the software without leaving the option of
resuscitation/recreation;

– Procrastination - Do nothing.

4.3.2 A whole range of considerations are pertinent to choosing between these options. These
include:

– How much access do you have?
– Are you the owner of the code?
– Are you the developer of the code?
– Do you have access to the source code?
– Do you have access to the hardware the software is running on?
– Are you a user of the software?64

– Do you have the necessary Intellectual Property Rights (IPR)?

– What are you needing to preserve?

64 Even end users can influence whether software is sustained. For example, weight of customer opinion forced

Microsoft to extend its support for Windows XP when it perhaps would have preferred wholescale migration to
Windows Vista. On the smaller scale of niche academic software user opinion should carry greater weight.

CC443D006-1.0 Page 56

– A few major pieces of functionality;
– Most of the functionality, but tolerant of minor deviations;
– All functionality, but fixing errors when found;
– Must perform exactly as original.

– What is your likely effort profile?
– Something now, nothing in future;
– Something now, something in future;
– Nothing now, something in future;
– Nothing now, nothing in future.

– What is the maintainability of underlying hardware?

– Is maintaining integrity and/or authenticity an important requirement?65

– How long do you want to preserve it for?
– In general, source code can be preserved for longer than binaries.
– Design documents, pseudo-code, test data, etc lasts longer than source code.
– Standards last longer than software product series, which last longer than software

versions.
– If software needs to be preserved for a decade or more, this is multiple generations

of technology.

– Can you afford it?
– Do you have the necessary funding and effort to commit to preservation?

– Are you also interested in further development or maintenance?
– For example, new or improved functionality might be a parallel interest.

– What development effort has been invested into the software so far?
– Whilst ‘sunk costs’ should not influence whether software is preserved, the effort

that has gone into the software may reveal whether code or binaries should be
preserved, or should efforts go into preserving the design, test data, algorithm, etc.
For instance, if a trivial script was written to produce a particular graph for a paper
and the method has already been documented in the algorithm, then perhaps it is
better to retain the capability to rewrite the software rather than preserve the
software with other approaches.

– Is the software already open source, or could it be made open source?
– Are there any barriers to making it open source?

65 Sometimes maintaining the chain of custody is critical. For example, the preservation of some computer games has

required that the ‘taking off of the shrink-wrap’ is logged and tracked.

4 Making better decisions about software preservation

CC443D006-1.0 Page 57

Is each approach appropriate to every purpose?

4.3.3 No. Some approaches are better suited than others to each purpose. The table below
provides an indicative mapping between the four purposes and appropriate approaches.

 Technical

preservation Emulation Migration Cultivation Hibernation

Achieve legal
compliance and
accountability

Create heritage value

Enable continued
access to data and
services

Encourage software
reuse

4.3.4 We do not consider procrastination to be an appropriate approach to any software.

What are the relative advantages and disadvantages of each approach?

4.3.5 Understanding the advantages and disadvantages of your intended approach is key to
making a final decision. The table below sets out some advantages and disadvantages.

Approach Advantages Disadvantages

Technical
preservation
(techno-centric)

– Clearly defined approach

– Can often change to emulation at later
date

– Access to source code not necessary

– Will perform exactly as original

– Minimal technical capability required

– Well suited to embedded systems

– Risky to rely on hardware and
software which is no longer
supported or is considered obsolete

– Does not guarantee future access if
dependent on other
hardware/software (eg networking)

– Can be vulnerable to malicious
attack

– Access may be limited to a specific
physical location

– Use is limited to those users with the
specific hardware / software setup

– Long-term hardware degradation
make this a short-term approach

CC443D006-1.0 Page 58

Approach Advantages Disadvantages

Emulation
(data-centric)

– Little technical capability and effort
required if reliable emulator exists

– Easier to manage virtualised hardware

– If emulator continues to be
developed/supported, software can
continue to be run indefinitely

– Access to source code not necessary

– Need all aspects of hardware to be
emulated correctly, including flaws

– Should perform exactly as original
but there may be subtle nuances or
annoying quirks; at worst it ought to
provide general functionality but
sometimes there are more serious
problems

– May need a licence for emulator

– If emulator ceases to be developed
need an alternative approach

– Can be vulnerable to malicious
attack

– Performance often suffers

Migration
(functionality-
centric)

– Allows further continued maintenance
of software

– Allows further development of
software for new or enhanced
functionality

– Enables access on other platforms

– Source code approaches likely to
outlast binary based approaches

– Requires intellectual property of
software to be held

– Requires continued effort for
maintenance and porting

– Requires enduring technical
capability

– Little guarantee that it will perform
exactly as original, but major
functionality should be preserved
and is better for where there is
tolerance of minor deviations

– Frequency of update is unpredictable
(technologies are volatile)

Cultivation
(process-centric)

– Shares the sustainability workload

– Increases chances of continued
maintenance of software

– Allows further development of
software for new or enhanced
functionality

– Potential for better migration to other
platforms

– Source code approaches likely to
outlast binary based approaches

– Not a quick nor guaranteed fix
(building a self-sustaining
community takes time and often
fails)

– Requires intellectual property of
software to be held

– Requires more coordination

– Possibility of loss of control of
direction

– Technical and community-building
capability required

Hibernation
(knowledge-centric)

– Useful when you have a known break
in effort

– Supports repeatability/reproducibility
of results as the same or similar
algorithm can be re-implemented

– Documentation-based approach could
be longest lived

– Can be difficult to check if
hibernation processes are rigorous
until after it is too late

