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REVIEW

Experiments using microarray technology: limitations and standard
operating procedures

T Forster, D Roy and P Ghazal
Scottish Centre for Genomic Technology and Informatics (GTI), The University of Edinburgh, Medical School, Little France Crescent, Edinburgh EH16 4SB, UK

(Requests for offprints should be addressed to P Ghazal; Email: marilyn.horne@ed.ac.uk)

Abstract

Microarrays are a powerful method for the global analysis
of gene or protein content and expression, opening up new
horizons in molecular and physiological systems. This
review focuses on the critical aspects of acquiring mean-
ingful data for analysis following fluorescence-based target
hybridisation to arrays. Although microarray technology is
adaptable to the analysis of a range of biomolecules (DNA,
RNA, protein, carbohydrates and lipids), the scheme
presented here is applicable primarily to customised DNA
arrays fabricated using long oligomer or cDNA probes.
Rather than provide a comprehensive review of micro-

array technology and analysis techniques, both of which
are large and complex areas, the aim of this paper is to
provide a restricted overview, highlighting salient features
to provide initial guidance in terms of pitfalls in planning
and executing array projects. We outline standard operat-
ing procedures, which help streamline the analysis of
microarray data resulting from a diversity of array formats
and biological systems. We hope that this overview will
provide practical initial guidance for those embarking on
microarray studies.
Journal of Endocrinology (2003) 178, 195–204

Microarray Standard Operating Procedures
(M-SOPs)

The main purpose of this review is to outline technical
procedures for the acquisition and analysis of array data.
This is not an attempt to provide a comprehensive review
of all aspects of microarray analysis. Several excellent and
recent reviews of this nature are available (Duggan et al.
1999, Deyholos & Galbraith 2001, Quackenbush 2001,
2002). Microarray studies involve a complex multi-step
process (Fig. 1). A successful microarray project is depen-
dent on all steps of the process being accurately and
consistently performed to maximise the reliability and
significance of results. Consideration of steps upstream
of data processing is necessary to ensure experimental
consistency and these will be described briefly.

Experimental design must take into account the bio-
logical question under study, and should include statistical
input to permit the required level of statistical signifi-
cance to be obtained (Kerr & Churchill 2001, Churchill
2002, Glonek & Solomon 2002, Yee & Speed 2002). In
this respect, experiments should be well controlled and
replicated, and it is vital that consistency is applied to
experimental logistics and timing, sampling and labelling
to reduce sources of unwanted variation where possible.
For example, if one proposes to perform time series

experiments with each chip hybridised with experimental
and reference samples, thought must go into the correct
selection of the reference material to ensure biological
relevance to the study. Due consideration must be given
to whether material is pooled or individually sampled.

The entire planning stage is as important as the subse-
quent implementation (see below) and omissions at this
stage can easily lead to non-representative or false results.
Planning of a study benefits from multiple inputs from
biological researchers as well as statistician/bioinformaticians
with experience in microarray technology.

Experimental sampling and extraction of RNA is a
vitally important component of this process since successful
microarray studies are dependent on the consistent extrac-
tion of high quality RNA. In broad terms, microarrays are
performed on two basic biological systems: simple and
complex. Simple biological systems are those where
homogeneous cell populations are present, such as cell lines
or purified cell populations. Sampling from simple systems
is more likely to represent the expression level for the
particular cell or tissue under study. Complex systems are
typified by tissues and organs where there is a diversity of
cellular substructures and mixed cellularity. Extraction
of RNA from complex systems means that critical spatial
and cellular information as to the origin of the signal
is lost. This reduction of contextual information makes
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interpretation of data from complex systems problematic,
and requires additional validation with cell-specific tech-
niques to resolve questions of signal origin (Chuaqui et al.
2001). Sub-dissection techniques are being increasingly
adopted to provide specificity to sampling from complex
systems. For instance, laser-based methods for the precise
microdissection of individual cells or tissue substructures
are available, in addition to more traditional purification
of cell populations using fluorescent markers. These ap-
proaches have enormous potential to improve resolution in
microarray studies. Generally only limited (sub micro-

gram) quantities of RNA are gleaned from these sampling
strategies - quantities that are usually too small for con-
ventional labelling strategies. New amplification methods
for the labelling of minute quantities of RNA are now
being employed. However, it is becoming increasingly
evident that even highly purified cell populations and
apparently homogeneous cell lines may demonstrate com-
plexity of phenotype and metabolism at the individual cell
level. This variation is likely to encompass differences in
RNA turnover, sublocalisation, splicing and translational
activity. This only serves to highlight the importance of

