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With the increasing availability of high through-
put technologies has come a richness of data 
regarding the inner workings of the cell. This 
data has brought us closer than ever to quan-
tifiable analyses of cell behavior and teases us 
with the prospect that we may one day be able 
to understand, comprehensively and exactly, cer-
tain cell functions or even a cell’s whole func-
tion. Presently, we are only beginning to learn 
how cells operate and the key to the control of 
their behavior is the network of signaling path-
ways that mediate a cells response to internal and 
external stimuli. 

In most areas, our knowledge of pathway 
composition and structure is provisional and our 
understanding is continually undergoing revi-
sion and refinement. However, composition and 
structure are critical to pathway function and 
so by using our understanding to make quanti-
tative predictions about pathway behavior and 
comparing these to observations in vitro, we can 
validate our understanding and infer improve-
ments. Naturally, the improvements lead to 
new predictions and so our understanding is 
 iteratively refined.

A detailed understanding of pathways pres-
ents great opportunities for the development of 
therapeutic strategies. A detailed understanding 
will allow us to devise more sophisticated and 
subtle controls over cell function that maxi-
mize efficacy and minimize side effects. This 

will enable us to disrupt pro-pathogen pathways 
and augment protective pathways in new ways. 
However, this presupposes that we can identify 
the appropriate methods for making predictions 
of pathway behavior using our current state 
of knowledge. 

Accurate pathway models are required in order 
to facilitate predictions and building these mod-
els is an ongoing challenge. Accurate pathway 
models need appropriate modeling methodolo-
gies and it is not yet clear how best to apply these 
methodologies. Several modeling methodolo-
gies have been proposed. Ordinary differential 
equations (ODEs) have proven to be very suc-
cessful in modeling metabolic pathways [1–4]. 
However, they generally require a relatively large 
set of parameters and it is often not clear a priori 
which parameters require precision and which 
can be obtained more coarsely with little impact. 
Obtaining realistic in vitro or in vivo values for 
parameters can often be difficult owing to the 
specialist experiments required.

Alternatives include the stochastic schemes 
that accurately capture the microscopic fluc-
tuations that accompany small populations of 
events. In the context of signaling pathways, 
these schemes are well suited to the behavior of 
small populations of interacting proteins and 
molecules [5,6]. There are comparable issues 
surrounding parameter values for stochastic 
schemes, but their most significant limitation 
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comes with large populations. As larger popu-
lation sizes are considered, the computational 
demands of stochastic methods become inhibi-
tively large. However, in these cases, the behavior 
will often start to describe results similar to those 
of ODEs and so computationally less demanding 
ODE methods can often be employed.

Petri nets [7–9], process algebras [10,11] and 
a range of grammatical languages [12,13] have 
been proposed as vehicles in which to for-
mally describe the range of interactions that 
can occur in pathway systems. Their strength 
lies in their ability to describe pathway sys-
tems modularly and to prove what behavior 
is and isn’t possible. However, these methods 
still require a quantitative methodology of the 
type described above in order to make quanti-
tative predictions. As such, they remain a tool 
of the future. 

The value of any model is limited by the avail-
ability of accurate, high-confidence parameters. 
The fewer the number of parameters a model 
requires, the more valuable a model is likely to 
become. However, this comes with a trade-off. 
Generally speaking, more parameters allow a 
model to be more flexible and to predict behavior 
in greater detail. A model with fewer parameters 
can only make coarser predictions.

Nonetheless, a model and a modeling method-
ology that is simpler and requires fewer param-
eters will be experimentally more tractable and 
computationally less demanding, so if we can 
accept the associated coarse-grained predictions, 
it can offer significant advantages. 

The simplest modeling scheme imaginable is 
one in which the activity level of the components 
on each pathway (e.g., the genes, proteins and 
complexes) are described in only one of two states: 
active or inactive. Each component is then repre-
sented by a two state variable describing its activ-
ity. We can then write the interactions between 
components by introducing logical dependencies 
between them. Such a scheme is best suited to 
pathways in which the response by each compo-
nent is clear, unambiguous and absolute, rather 
than by degree. The low level of detail means that 
where a small change in activity level indicates 
a response, this will be missed by the scheme, 
so the signaling response must be dramatic and 
dominant over other  signaling influences. 