– Requires familiarity and
understanding of software

– Returning to any code after a long
delay will always be hard

Deprecation – Threat of deprecation may stir latent
users into action

– Unambiguous statement of status of
the software

– Closes option of future use, which is
often hard to predict

– May require software archaeology
skills in the future

4 Making better decisions about software preservation

CC443D006-1.0 Page 59

Identifying purposes, benefits and scenarios for the DMAREL software

The purposes, benefits and approaches in this section have been applied retrospectively to the
DMAREL software, showing how a rationale can be created and a preservation strategy (migration
with a hint of emulation) chosen. DMAREL is an application in the domain of computational chemistry
that allows energy minimisation of rigid molecules with the electrostatics described by a distributed
multipole. It was written by Maurice Leslie who was in the Computational Chemistry Group (CCG)
at Daresbury Laboratory under the auspices of the Engineering and Physical Sciences Research
Council (EPSRC) for the EPSRC's Collaborative Computational Project for the Computer Simulation
of Condensed Phases (CCP5).66

DMAREL was a key component of a computational workflow used by Prof Sally Price’s group at UCL
in order to predict the theoretical existence of different crystal structures of molecules.

Motivations

However, there was an increasing need to move on from DMAREL. A key motivation for this was
whilst DMAREL could successfully predict crystal structures on the size of eg a Benzene molecule, the
UCL research team had requirements to predict structures for much larger molecules. Another
motivator was that the major author and maintainer of DMAREL was in the process of retiring but
was maintaining the software on a goodwill basis which was clearly not sustainable.

As part of the CPOSS (Crystal Prediction of the Organic Solid State) project67, Prof Price’s group
decided to develop a new codebase themselves. In order to achieve this, they first negotiated the
intellectual property transfer from Daresbury to UCL.

The Migration and Deprecation Process

Following this, they began a process of knowledge transfer from the original author to the present
team. Still a Fortran application, they were constrained in that DMAREL formed part of a much wider
community of use where it was embedded in other application workflows.

 The replacement would have to be backwards compatible with respect to all inputs, outputs and
application options to ensure plugin-compatibility into existing DMAREL related workflows.

66 <http://www.cse.scitech.ac.uk/ccg/software/DMAREL/index.shtml> accessed 14 October 2010.
67 See DMACRYS pages on <http://www.cposs.org.uk> accessed 14 October 2010.

Approach Advantages Disadvantages

Procrastination – Comes naturally

– No upfront cost

– May be the best approach where trivial
effort was needed to develop
software, or it was a useful training
exercise, and there are no other users

– Entirely reactive: not a valid
preservation approach!

– May require software archaeology
skills in the future

– Largest later cost, if software is
needed again

CC443D006-1.0 Page 60

This essentially meant they had to work to understand the current usage of DMAREL outside of their
own group in other workflow ecosystems. Having done this, they replaced DMAREL in their own
workflow with DMACRYS to validate its behaviour, which was successfully achieved within the
ENGAGE-CPOSS project68. They clearly recognised the need to duplicate previous results from
DMAREL with DMACRYS, and went to great lengths to verify that workflows where DMAREL was
used produced identical results when replaced by DMACRYS.

With the new version, not only could UCL do bigger scale science, but anyone using DMAREL could
use DMACRYS in the same environments, which acts the same as DMAREL in all appropriate
respects. Now they are confident DMACRYS is a suitable successor to DMAREL, they have taken
ownership of links with DMAREL and are actively deprecating it. This requires actively seeking
changes to the website of the original supplier and replying to any requests for DMAREL with e-mail
that strongly encourages that new users use DMACRYS and warning that DMAREL is no longer
supported.

The principle preservation approach was migration of the software’s function to new software/There
is also an element of emulation - in the sense of ‘pluggable’ compatibility within an application
environment (ie precise emulation of previous input and output formats, options and application
behaviour). This extends the emulation concept beyond the emulation of an operating system or
other similar environment. Finally the original code was actively deprecated in order to prevent
bifurcation of the user community.

How this relates to the framework

Encourage software reuse

The relevant scenarios within this purpose in the framework are:

- Continuing operational use in institution;

- Increasing uptake elsewhere.

But in addition, they needed a superior product with the constraint that it was backwardly compatible
with its predecessor.

The benefits were:

- Increased quality and dependability – the codebase was reengineered and provided improved and
larger-scale functionality;

- Focused use of specialists – by centralising development within UCL;

- Reduced duplication - superseded and actively deprecated predecessor;

- Opportunities for commercialisation - pharmaceutical companies would find it impossible to be
able to analyse modern drug candidate compounds using DMAREL - too small-scale.

Enable continued access to data and services

The relevant scenarios within this purpose in the framework are:

- Reproducing and verifying research results – the emulation aspect;

- Repeating and verifying research results (using the same or similar setup);

68 <http://www.engage.ac.uk/documents/engage/pb-summary-

pdfs/ENGAGE%20Project%20Brief%20Crystal%20Energy%20Landscape%20-%20public.pdf> accessed 14 October
2010.

4 Making better decisions about software preservation

CC443D006-1.0 Page 61

- Reusing data in combination with future data – can re-analyse previous data in more detail and in
more ways;

- 'Squeezing' additional value from data – more analysis detail can be provided from prior input
data;

- Identifying new use cases from new questions;

- Maintaining legacy systems (including hardware) – the CPOSS ENGAGE project was not possible
without development of DMACRYS; DMAREL needed to keep operating for a while so that they
could validate results;

- Ensuring business continuity;

- Avoiding software obsolescence – the most important in this case.