Figure 1 A complete microarray project workflow within our laboratory (GTI) is outlined. Shown here are the standard steps
in top-to-bottom chronological order. The brackets to the right show a broader categorisation of these workflow processes.
Depending on the purpose and question behind the project, individual steps like ‘Advanced statistics’ are skipped on occasion.
This paper only describes the steps following hybridisation.
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standardising culture and purification methods as rigor-
ously as possible to achieve consistency during sampling
and extraction phases.

Regardless of the RNA sampling methods employed, it
is important to apply rigorous quality control to purified
RNA populations. For instance, the Bioanalyser system
from Agilent Technologies (Cheadle Royal Business Park,
Stockport, Cheshire, UK) is now commonly employed to
check the quality and consistency of RNA samples. The
resulting absorbance profile provides a useful means of
assessing the suitability of RNA for labelling. At this stage,
consistency during labelling and hybridisation steps is the
starting point for the generation of consistent array data
(Hegde et al. 2000).

The selection and production of the correct array format
is important and a central feature of the process. The
majority of custom arrays are produced by the direct
deposition of nucleic acid probes as cDNA or long
oligomeric sequences onto treated glass substrates. The
production of reproducible arrays with current pin print-
ing methods is challenging. In our own Centre we have
introduced a number of quality control steps to ensure
consistency of array production, but these are outside the
scope of this review.

An essential theme is the requirement for microarray
data to be MIAME (minimum information about a
microarray experiment) (Brazma et al. 2001) compliant. In
essence, this addition of standardised information about all
stages of a microarray experiment allows for amalgamation
of array data from different groups and sources in the
public domain, ultimately permitting advanced and auto-
matic data mining. Accordingly, there is an absolute
necessity for the implementation of M-SOPs. The
M-SOPs outlined here aid in the production of standard-
ised project documentation, which ensures MIAME com-
pliance for publication. In the following sections we
outline in more detail the analytical steps of the workflow.

Data Generation and Validation

The chronological order of processes in a microarray
project utilising customised arrays is given in Fig. 1.
Approaches for individual and combined processing and
analysis steps have recently been reviewed (Nature
Genetics 2002, Speed 2002).

Array scanning and image quantification

The process of scanning an array is known as image
acquisition, whereas the process of converting images to
numerical data is referred to as image quantification or
processing. The majority of microarray experiments
involve the fluorescent detection of hybridised signal using
confocal laser scanners. A wide variety of different scan-
ning instruments are available, and a number of different

image acquisition and quantification packages are associ-
ated with them. In general, selection of image quantifi-
cation parameters (e.g. ‘adaptive’, ‘fixed circle’, ‘spot
distance’) should be carefully assessed and decided for each
project as a whole, and will depend on array design, slide
type and spot morphology. As an exception to this, a
limited form of manual input is often required to fine-tune
the layout of the template quantification grid for individual
arrays and care should be taken to avoid user bias. Apart
from this limited fine-tuning, it should be noted that the
image quantification method should be identical for all slides
constituting a project, whereas image acquisition par-
ameters, for instance laser power and/or photo multiplier,
can be optimised from slide to slide. For a comparative
discussion of issues concerned with statistical image analy-
sis we refer the reader to Glasbey and Ghazal (2003) and
Yang et al. (2002b).