A modeling scheme that is well suited to this 
application is Boolean logic [14–16]. This has been 
discussed previously as a modeling methodol-
ogy in a variety of forms and is of increasing 
interest [17–25]. Here we review it’s application to 
signaling pathways and discuss what it can tell us 

about the host–pathogen immune response, as 
an example of a critical, combinatorially complex 
signaling system.

This paper is organized as follows. In the 
next section we discuss how best to assemble a 
model from established resources, such as the 
published literature. In the following section 
we discuss modeling pathway systems. This 
section does not explore any particular model-
ing scheme in depth, but reviews some of the 
general considerations in modeling pathways. 
Next, we introduce logic and demonstrate how 
it can be applied to a pathway system, then 
we apply these approaches to a section of the 
Jak–Stat signaling pathway. The final section 
is our conclusion. 

Building pathway models
Before we can begin to model, we must first 
assemble a description of the pathway from 
previous research findings. This in itself is non-
trivial. We must compile, integrate and visualize 
the components and interactions along pathway 
using a standardized synthesis methodology [26]. 
This generally follows a four-stage process:

n	A literature review identifies the relevant path-
way components and interactions from peer 
reviewed publications. This can be performed 
using standard Entrez PubMed queries involv-
ing keywords, author searches and so on. A 
variety of tools can also be used to facilitate 
this process, such as PDQ wizard [27]. A man-
ual review of the resultant articles is essential 
to ensure the relevance and accuracy of the 
results. To build confidence, the obtained lit-
erature set should include at least two, ideally 
three, independent reports corroborating the 
functional interaction.

n	Appending to the literature review using a 
data mining approach. Available resources 
include KEGG [101], HPRD [102], Chilibot [103] 
and Ingenuity Pathway Analysis [104]. These 
resources can be used to consolidate the liter-
ature-derived interactions and identify new 
components or interactions. They utilize data-
bases of curated data obtained from further 
text mining and experiments.

n	Graphical presentation of the resulting interac-
tions. This provides an intuitive, if not always 
unambiguous presentation of the results. This 
can be achieved with a variety of packages, 
including yEd [105], EPE [28], Cell Designer [29], 
Copasi [30] and SimBiology [106] and can be 
done using the newly introduced, community-
driven systems biology graphical notation [31] 
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or one of its forerunners [32–34]. Due to the 
fashion in which they are compiled, the result-
ing diagrams represent a consensus view 
derived from the community’s published 
results and not necessarily a canonical pathway 
that has been thoroughly  validated. 

n	A database of the resulting pathways. This 
facilitates the interrogation and sharing of 
pathway data. Several approaches to the stor-
age and review of network interaction data 
have been published [35–37], but this area is still 
in its infancy and will likely see further devel-
opment in the future. One of the most recent 
developments in this area has been the emer-
gence of the community-driven Wikipathways 
wiki, which has been established for open 
curation by the biology community [38].

Several recent studies have applied this research 
synthesis approach to signaling  pathways in 
macrophage biology [34,39,40].

There is a degree of caveat emptor to pathway 
information assembled from the established lit-
erature. Such pathways assume that the current 
state of the literature reflects an adequate level of 
understanding of the biology for the purpose in 
hand. However, it is not always the case that the 
published data truthfully reflects the underlying 
biology and it is prone to change. Accordingly, 
it is important to consider how best to inde-
pendently validate the pathway constructed for 
the system under investigation. By combining 
pathway modeling and hypothesis generation 
with experimental tools such as RNAi, we can 
use the correlation between experimental and 
computational results as a means to validate the 
obtained pathway information. 

Quantitative modeling
Graphical representations of pathways can be 
translated into the system of equations needed to 
simulate the pathway. Since this process is labo-
rious, the graphing packages mentioned above 
include features that automate this process to pro-
duce ODE systems. A standardized file format 
has been established in a community-driven effort 
for exchanging such ODE models. The systems 
biology markup language [41] uses the XML file 
formatting system and has been adopted widely 
in new software tools, online repositories and the 
supplementary online material of publications. 