The benefits in terms of data were:

- New insight and knowledge – due to the magnitude of the science now possible with DMACRYS;

- Increased assurance in results.

Additionally, it enabled them to raise their profile within field. And although not a primary goal, a
‘nice-to-have’ was the commercial licensing opportunities that grew out of this work since DMACRYS
could meet the scale required by industry.

The benefits in terms of services were:

- Current operations maintained – the revised software is fully backwards compatible with its
predecessor;

- Opportunity for improved operations via corrective maintenance – the software is being
developed within a more sustainable environment so corrective actions are more tractable.

An additional benefit, in itself, is that the team is more sustainable as a software development group.

Lessons learnt

- The effort required for the transfer of intellectual property was underestimated - observing the
legal formalities was time-consuming but strictly necessary in order to clarify the IP position.

- From a development perspective, adoption of a source code Revision Control System is far more
sustainable than their previous manual process of merging updates.

- Good technology knowledge transfer is very important in migration of development to the new
team; they were fortunate to have the previous software author as a retired consultant.

- Understanding of the wider ecosystem of DMAREL was critical to understanding how best to
approach the development of DMACRYS – the identified need to maintain the Input / Output
(IO) formats and options was critical.

CC443D006-1.0 Page 62

4.4 Should preservation measures be built into your software development
processes?

4.4.1 A principle from other areas of digital preservation69 and a strong lesson from the case
studies in this report is that considering preservation, sustainability, etc upfront (and again
regularly) is important. This would imply that building preservation measures into software
development measures is good practice. But what are these ‘preservation measures’? Two
measures are apparent:
– Software engineering: As sub-section 2.5 stated, ‘good software preservation arises

from good software engineering’ so encouraging better software engineering practice
will benefit software preservation if and when required. Software engineering practice
includes the Significant Properties concept.

– Identifying explicit preservation requirements: Requirements capture and
management is an upfront activity in software development, and preservation
requirements should be considered along with other requirements on functionality,
interfaces, performance levels, security/privacy, etc. Explicitly agreeing and building in
preservation requirements means that the specification, design, maintenance, etc will all
reflect the need for preservation. Changing preservation requirements can be
accommodated as with any other type of requirement.

4.4.2 The extent to which both software engineer practice and preservation requirements should
be a priority depends on both the intended functionality of the software (ie whether it fits one
or more of the four purposes) and the nature of the software itself. For example, is the
software meant to be a proof-of-concept demonstrator, something more heavyweight like a
pilot, or perhaps an operational service for a defined set of users? Each allows a different
approach to be taken with different expectations of robustness and longevity. For instance,
the development of large-scale, complex software always benefits from software engineering,
so this supports software preservation too.

4.4.3 A strong analogy can be made to the well-understood place of risk management in software
development processes. By building software preservation measures into existing software
development processes is similar way to the application of risk management measures
through the development of a piece of software. One can therefore take an appropriate
approach to preservation dependent on the many factors (software maturity, impact of use,
availability of effort etc) and review this as part of the ongoing software development
process.

69 For example, an action articulated in the Blue Ribbon Task Force final report was "Take preservation steps early in

the digital lifecycle; create and codify contingency plans; make and implement plans for handoffs to address
economic risks over the digital lifecycle.", Sustainable economics for a digital planet: Ensuring long term access to
digital information, Final Report of the Blue Ribbon Task Force on Sustainable Digital Preservation and Access,
February 2010, <http://brtf.sdsc.edu> accessed 5 October 2010.

CC443D006-1.0 Page 63

A Different approaches to software preservation

A.1 Summary

A.1.1 This annex provides a brief overview of different approaches to software preservation. This
helps set the context and guidance in the main body of this framework document. The
approaches set out are an extended set from those traditionally covered.70 This is done to
give proper coverage of approaches specific to open source software, to include a more
pragmatic option that gives additional flexibility and to include a ‘default’ option for a
baseline. The different approaches therefore covered are:

– Technical preservation (techno-centric) - Preserve original hardware and software
in same state;

– Emulation (data-centric) - Emulate original hardware / operating environment,
keeping software in same state;

– Migration (functionality-centric) - Update software as required to maintain same
functionality, porting/transferring before platform obsolescence;

– Cultivation (process-centric) - Keep software ‘alive’ by moving to a more open
development model, bringing on board additional contributors and spreading knowledge
of process;

– Hibernation (knowledge-centric) - Preserve the knowledge of how to
resuscitate/recreate the exact functionality of the software at a later date;

– Deprecation - Formally retire the software without leaving the option of
resuscitation/recreation;

– Procrastination - Do nothing.

A.1.2 Each approach is provided with a description, a set of activities, notes on costs and some
pointers to further information and useful resources.

A.1.3 Some metrics (or more general indicators) are also proposed to determine if the approach is
going to plan. These will need to be tailored to the specific software preservation plan being
used. A suitable set of metrics will inevitably cover a broader scope than software
preservation (eg the software development process) and include technical, process and
economic factors. Some concepts and examples are identified for each approach.

A.1.4 Good questions to ask in undertaking each approach are: What would happen if the lead
developer were hit by the proverbial bus? What would happen if the project (or organisation)
were to be shut down urgently? Continuity (in each of the four aspects of storage, retrieval,
reconstruction and replay) is necessary for software preservation.