Scan selection

The procedure employed for image acquisition can have a
significant effect on data analysis and interpretation. The
aim here is to identify scanner settings that provide the
best representation of signal distribution on the array. We
find that either the frequently used trial-and-error ap-
proach or even single array scans can make potentially high
quality experiments useless. Signal values across an array
typically exhibit a density distribution approaching log-
normal (a heavier right tail), and the best scan would
ideally exhibit a high median value without distorting this
shape, especially when nearing the scanner saturation
point, which causes off-scale (censored) values among
highly expressed genes. In practice, this reasoning can be
used to define a maximum scan setting that lifts weakly
expressed genes above the background noise level without
causing saturation for highly expressed genes.

We use the following process which relates multiple
scans of an individual array in a linear series. (1) Scan each
array at five incremental laser powers or photo-multiplier-
tube (gain, light amplification) settings S1 to S5 (a scanner
mid range setting is usually a good starting point). (2) For
each scan, perform identical image quantification (see
previous section). (3) Create four scatter-plots: S1 vs S2,
S2 vs S3, S3 vs S4, S4 vs S5. All axes need to be
scaled identically. (4) Interpret numbers/graphs and select
best scan.

A representative series of scatter-plots is shown in Fig. 2.
If preferred, these graphs can be used for visual assessment
of scan performance.

Numerical evaluation requires determination of the fol-
lowing simple statistics for each scan dataset (and combi-
nations of scans for point 4). These are then used to form
combined selection criteria to define optimal scanning
conditions: (1) median value; (2) inter-quartile range
(IQR); (3) count of saturated spots; and (4) linear regression
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between pair-wise scans: r2 and P (linear regression
runs test).

Optimal scan parameters are defined from permutations
of these values defining conditions which satisfy: the
highest median value; the widest IQR; minimal or no
saturation values; and, between adjacent scans, a high
regression coefficient with a low ‘runs test’ P value (the
‘runs test’ determines whether the data differ significantly
from the linear regression). The latter two parameters
indicate at what setting the scanning breaks down, changes
in signal becoming non-linear in relation to the next or
previous scan.

In addition to this numerical evaluation, visual inspec-
tion of signal value distribution for each scan remains
highly informative. Qualitative indicators for the in-
terpretation of scan quality are: (1) there is no or only
irrelevant saturation (scatter ‘cloud’ is linear) and (2) a
dynamic, uninterrupted range of expression signals from

low to high is visible (this may not be true if the array
contains only a subset of genes which are all expected to be
expressed at a similar level).

Figure 2 provides examples of these visual properties.
The highest scanner setting producing the optimal signal
distribution is usually selected.

Background evaluation/correction

Fluctuations in background fluorescence can affect signal
values. Background correction is therefore essential to
obtain a noise-reduced signal value, but it is always best
first to evaluate background noise after image quantifi-
cation, since it will depend on the chosen software
settings. A map of background values and a corresponding
map for signal values (values as provided by quantification
software) is our preferred option. These maps are based on
plotting spot XY-coordinate vs value. Comparison of these

Figure 2 A series of four pair-wise graphs for five incremental (photo-multiplier-tube (PMT) settings for amplification of reflected
light) scans of one chip are shown. For example, the first graph (A) plots data from the scan with the lowest setting against data
from the scan with the next highest setting. We can see immediately that neither scan 1 nor scan 2 provide expression values
across the possible range (0–65536). Nevertheless, it is also apparent that the increase in scan PMT has a strictly linear effect on
the signal intensities. If we then examine the next two graphs (B and C) in this series, we can clearly see how the range of signal
intensities increases to cover more of the available spectrum, lifting low to medium strength signals out of the possible background
noise. The last graph (D) is not linear in the high signal range, meaning the highest scan setting in this series causes signal
saturation in a number of spots. Based on this, we would here decide to carry forward data from scan setting 4 (y-axis in C and
x-axis in D), the highest possible scan with the best representation of the data on this chip.
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maps reveals if signal values are systematically influenced
by noise, given the chosen software settings. If deemed
necessary, our own approach requires subtracting individ-
ual background values from the corresponding signal value
(both are usually provided separately by the image quan-
tification software). Optionally, this subtraction can also be
done with a spatial background average. One other
common approach is to identify signal values that are
smaller than the background mean plus two standard
deviations. Negative values resulting from an adjustment
could either be removed, flagged or shifted. Since we are
frequently interested in information contained in border-
line expression, we prefer not to select the removal option
at this stage.