The validation of the pathway is achieved by 
comparing the predictions from the systems 
of equations to the equivalent data. However, 
the system of equations can only relate the 
output of the pathway to the inputs to the 

pathway. Consequently, the equations require 
the input data in order to make a prediction 
of the output. 

Comparisons between the prediction and 
the equivalent data are rarely exact as both the 
equivalent data, and the data used in the inputs 
to the pathway contain some variation due to 
noise. As a result, the comparison must take the 
form of a statistical correlation. 

The true advantage of building a quantitative 
model (often referred to as an in silico model) 
comes once confidence has been established. 
A high confidence quantitative model allows 
us to explore ‘what if ’ scenarios without being 
limited by the financial and ethical constraints 
of experiment. It also allows us to explore con-
siderably more scenarios than an experiment 
would  permit, for the same investment of time 
and money.

The workflow describing how pathway models 
can be used to refine our understanding is shown 
in Figure 1.

Complexity
Complexity is something of an umbrella term 
that groups together the many factors that 
make ana lysis of quantitative models difficult 
and time consuming. More sophisticated analy-
ses require more computing time than simpler 
analyses and so the level of sophistication of 
the ana lysis is often limited by the computing 
resources available. 

Generally, there are two factors that contribute 
to the computing time required for ana lysis. The 
first is the efficiency with which a pathway can 
be simulated. ODE representations are simulated 

Pathway knowledge Quantitative model

Simulation

Prediction

Correlation

Refine knowledge

Experimental data

Figure 1. A workflow describing how quantitative models can contribute to 
refining our understanding of pathways.
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by numerical integration [42], stochastic systems 
are simulated using a variant of the Gillespie 
algorithm [43] and logic systems are simulated 
using sequences of update steps that can be either 
synchronized or unsynchronized [18]. By choos-
ing the most efficient methodology and simula-
tion method, the time taken by each simulation 
of the pathway can be kept to a minimum.

The second factor arises when the simulation 
must be run multiple times. This is the case when 
there are uncertain parameters in the quantitative 
model. A typical strategy to identify the value 
of an unknown parameter is to experimentally 
measure an initial state of the pathway and a final 
state some time later. Several representative values 
for the unknown parameter are then taken from 
across a likely range and the pathway is simu-
lated multiple times, once for each value, using 
the same initial state. The simulation whose final 
state best matches the experimentally observed 
final state provides an indicator of the likely value 
for the parameter. This is a fundamental strat-
egy in parameter estimation. However, because it 
requires multiple simulations, it can be very time 
consuming. When there are multiple unknown 
parameters, all permutations of the representative 
values of each parameter must be considered and 
the number of permutations grows exponentially 
in the number of parameters. Thus for N parame-
ters each with R representative values, the  number 
of simulations required is of the order of RN. 

Another common challenge is to determine 
which initial states of the pathway lead to a 
known final state. Here, the levels of the inputs 
to the pathway become the unknowns and the 
strategy is to choose representative values for each 
input, generate the necessary permutations of 
parameter values and simulate the pathway, tak-
ing each permutation as an initial state. By com-
paring the known final state to the states gener-
ated by each simulation, we can determine which 
initial state generated the known final state. As in 
the previous example, the number of simulations 
required grows exponentially with the number of 
unknown inputs. Thus for M inputs each with V 
representative values, the number of simulations 
required is of the order of VM.

Both of these scenarios are examples of com-
binatorial complexity, which generally indi-
cates an exponential growth in the number of 
permutations to be considered, when there are 
multiple unknowns.

Any modeling methodology that can describe 
the behavior of interest, but that reduces the num-
ber of parameters and the number of representa-
tive values to be considered will facilitate a quicker 

ana lysis of the pathway. This, in turn, allows us 
to use the same computing time to explore larger 
pathways and to perform deeper analyses. 

Modularity
By exploiting modularity in the pathway, we can 
reduce the number of simulations to be consid-
ered. A module is a section of pathway that takes 
one or more input signals and produces one or 
more output signals through a self-contained 
process that can be arbitrarily complex. In a 
modular pathway, it is often enough to consider 
only the signals that are passed between modules 
to study the pathway’s behavior, without neces-
sarily needing to analyze the internal function-
ing of each module. This strategy can reduce the 
number of parameters or the number of initial 
states to be considered. 