A.1.5 This annex can be used either as a refresher for the different approaches or as a starting link
to a more detailed investigation. For a comparison of the different approaches see sub-
section 4.3.

70 The three main preservation approaches to digital preservation – Technical Preservation, Emulation and Migration -

and their origin are described in the Cedars Guide to Digital Preservation Strategies (2002),
<http://www.webarchive.org.uk/wayback/archive/20050410120000/http://www.leeds.ac.uk/cedars/guideto/dpstrate
gies/dpstrategies.html> accessed 7 October 2010.

CC443D006-1.0 Page 64

A.2 Technical preservation (techno-centric)

A.2.1 Technical preservation is a planned and intentional decision to keep the software and
hardware running in the same state. There is also the option of purchasing and spares so
that components can be replaced as they fail. Bear in mind that no obsolete technology can
be kept functional indefinitely. Technical preservation generally works best for when there is
a known preservation period (especially if this is less than known support periods).

A.2.2 Software is reliant on hardware, and hardware changes as each new model is released. Over
time, hardware will change to such an extent that older software will not run on the latest
hardware. Without the hardware to run on, software becomes redundant.

A.2.3 The easiest way to ensure that there will always be hardware to run your software is to
preserve the hardware. Technical preservation has one big benefit: it’s easy. You simply
continue business as usual. There are drawbacks to this approach. The first is maintenance.
Over time, hardware components will wear out and must be replaced. If the hardware is no
longer manufactured, components become scare and expensive. Ultimately, you may find
yourself with broken hardware and no way of fixing it – leaving you with redundant software.
The second drawback is isolation. Your software only works with very specific hardware,
which limits your users to those people with the right hardware. This might be a very small
group.

A.2.4 Technical preservation is a straightforward approach to sustainability, but it’s only as reliable
whilst you have a stockpile of spare parts.

A.2.5 Specific activities within this approach are likely to include:
– purchasing spares;
– regular checking that the system works;
– maintaining hardware;
– replacing hardware elements as they fail;
– scheduling review points in the calendar.

A.2.6 There are some points to factor in about the costs of this approach:
– Some upfront costs to purchase spares;
– Low cost initially (maintenance only) to keep the hardware and software running;
– Costs likely to rise over time as maintenance gradually becomes more difficult;
– At some point a large cost will be incurred as hardware fails and a replacement approach

is necessary.

A.2.7 Some metrics or indicators to monitor to know how well this approach is proceeding could be
designed around one or more of the following:
– continued executability (eg percentage monthly uptime, or number of failures a month);
– ongoing maintenance overheads (eg effort per month, or direct/indirect cost per month);
– number of remaining spares;
– expected cost of a replacement system (NB: this will change non-linearly over time).

A Different approaches to software preservation

CC443D006-1.0 Page 65

Data preservation, not software preservation71

The UK Data Archive (UKDA) is curator of the largest collection of digital data in the social sciences
and humanities in the UK. Since the 1970s it has taken a data migration-based approach to
preservation. This seeks to entirely separate and decouple data from the software. This strategy was
founded on the premise that, at some time in the future, the software used to create or analyse data
will not be executable. Therefore both software and platform neutrality is critical. The alternate
strategy would be to maintain and disseminate (or provide online access to) older versions of
software alongside the legacy file formats. While this approach is increasingly technically feasible with
virtual machines it still faces significant challenges over the rights to use and disseminate commercial
software packages and limits users access to functionality offered by modern revisions of those
packages. They still need the software applications for data they are going to curate in order to
prepare the data for migration, but placing complete dependence on the existence of new versions of
the software would be to avoid the questions of software dependency. Implementing this strategy is
made easier because they actually have few software packages to consider: ten packages cover around
95% of the data. They also periodically announce the software packages they can support to retain
their focus. However, because they need to migrate data (from old to new) the software they run is
sometimes unsupported and legacy. Their approach is strictly to support this software rather than
preserve it; and this support will diminish over time, as fewer instances of legacy file formats are
deposited for ingest by the Archive. The Archive’s Preservation Policy is:
<http://www.data-archive.ac.uk/curate/preservation-policy>.

This approach does mean that there are challenges around hardware maintenance and backwards
compatibility of different versions of software. An instance of these challenges was faced with SPSS,
the common statistical package. The UKDA wrote scripts in 2003 for their workflow. These scripts
were dependent on running v13 of SPSS. Because of the significant investment in writing the scripts
(approximately one-person year of specialist effort) the UKDA continued to run machines with v13
on them for as long as possible. Eventually the support overhead for the obsolete software and
hardware became untenable and the team created a data conversion tool that could convert between
SPSS file formats for any version between v6 and v18. This tool allowed them to retain their data
migration-based approach to digital preservation. However, this too will need to be upgraded
periodically.

The tool was created as part of a 12 month JISC-funded project - Data Exchange Tools and
Conversion Utilities (DExT). The final report72 from the project reaffirmed the importance of open
data exchange formats: “Data conversion and proprietary data entry and analysis are particularly
important and problematic aspects of data management and curation... The main issues involve the
buying-in to a dedicated analytic strategy and typically a particular software package. Over the years
the UKDA has seen a number of such softwares quickly become obsolete. To address the problem of
incompatibility between software various data conversion tools have come of the market. However in
the qualitative data analysis software field there are no such inter-software conversion tools. Open
data exchange formats are necessary for maximising the opportunities for data sharing and long-term
archiving.”