Replication of gene probes

As a definition in the context of microarrays, a ‘probe’ is
the (partial) genomic sequence of a gene deposited and
fixed on the glass slide, whereas the ‘target’ is the
biological sample material.

Probe variants are defined as different nucleotide se-
quences representing the same gene. Signal strength is
frequently sequence dependent. For this reason, averaging
signal intensities is not appropriate and probe variants
should be analysed separately until the final data compari-
son steps. Probe replicates have the same sequence, with
multiple instances on the array. In theory, these should
have identical expression, and their purpose is to increase
the confidence in the reliability of the gene probe
deposition process. Probe replicates are utilised in two
major ways.

Our preferred option, given a sufficient number (�5+)
of biological samples per condition, is to calculate the
median (in the case of three spot replicates this is the
‘middle’ value) value for each replicate set of gene probes
on a chip and use this as the ‘true value’ for that gene
probe. The median is a robust measure and will inherently
ignore outlier values (generally probes for which the
robotic deposition process failed) within a replicate set, in
contrast to the arithmetic mean.

The second option is to include all replicate values in
the full dataset (e.g. to apply ANOVA-type analysis
methods later (Kerr et al. 2001)). Experimental error is
then pooled with biological variation. It is important not to
confuse this increase in the number of data values per gene
with the true statistical sample size, which is merely
the number of biologically independent target samples,
irrespective of how many print replicates there are.

Control probes for array sensitivity/specificity and data
normalisation

The inclusion of sufficient numbers of negative control
probes (minimum of 10–30 independent gene probes) and
a collection of positive control probes (ideally 30+ house-

keeping and/or spike controls) demonstrating a range of
expression levels is required in many types of experiment
and can aid analysis, as well as providing a measure for
array quality and consistency. This is particularly appro-
priate where a large proportion of all gene probes on a
chip are expected to be differentially expressed between
conditions, e.g. time-series, developmental staging or
viral genomes. In this case, control probes can serve as a
subset of genes with theoretically constant expression for
normalisation purposes.

We also utilise receiver-operator-characteristics (ROC)
analysis, which is a quantitative assessment of expression
detection in terms of sensitivity and specificity, wherever
we have known sets of positive and negative controls to
serve as a ‘gold standard’ for expression and non-expression
(Wagner et al. 2002).

A simpler approach is to look at signal distribution on
each array. Box-and-whisker plots for positive and nega-
tive control probes should show clear differentiation
between them, and in a similar fashion for all arrays in the
experiment.

Further flagging of probes

We routinely define detection threshold level as the 80th
percentile of all negative control values (gene probes
external to the biological system under investigation) on an
array. Because we are flagging genes below this cut-off
value rather than removing them, we consider this arbi-
trary percentile choice to be information gain rather than
loss. With prior ROC-analysis, we may also set a custom
detection threshold at a desired level of sensitivity and
specificity.

Normalisation

In microarray analysis, normalisation (Schuchhardt et al.
2000, Quackenbush 2002) refers to a collection of pro-
cesses that are used to adjust data means or variances for
effects resulting from systematic non-biological differences
between arrays, subarrays and dye-label channels. As a
brief definition of these terms, an array is the entire set of
gene probes on a chip. A subarray or print-tip group is a
subset of these deposited by the same print-tip - they can
easily be seen as distinct smaller arrays of probes within the
full array. And lastly, dye-label channel refers to the
fluorescence frequency of the target sample(s) hybridised
to the chip. Experiments where two differently dye-
labelled samples are mixed and hybridised to the same chip
are commonly referred to as ‘dual-dye experiments’. They
result in a relative rather than absolute expression value for
each gene on the array, often presented as the log of the
ratio between ‘red’ channel and ‘green’ channel (log(R/
G)). Usually the second sample on an array is a common
standard reference sample for all other samples, so that
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expression for each gene on all arrays is in relation to the
same baseline, and therefore directly comparable.

At this stage either ratiometric or absolute data normal-
isation can be performed. This decision is based on the
original biological question and the experimental design
constraints. Ratiometric analysis is most commonly per-
formed, but we frequently use absolute values to assess
magnitudes of expression.