Modularity is a feature that has been highly 
sought in pathway biology, partly because of the 
analytical simplicity it brings and partly because 
it may hint at underlying organizational prin-
ciples in pathway biology. At the level of cell 
signaling, it is plausible that pathways may be 
arranged in a modular fashion to avoid unnec-
essary cross-talk and to maximize their inde-
pendence of function. For both functional and 
evolutionary reasons, this may, in turn, lead 
to improved levels of flexibility (adaptability) 
and robustness.

The innate immune response demonstrates 
a hierarchy of connected responses that hints 
at a modular control mechanism. The primary 
level response is mediated by innate and adap-
tive immunity and addresses infection. The 
secondary level response includes cell-prolifera-
tion modulation and apoptosis triggering along 
with inter-cell signaling [44]. The second level 
response involves significant interplay between 
the host and the pathogen as each try to control 
the other’s function.

At this level, we see another example of modu-
lar signaling in the interplay between the host 
and pathogen. Both have complex internal 
networks of signaling pathways that regulate 
their function. Both also have pathways that 
manipulate and exploit the others function. We 
can regard each as a module and the pathways 
between as inter-modular signaling. As such, the 
pathogen represents a modular plug-in to the 
host’s pathway network. 

For the purposes of developing logic as a 
modeling methodology, we shall focus on the 
host-cell regulatory pathways that dominate 
the second level of host regulatory control. 
The pathogen suppresses the immune response 
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using these pathways and exploits the cellular 
and metabolic processes of the host for its own 
survival [45]. They therefore serve as potential 
targets for drug intervention.

Homeostasis
A further feature that gives us insight into the 
function of pathways is homeostasis, in which 
a pathway functions at a steady, equilibrium 
level. The principal of homeostasis is key to 
determining the pathway function in chronic 
or persistent infections [44]. System–wide, this 
is achieved through the constant and dynamic 
adjustment of regulatory interaction pathways 
between the host and pathogen [46]. However, at 
a cellular level this is achieved by ensuring that 
key regulatory pathways sustain a fixed level of 
infection activity. 

Exploiting homeostasis can be a valuable 
approach to studying pathways with feedback. 
When simulated for an adequate length of 
time, pathways with feedback invariably enter 
into either a single state or a repeated cycle of 
states, neither of which they can escape without 
a change in external signals. Both are known as 
attractors (or limit cycles). One pathway may 
have multiple attractors and many initial states 
are likely to lead to each attractor. 

It has been speculated that the range of attrac-
tors that can be sustained by cellular pathways 
might explain the process through which cells 
differentiate into different cell phenotypes [47]. 
Individual pathways or pathway systems may 
also demonstrate a range of behaviors due to 
their attractor structure. 

Logic modeling
Signals can be propagated along pathways by 
both subtle and coarse variations in the activity 
of pathway components. Whether subtle varia-
tions represent significant signaling is depen-
dent, amongst other factors, on the sensitivity 
of the subsequent downstream interactions. In 
systems in which the sensitivity is low and the 
signaling behavior is dominated by coarse, dra-
matic variations in activity, we can approximate 
the signaling activity of the pathway components 
using one of two values: active or inactive. This 
dramatically reduces the number of permuta-
tions that must be considered when we wish 
to determine which initial states of a pathway 
lead to which final states and therefore achieves 
greater computational efficiency.

As part of this scenario, we can also reduce 
the number of parameters required by assum-
ing that all interactions take place reliably 

and completely. This eliminates the param-
eters that describe the strength of an inter-
action. Besides reducing the computational 
demands of searching through parameter val-
ues, this simplification makes validation more 
experimentally tractable.

This scenario lends itself very well to the form 
of propositional logic known as Boolean logic 
that is widely used in computing [16]. By using 
Boolean variables (which are two state variables 
with values ON or OFF) to describe the activ-
ity of components and the logical dependencies, 
AND, OR and NOT to describe the interac-
tions between pathway components, we can 
study pathway biology in a manner consistent 
the computational sciences. 