Further information and useful resources
The National Museum of Computing
http://www.tnmoc.org

Computer History Museum
http://www.computerhistory.org

Keeping Old Computers Alive
http://www.techsoup.org/learningcenter/hardware/archives/page9667.cfm

71 Personal communication with Matthew Woollard, 11 June 2010.
72 <http://ie-repository.jisc.ac.uk/393/> accessed 14 October 2010.

CC443D006-1.0 Page 66

A.3 Emulation (data-centric)

A.3.1 You want to keep your software, but you’re worried that technical-preservation might leave
you with no hardware or an expensive maintenance bill. The alternative may be emulation.
An emulator is a software package that mimics your old hardware and/or operating
environment, and can be run on any computer.

A.3.2 Emulation gives you the flexibility to run your software on new hardware, which gives your
software a new lease of life. As always, there are drawbacks. You need to find an emulator.
You might be lucky and find one available under a free-to-use licence, or you might be able
to buy one. However, if your old hardware was rare, you may find that no emulator exists. In
this case, you either have to write an emulator yourself, which requires specialist skills and
could be expensive, or explore another of the sustainability approaches. It is difficult to write
an emulator that perfectly mimics the old hardware. This can lead to differences between the
operation of the old hardware and the new emulator, which could manifest themselves in
annoying quirks or more serious problems.

A.3.3 Specific activities within this approach are likely to include:
– regular checking that the system works;
– regression testing;
– verifying and validating results;
– updating the emulator (or maintaining it if developed in-house);
– scheduling review points in the calendar.

A.3.4 There are some points to factor in about the costs of this approach:
– Low cost if emulator exists as costs borne by someone else;
– Emulators themselves need sustaining;
– At some point a large cost may be incurred as emulator ceases to work and a

replacement approach is necessary.

A.3.5 Some metrics or indicators to monitor to know how well this approach is proceeding could be
designed around one or more of the following:
– continued executability (eg percentage monthly uptime, or number of failures a month);
– frequency of updates to emulator to know if the emulator being sustained (eg updates

per quarter, number of unresolved bugs);
– cost of emulation (eg total costs in licensing, handling emulation errors, verifying data,

etc per month or quarter);
– emulation performance (eg average response time over a month for a service or the

program execution time for a command-line application based on some sequence of test
queries or input).

Further information and useful resources
PLANETS project
http://www.planets-project.eu/docs/reports/Planets_PA5-D1-TestingToolsForTechnicalEnvironments-
Final_v2_public.pdf

Project KEEP
http://www.keep-project.eu

A Different approaches to software preservation

CC443D006-1.0 Page 67

A.4 Migration (functionality-centric)

A.4.1 Migration keeps the system functional with new technology.

A.4.2 If you need to reproduce the operation of your software reliably, the best choice may be
migration. With this approach, you re-code your software so that it will work on new
hardware or operate with new reliable software. Re-coding for migration also gives you the
perfect opportunity to enhance your software’s operation, such as fixing bugs or adding new
features.

A.4.3 There is a wide range of migration approaches from a complete re-write of the code, which
allows the software to be used on a completely different system, to continual migration,
which keeps your code up to date with the latest (generally small and continual) changes to
the hardware and software that your code relies on.

A.4.4 A complete migration to a new system is the same as writing new software – possibly harder
because you are constrained by the old architecture. This leads to the biggest drawback: it’s
resource heavy. Dependent on the complexity of your old software, you may need a lot of
development time to be invested into the migrated code.

A.4.5 At some point in its lifetime, most code will be subject to a change in the hardware and
software that it relies on. For example, your code might need to be tweaked to use a new
version of Java or the latest version of an operating system.

Technology obsolescence in industry

“Peter Sandborn is a Professor in the CALCE Electronic Products and Systems Center at the
University of Maryland. Dr Sandborn’s group develops obsolescence forecasting algorithms, performs
strategic design refresh planning, and lifetime buy quantity optimization.”73

Obsolescence is a major issue in industries with long lifetime systems, since constituent components
increasingly become obsolete well before the system’s intended end-of-life. Peter describes it thus:
“To deal with that growing pile of unavailable supplies, engineers in charge of long-lasting systems
must basically predict the future--they must learn to plan well in advance, and more carefully than
ever before, for the day their equipment will start to fail… Call it the dark side of Moore’s law:
poor planning causes companies to spend progressively more to deal with ageing
systems”.74

The answer he puts forward is refresh planning. "The goal of refresh planning is to find the best date
to upgrade a product and to identify the system components on which the redesign should focus”.
Peter has “developed one such methodology, called Mitigation of Obsolescence Cost Analysis, or
MOCA, which determines when a design refresh should occur, what the new design should
accomplish, and how to manage the parts that go obsolete before that time... The key to a successful
refresh schedule is deciding on it well in advance, so that a project's budget can include that expense
before irreplaceable parts become a serious business liability."74

73 <http://www.glue.umd.edu/~sandborn/> accessed 4 October 2010.
74 <http://spectrum.ieee.org/computing/hardware/trapped-on-technologys-trailing-edge> accessed 6 October 2010.