Ratiometric methods

Ratiometric analysis is mainly employed in dual-dye
experiments where one channel or array is considered in
relation to a common reference. A ratio of expression for
each gene is calculated between test and reference sample.
This is followed by transformation of the ratio into
log2(ratio) to symmetrically represent relative changes.
The normalisation strategy adopted is influenced by the
signal data.

For this, let sample 1 and 2 be R and G, and individual
genes indexed i. NLR is the normalised log-ratio. Option
3 is our default approach.

(1) When the expected number of differentially ex-
pressed genes between samples is only a small fraction
(,10%) of the total number of genes present, and there
are approximately balanced levels of up- and down-
regulation between them the following applies:

NLRi=log2(Ri/Gi)�median(log2(R/G))

In summary, the median of all log(ratios) is subtracted
from all individual log(ratios), resulting in a new overall
median log(ratio) of zero.

(2) When a large fraction of all genes on the array is
expected to be differentially expressed, or differential
expression is one-way only, the above formula still applies,
but R and G must be based on a subset of control probes
with theoretically identical expression in both samples.

(3) Log-ratios can be non-linear with respect to signal
magnitude. Use of the R-I plot, namely, log10(R�G) vs
log2(R/G) will show if this effect is present (Fig. 3). After
applying a locally robust LOWESS (LOcally WEighted
Scatterplot Smoother) function to this graph (Yang et al.
2002a), the following serves as normalisation procedure:

NLRi=log2(Ri/Gi)� log2(2
y(xi))

where y is the log ratio, x is the log signal level and y(xi)
is the result (value by value) of the LOWESS function
estimating the dependence of the ratio on the signal level.
If conditions as in option 2 apply and a large enough set of
positive controls is available, y(xi) can be derived from
those. The LOWESS function is included in most statisti-
cal or microarray packages, and is based on the R-I plot. In
other words, this function adjusts every value individually
based on its level of intensity, straightening out any
bends apparent in the plot, and centering the R-I plot
around zero.

Provided a sufficient number of probes or control probes
are contained within each subarray (print-tip group), the
options above can be expanded to normalise these within
an array, adjusting for possible print-tip or hybridisation
gradient problems.

Absolute value methods

This approach represents single-dye experiments, or dual-
dye experiments where there is no suitable reference for
a channel or array. Sometimes a series of increasing/
decreasing values over time or conditions is more relevant
than a series of increasing/decreasing ratios. Therefore, we
often normalise absolute signal values from a larger number
of arrays/samples rather than ratios.

The normalisation assumptions as specified above are
unchanged.

For instance in a series of arrays ‘A’ with individual
arrays indexed by ‘j’, and individual genes within those
arrays indexed by ‘k’, and S(NS) being the signal (nor-
malised signal):

(4) the normalisation factor (NF) for each array/
channel is

NF(Aj)=
Mean (q0·75(A))

q0·75(Aj)

and then

NSjk=Sjk�NF(Aj).

In summary, we calculate the 75th percentile value for
each chip and use the mean of all these as the reference
value to which each chip is scaled. The required normal-
isation factor is the reference value divided by the 75th
percentile value of the individual chip. This value is
multiplied with all individual gene probe values on a chip.

(5) The same as (4), only A and Aj are subsets of selected
control probes on the array with theoretically identical
expression in all samples/arrays.

(6) LOWESS has mainly been used for correcting
intensity-dependent dye-label effects between two
samples on the same array. It is generally less useful in
experiments with multiple conditions on multiple arrays,
unless it is applied multiple times where the reference
array has a different dye-label than other arrays, and all
adjustments are made between the same reference sample
and each test array.