CC443D006-1.0 Page 68

Whilst Peter’s main interest is in hardware obsolescence, he sees software obsolescence as “a
concurrent problem”. As his paper75 on software obsolescence (one of the few on the topic) says "in
reality [addressing obsolescence] is a hardware/software co-sustainment problem, not just a hardware
sustainment problem" Peter also says "We do handle software obsolescence in MOCA, ie, we do lots
of refresh planning studies where the bill of materials is composed of a mix of hardware and software.
One thing we find is that software often creates constraints on the refresh planning process for the
hardware. For example, the end of support date for an operating systems creates a constraint that
the operating system has to be off all fielded systems and cannot be used in new systems, which in
turn means that there has to be a refresh that includes changes to the operating system and possibly
associated hardware prior to the end of support date for the operating system."76

A.4.6 The effort required for migration varies widely from small changes (eg reconfiguration, made
necessary by an evolving platform, and easy recompilation), to major updates every so often
(eg rewriting the code in a new programming language). At its most extreme, migration
(whether part of continuous upgrade or a scheduled mid-life upgrade) involves completely
redeveloping software from the original requirements, specification or design.

A.4.7 Development to improve the functionality, user experience, etc can be done at the same time
as migration, though the primary purpose of migration is to preserve the function and ensure
future maintainability.77 An improvement in performance is often another benefit of migration
as the system is now likely to be operating on a more modern, powerful hardware and
software platform.

A.4.8 A particular type of migration is that of moving to an open licence and/or a community-based
development approach. This is covered explicitly in the next sub-section on Cultivation.

A.4.9 Specific activities within this approach are likely to include:
– reconfiguring and recompiling (‘porting’);
– learning and using new programming languages;
– (in extremis) rewriting the original code from the specification (ie re-engineering the

system);
– (in extremis) reverse-engineering from a binary file;
– scheduling review points in the calendar.

A.4.10 There are some points to factor in about the costs of this approach:
– The cost of continual or intermittent migration is likely to match or exceed the initial

development cost.

A.4.11 Some metrics or indicators to monitor to know how well this approach is proceeding could be
designed around one or more of the following:
– continued executability (eg percentage monthly uptime, or number of failures a month);

75 Software Obsolescence – Complicating the Part and Technology Obsolescence Management Problem, Sandborn, IEEE

Trans on Components and Packaging Technologies, Vol. 30, No. 4, pp. 886-888, December 2007. The paper
identifies three main causes of COTS obsolescence: functional obsolescence, technological obsolescence (end-of-
sale, legally unprocurable or end-of-support) and logistical obsolescence. It should also be noted that, electronic
parts obsolescence is a well studied field but "the one common attribute of all the methodologies, databases and
tools that are in use today, whether reactive, proactive or strategic, is that they focus exclusively on the hardware
life cycle. In most complex systems, software life cycle costs (redesign, re-hosting and re-qualification) contribute as
much or more to the total life cycle cost as the hardware, and the hardware and software must be concurrently
sustained."

76 Correspondence with Peter Sandborn, May 2010.
77 Though in reality ‘perfective maintenance’, where the primary purpose is to improve the software for users, is more

likely.

A Different approaches to software preservation

CC443D006-1.0 Page 69

– continued compilability (eg binary yes/no for compilation failure, or number of
compilation warnings78);

– cost of maintenance (eg developer hours per month);
– coverage of supported system functions (eg the ratio of functions that are supported by

the migration approach to the total number of functions upon which the system is
reliant).

Further information and useful resources
The Software Obsolescence Minefield (Component Obsolescence Group)
http://www.cog.org.uk

DoD Software Migration Planning
http://www.sei.cmu.edu/reports/01tn012.pdf

Porting: A Development Primer
http://www.mindfiresolutions.com/mindfire/Porting_DevelopmentTechniques.pdf

Commercial technology translation
http://www.greatmigrations.com/resources_articles.aspx
http://www.semdesigns.com/Products/Services/LegacyMigration.html

78 For instance it could be telling if the code uses a deprecated API and the compiler flags a warning: it still works now

but could fail if support for that API is withdrawn.

CC443D006-1.0 Page 70

A.5 Cultivation (process-centric)

A.5.1 Sustainability requires the investment of resources, and cultivation is one of the best ways of
sharing the responsibility for these resources. Cultivation is the process of opening
development of your software. This is where you allow developers access to your code –
under a licence – so that they can work with you. The deal is that outside developers can
develop your software so that it meets their exact needs, and in doing so, any bugs they fix
or new functionality they add can be given back to your project.

A.5.2 Cultivation allows more contributors to be brought into your project, which helps share the
sustainability workload. With more people, knowledge about your software is spread over a
wider group, so that the departure of one person is less likely to affect the software’s future.

A.5.3 Cultivation’s main drawback is that it’s a long-term process. Cultivation is not suitable as a
quick fix to ensure sustainability in the short term; instead it requires effort and planning over
many months and years. Moving to open development is not as simple as making your source
code publicly available. You also need to build a community around the software, and this
requires work to understand your community and how to appeal to them. Once in place, your
community could become self-sustaining so that the future of your software is assured.

A.5.4 Cultivation promises a self-sustaining community of developers who work together to keep
your software up to date, but requires work to cultivate the right community for your
software. A combination of Open Source licensing and Open Development practices make it
easier to preserve software by removing barriers to others taking on the preservation of the
code. The body of knowledge about a piece of software is more likely to be manifested in
electronic form, as opposed to being held in the heads of a few developers. However it is
important to reiterate that OSS alone is not enough to enable the preservation of software -
this also requires aspects of curation and ongoing minimal maintenance to cope with
environmental changes.

A.5.5 Specific activities within this approach are likely to include:
– choosing an appropriate open source licence;
– applying an open source licence to an existing codebase;
– moving code to an open source repository (eg sourgeforge.net);
– setting up a development website, mailing list, etc;
– cleaning code to make it presentable for new comers;
– providing test data for everyone to use to validate functionality;
– establishing governance for the software;
– engaging with users and contributors and listening to feedback and ideas;
– scheduling review points in the calendar.

OSS Watch Case Studies - http://www.oss-watch.ac.uk/resources/casestudies.xml

OSS Watch has many case studies covering a range of Open Source Software issues and projects.
They offer great insight and are kept updated. One synthesis79 of seven different OSS projects
(including MailScanner, Apache Cocoon, Sakai and Moodle) identified three key learning points:

- continuity of effort and requirement/need is fundamental

- sustainable projects graduate to a service model from a project model, often involving
commercial relationships

79 Sustainability Study: A case study review of open source sustainability models, Metcalfe, V1.0, April 2007.

http://www.oss-watch.ac.uk/resources/casestudies.xml

A Different approaches to software preservation

CC443D006-1.0 Page 71

- there are multiple maturity stages, decision points, and associated funding decisions and funding
decisions should be tied to key success indicators such as adoption.

A.5.6 There are some points to factor in about the costs of this approach:
– Ensuring a sufficient maturity of software could add significant costs (eg taking a

prototype to reusable software is often a factor of 10);
– Cultivation will involve a sustained effort to move to a more open development model;
– The costs and likelihood of eventual success are difficult to predict;
– If it is successful, it will spread costs over a larger number of individuals and

organisations;
– The ideal outcome is that it becomes financially self-sustaining.

A.5.7 Some metrics or indicators to monitor to know how well this approach is proceeding could be
designed around one or more of the following:

– OSS Watch Software Sustainability Maturity Model (ie the SSMM Level);
– the Community Roundtable's Community Maturity Model (ie which stage from Hierarchy

to Emergent Community to Community to Network);
– size of user community: rocketing / increasing / a ‘known’ community / decreasing /

plummeting (eg specifically the number of individual active users);
– spread of user community: internal / external / cross-domain;
– number and spread of contributors (eg number of individual contributors, or the number

of contributions from specific communities);
– continued executability (eg percentage monthly uptime, or number of failures a month);
– continued compilability (eg binary yes/no for compilation failure, or number of

compilation warnings).

Further information and useful resources
OSS Watch
http://www.oss-watch.ac.uk/resources/ssmm.xml
http://www.oss-watch.ac.uk/resources/howtobuildcommunity.xml
http://www.oss-watch.ac.uk/resources/researchinfrastructure-sustainability.xml

Producing Open Source Software: How to Run a Successful Free Software Project (by Karl Fogel)
http://producingoss.com/

Community Roundtable Community Maturity Model
http://community-roundtable.com/2009/06/the-community-maturity-model/

CC443D006-1.0 Page 72

A.6 Hibernation (knowledge-centric)

A.6.1 Rather than sustaining your software as operational software, you may choose to hibernate
it. You may choose hibernation when your software has come to the end of its useful life, but
may need to resurrect it to double-check analysis or prove a result. Alternatively, there may
not be a user community for your software, but you believe one will occur in the future.
Hibernation allows you to preserve the knowledge about your software so that it can be
resurrected in the future.

A.6.2 Hibernation can be a one-off process. Unlike sustainability, which requires a continuous
investment of resources, the hibernation process can have a beginning and – importantly –
an end. Preparing software for hibernation can be resource heavy, and if the software is
never resurrected, you may feel that those resources were wasted.

A.6.3 Hibernation allows you to store software that you do not currently need, but it requires a
significant – if short lived – investment of resources.

A.6.4 Specific activities within this approach are likely to include:
– reviewing and improving documentation;
– recording the significant properties of software;
– archiving the software along with all documentation;
– scheduling review points in the calendar.

A.6.5 If the software is already OSS then hibernation should be relatively straightforward, since
there ought to be a code repository, up to date documentation and a means to contact user
and contributors (if any).

Apache Attic - http://attic.apache.org/

“The Apache Attic was created in November 2008 to provide process and solutions to make it clear
when an Apache project has reached its end of life. Specifically to be: ‘responsible for the oversight of
projects which otherwise would not have oversight; and be it further ... is not authorized to actively
develop and release the projects under its oversight’

It is intended to:

- Be non-impacting to users

- Provide restricted oversight for these codebases

- Provide oversight for active user lists with no Project Management Committee

It is not intended to: Rebuild community; Make bugfixes; Make releases

[…]

Options [for leaving the Attic] are:

- Forking the project - we'll link to any forks which have been created so please let us know

- Restarting the community in the Apache Incubator

- Recreating a Project Management Committee for the project”

A Different approaches to software preservation

CC443D006-1.0 Page 73

A.6.6 There are some points to factor in about the costs of this approach:
– At its simplest, hibernation involves documenting pseudo-code (eg publishing the

algorithm in a research paper) – this is inexpensive;
– However, ensuring rigorous documentation, test data, etc is time consuming;
– There is a small ongoing cost to ensure discoverability, accessibility, etc of hibernated

software and materials;
– The big advantage of hibernation is that it should significantly reduce future

development costs.