If subarray (intra-array) normalisation is deemed nec-
essary, our standard approach consists of identifying those
control probes that exhibit a similar intensity profile across
all the subarrays. This subset is then used for a simple
scaling of the 75th percentile value of each subarray
control subset to the median of the pooled 75th percentiles
of all subarrays (see (4)).
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Figure 3 An example of an R-I plot to assess intensity-dependent dye-label incorporation. The R-I plot is commonly used to investigate the dependency of relative expression
(between two differentially dye-labelled samples on one chip, or between any two chips) on the magnitude of expression. The magnitude of expression (‘Intensity’) is presented
as the product of the values of both channels (x-axis), log10 is merely used to simplify interpretation of scale. The relative expression (‘Ratio’) is expressed as usual: log2 of the
ratio of the two channel values for each gene probe (y-axis). Any bend in the global distribution of the data points suggests that, depending on the magnitude of expression,
systematic differences of dye-label incorporation or related effects are present. If so, a linear normalisation method is insufficient, and the LOWESS (LOcally WEighted Scatterplot
Smoother) curve (blue line) is used as the basis for ‘straightening out’ this effect. In addition to this, a very irregular scattering of data points indicates that a large proportion of
all gene probes is differentially expressed between the two. In this case, control probes (spikes, housekeeping, negative controls) are essential for normalisation purposes. The red
line is the theoretical global log-ratio of zero around which all data points would be centred if average expression in both channels is identical; LOWESS aims to move the data
to the red line.
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Negative value correction

The initial background correction may lead to negative
values on some or all arrays. Instead of removing them and
thereby losing information that may still have potential
use, all negative values of all arrays are plotted to ascertain
a symmetrical distribution. We identify the quantile value
at 0·5% of this distribution (percentile 0·005) as the lower
cut-off point below which true outlier values are more
likely. We then shift the data distributions of all arrays by
the absolute of this value, into the positive range. This
cut-off is arbitrary, therefore it is essential to flag all the
probes that have gone from negative to positive as a result
of this operation (on each array). This information is used
for result interpretation at a later stage.

The remaining values below zero are considered to be
definite outliers, and will become missing values in the log
transformation.

Log transformation

This is usually applied to the ratio of two conditions on the
same array. However, this can also be applied to absolute
values from single-dye experiments. Log transformation
changes positively skewed data distributions into sym-
metrical ones and it can reduce the increase of data
variance over time in time-series experiments. The choice
of log10, loge or log2 is user-dependent, although, due to
convenience of scale interpretation, biologists often prefer
the latter.

Analysis

Here we provide a brief outline of initial data analysis,
which includes ratio-statistics (Chen et al. 2002, Dudoit
et al. 2002). However, valuable information can also be
contained in the absolute expression levels within an
experiment. It is also important to note that for microarray
projects designed to study defined gene pathways and
interactions, a maximum of annotation and statistical
reliability is required. We suggest the minimum result set
for each gene should include: fold-changes, mean expres-
sion level per condition (with 95% confidence intervals,
i.e. the ‘true’ mean will be within this interval with a
probability of 95%), and P values from significance testing.

Data visualisation

Plots of log (condition 1) vs log (condition 2) with added
fold-change thresholds and optionally fitted LOWESS
regression curve work well to display the entirety of the
array data (Fig. 4). In case of biological chip replicates, data
points are usually the mean values of each gene in a given
condition. Limited subsets of interesting genes can obvi-
ously be plotted by means of simple vertical bar charts

(log(ratio) or absolute values). This can be complemented
by custom project-dependent graphs, often to integrate
annotation data with gene expression results (e.g.
GenMapp www.genmapp.org to integrate pathway dia-
grams and expression values). Expression profiles of genes
within a condition or each gene across a number of
conditions are covered by cluster analysis (see below).

Condition means and confidence intervals

These parameters are needed to present the level of
expression of a gene, and enable better interpretation of
fold-change. In most dual-dye experiments, the confi-
dence interval can be calculated for the fold-change itself.

Calculation of 95% confidence intervals (CI95) for
means can be done in different ways. If there are sufficient
numbers (�10 or more) of observations for each con-
dition, the common CI95 formula based on a t-distribution
can be used. However, for smaller numbers of observations
a bootstrap method is recommended (Davison & Hinkley
1997, Carpenter & Bithell 2000). Broadly speaking, the
values making up both groups of observations are ran-
domly reassigned to each group a large number of times,
with the desired statistic (mean, CI95, t etc.) calculated
for each such resampling run. The accumulated set of
newly generated statistics is then used to ‘estimate’ the
corresponding parameter for the original data.