Resurrecting old code

"Have you ever been haunted by an old open source package that you wrote once, published, and
then forgot about?"80

One example where academic code has been properly archived is some audio analysis software
developed at Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO).
Maaate is a C++ toolkit to parse and analyse audio data in the compressed/frequency domain. The
source code is available under the GNU General Public License. It was first developed and then
hosted on a project page on the CSIRO Mathematical and Information Sciences division. Some years
later the developer was contacted as the pages and code were being taken down. The developer had
now left CSIRO but was "glad" to be contacted. She takes up the story: "Since it is an open source
project, I have now resurrected the old pages at Sourceforge. They are available from
http://maaate.sourceforge.net/. I have re-instated the relevant web pages and documentation and
updated all the links. I discovered that we did some cool things then and that it may indeed be worth
preservation for the future. I expect Sourceforge is up to the task."

A.6.7 Some metrics or indicators to monitor to know how well this approach is proceeding could be
designed around one or more of the following:
– completeness of documentation (code, design, testing, etc) (eg percentage completion

of the Significant Properties Framework);
– currency of programming language, middleware and operating environment (eg number

of updates in the past year, number of updates planned for next year, time to end-of-
support-life in months, total number of months past end-of-support-life, or total number
of major new releases that supersede the version used);

– archive availability and resilience (eg that defined by Service Level Agreements,
frequency of backup, or percentage up time in the last month);

– compilability and executability at review points (eg see those defined in Migration,
above).

Further information and useful resources
Towards a methodology for software preservation (Brian Matthews)
http://escholarship.org/uc/item/8089m1v1.pdf

Appendix 6 of the Blue Ribbon Task Force final report
http://brtf.sdsc.edu

80 <http://blog.gingertech.net/2008/08/23/resurrecting-old-maaate-code/> accessed 6 October 2010.

CC443D006-1.0 Page 74

A.7 Deprecation

A.7.1 If software lacks a community, the resources to continue or a developer, then the only
alternative is deprecation. All effort invested into the software comes to an end, but, unlike
hibernation, no effort is invested in preparing the software beforehand. In the future, if
someone wants to use the software, they may not be able to find a stored copy and it might
be expensive or impossible to resurrect the software.

A.7.2 Deprecation is easy to perform, but often marks the end of a software package’s life and is
typically only chosen when no other option is available.

A.7.3 Deprecation is effectively enforced technical preservation – but without the thought and
preparation to have any confidence that it’ll work as an effective preservation strategy.

A.7.4 If the software is then required, then you will need to provide, or buy in services for,
software archaeology. This involves rescuing software from obsolete or damaged hardware,
media and software environments – consider it an emergency recovery strategy. It may
involve media recovery, for example if the media is heavily damaged, but more likely the real
problem will be in understanding the code or binary. If you just have a binary then further
information is probably necessary to determine what environment the software can be run
on. If you have the code then at least you are able to adapt it to make it run, but the code
may start off as being effectively unintelligible. It will be especially difficult to recover if the
code is old, poorly documented, lacking the original build tools (compilers, makefiles, etc). If
it’s not your code, or you’ve switched to using another programming language, then clearly it
will be harder still. And without having pre-planned test data it will be hard to get the
assurance that the software runs as intended – critical if you’re after perfect repeatability.

A.7.5 Specific activities within this approach are likely to include:
– deciding on a timeframe for deprecation;
– notifying users and contributors of the intent to deprecate;
– archiving the software along with all documentation.

A.7.6 Some metrics or indicators to monitor to know how well this approach is proceeding could be
designed around one or more of the following:
– infrequency of user engagement;
– completeness of documentation (eg see those defined in Hibernation, above);
– archive availability and resilience (eg see those defined in Hibernation, above).

A.7.7 There are some points to factor in about the costs of this approach:
– There are short term costs in formally shutting down development;
– Depreciation generally assumes software has been superseded and no emergency

recovery effort is needed.

Further information and useful resources
Apache Attic
http://attic.apache.org/

	Summary of framework
	Document history
	List of contents
	List of abbreviations
	1 Introduction
	1.1 General
	1.2 Acknowledgements
	1.3 Objectives
	1.4 Scope
	1.5 Approach
	1.6 Terminology
	1.7 Overview of this document

	2 Software preservation and sustainability
	2.1 Introduction
	2.2 What is software?
	2.3 What is software preservation and sustainability?
	2.4 Is software preservation different from other kinds of preservation?
	2.5 Is software engineering the same as software preservation?
	2.6 Is software preservation only relevant to research software?
	2.7 Does all software need to be preserved?
	2.8 What are the drivers and inhibitors for and against software preservation?

	3 Purposes and benefits
	3.1 Introduction
	3.2 Encourage software reuse
	3.3 Achieve legal compliance and accountability
	3.4 Create heritage value
	3.5 Enable continued access to data and services
	3.6 Software developer benefits

	4 Making better decisions about software preservation
	4.1 Introduction
	4.2 Does this software need preserving?
	Is the software covered by a preservation policy / strategy?
	Is there a clear purpose in preserving the software?
	Is there a clear time period for preservation?
	Do the predicted benefit(s) exceed the predicted cost(s)?
	Is there motivation for preserving the software?
	Is the necessary capability available?
	Is the necessary capacity available?

	4.3 How should this software be preserved?
	Is each approach appropriate to every purpose?
	What are the relative advantages and disadvantages of each approach?

	4.4 Should preservation measures be built into your software development processes?

	A Different approaches to software preservation
	A.1 Summary
	A.2 Technical preservation (techno-centric)
	A.3 Emulation (data-centric)
	A.4 Migration (functionality-centric)
	A.5 Cultivation (process-centric)
	A.6 Hibernation (knowledge-centric)
	A.7 Deprecation