Significance tests

A simple two-sample t-test or Welsh t-test is often the first
tool of choice for statistical inference. An adjustment for
multiple testing (Dudoit et al. 2003) will adjust obtained
P values, but not the order of sorted significance values. If
two conditions can be assumed to be dependent (e.g. cell
lines) then paired t-tests can increase statistical power,
even though measurements were not necessarily taken on
the same subject.

A non-parametric test (e.g. Mann-Whitney-U) is an
alternative with less power that nonetheless works better
under the assumption that underlying distributions are
non-symmetrical, but for the often very small numbers of
observations in microarray studies (5 to 7) the resulting
P values can be less useful as a filtering tool.

Statistical power can generally be improved by employ-
ing bootstrap versions of significance tests.

For most microarray studies, P values resulting from
significance testing must be interpreted with care in cases
with few biological replicates per group.

ANOVA-type methods (Kerr et al. 2001) are somewhat
more involved, and appropriate where there is more than
one experimental factor under investigation (e.g. treat-
ment and dose, or biological replicates and hybridisation
replicates). It is important to note that the expression of
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individual genes of interest is usually backed up by
verification using other techniques such as RT-PCR,
in situ hybridisation and Northern blotting.

Explorative methods

These largely consist of various clustering techniques
(generally without statistical inference) performed on ab-
solute or relative expression values (Quackenbush 2001),
to identify genes or samples with similar expression
profiles, indicating co-regulation or sample type respect-
ively. If co-regulation or time-effects are of interest, a
(graphical) principal-components-analysis can be used to
gauge the number of clusters that may be contained within
the data, and then this number serves as the input
parameter for the number of expected clusters in a
K-means or Self-Organising-Map (SOM) clustering ap-
proach. Due to the nature of explorative methods, we
recommend using several combinations of algorithms and
distance measures (SOM and hierarchical, both with

Pearson correlation and Euclidian distance as a minimum)
in order to highlight different features in the data.

Conclusions

While not discussed in this review, a laboratory infor-
mation management system with an associated relational
database is key for recording workflow information
consistently and retrievably. Gene expression/profiling
databases should be publicly available and comply with
international standards, which would make an impor-
tant step in providing useful gene profiling data for the
research community (see www.ncbi.nlm.nih.gov/geo,
www.ebi.ac.uk/arrayexpress, www.gti.ed.ac.uk/cgi-bin/
database/login.pl).

In microarray based experiments there are two major
sources of variation, one involving the performance of the
technology itself and the other the biological samples. The
part of the M-SOPs outlined here aims to minimise

Figure 4 Log-log plot of untreated vs treated conditions. A simple log-log plot, which serves as an
at-a-glance visualisation of the fold-differences in expression between any two conditions is shown.
Conditions 1 and 2 are the average (arithmetic mean) for a population of untreated and treated mice
respectively. Plotting in log-space avoids graphing problems usually associated with large ranges of data
values. The central dotted line represents ‘no differentiation’, i.e. any gene on or near this line has no
difference in expression between the two conditions. In order to enable us to distinguish individual dots
more easily, we have also reduced the size of dots near this line, the most central ones are additionally
coloured blue. The two solid lines represent the limits for twofold up-regulation and down-regulation
respectively. Also shown in red is a fitted LOWESS (LOcally WEighted Scatterplot Smoother) line, which
in this case only serves as a robust representation of central trends in the global dataset. It should be
noted that after data normalisation, one usually expects most of the data points to be within the fold-limit
lines, unless global expression changes between the two conditions in question are expected.
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the former through appropriate data processing and analy-
sis steps. Good laboratory protocols serve as a sound basis to
minimise the amount of data ‘manipulation’ necessary and
thereby increase efficacy. When used optimally, micro-
array technology allows for pathway determination, iden-
tification of specific gene alterations causative in disease,
the ability to model molecular aspects of pathogenesis and
the application of drug testing and ultimately it has the
potential for being clinically informative for diagnosis and
therapeutic treatment.
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