Amongst the many signaling interactions 
that appear on pathways, six common inter-
action types are binding, inhibition, complex 
formation, equivalent binding, dissociation 
and phosphorylation. Here, we review the logic 
description of each, using A, B and C to denote 
proteins, D to denote a complex, G to denote a 
gene and AP to denote a phosphorylated state of 
A. In a Boolean logic description, A, B, C, D and 
G are all two-state variables. 
n	Binding: suppose transcription factor A binds 

to gene G which leads to the transcription and 
translation of protein C. We require both A 
and G to be in an active state for C to be 
 produced. Thus, C = A AND G;

n	Inhibition: suppose transcription factor A 
binds to gene G which leads to the transcrip-
tion and translation of protein C and that this 
is inhibited by protein B. We require A and G 
to be active for C to be produced and B to be 
absent. Thus, C = (A AND NOT B) AND G;

n	Complex formation: suppose protein A and 
protein B, bind to form complex D. Both A 
and B must be active for D to be produced. 
Thus, D = A AND B;

n	Equivalent binding: suppose both A and B 
bind to G and that only one need bind in order 
for transcription and translation of protein C 
to occur. We require at least one of A and B to 
be active together with G. Thus, C = (A OR 
B) AND G;

n	Dissociation: suppose the complex D dissoci-
ates into the proteins A and B. We require D 
to be active for A and B to be produced. Thus, 
we have A = D and B = D;

n	Phosphorylation: suppose comple D phos-
phorylates protein A. We require D and A to 
be active for AP to be produced. Thus, we have 
AP = A AND D.

Use of logic theory in understanding regulatory pathway signaling in response to infection Review
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We can combine the dependencies of individ-
ual interactions to determine the dependencies 
of larger pathways. For example, suppose tran-
scription factor A binds to gene G1, producing 
protein C, and that protein A itself is the result 
of binding between transcription factor B and 
gene G2. This gives us two interactions: C = A 
AND G1 and A = B AND G2. We can substitute 
for A in the former to give C = (B AND G2) 
AND G1. 

Logic implementation of pathways
The key to using logic to analyze pathway behav-
ior is the mechanism by which we relate experi-
mental data to the two-state variables of Boolean 
logic. In order to convert experimental data to a 
form suitable for use in a logic description, we 
must discretize the data.

Discretization requires the introduction of a 
threshold and we generate two state activity lev-
els by setting all experimental values above the 
threshold to the active state and all experimental 
values below the threshold to the inactive state. 
The proportion of experimental values that fall 
exactly on threshold will be small and any errors 
that arise from misclassifying these points are 
likely to be small for sufficiently long time courses. 

In Figure  2, we demonstrate how continu-
ous experimental data can be discretized and 
that this retains the coarse trends of the data. 
The continuous line represents expression data 
obtained from microarray experiment (in this 
case the TNF transcript level obtained when 
bone marrow derived macrophages were infected 
with murine cytomegalovirus). The dotted line 
represents the discretization threshold and the 
dashed line the discrete expression levels obtained 
from the discretization process. 

Logic diagrams
In order to communicate the structure and 
dependencies of pathways, a graphical notation 
system that captures the logic dependencies of 
the interactions without retaining the biochemi-
cal details must be introduced, analogous to that 
used in electrical engineering. Here, we expand 
on a notational system that we have developed 
for pathway systems [21].

In order to describe large networks of signaling 
pathways, it is necessary to consider the network 
in sections. The choice of sections is largely arbi-
trary, but a good choice will allow us to study 
how the signals propagate through the system and 
identify whether there is feedback. We can seg-
ment many pathways using the compartments of 
the cell, for example. Each section has input sig-
nals and output signals and some of these signals 
are communicated to other sections (which we 
denote migrant signals) and others are not (latent 
signals). Latent outputs are important to capture 
because signals may be passed on to pathways that 
are not of interest in the current study and that we 
would want to truncate. Latent inputs are likely to 
arise because their signals derive either from path-
ways that are not of interest in the current study or 
from pathways that are unknown. Migrant inputs 
receive a signal from another section and migrant 
outputs pass a signal onto a different section. To 
distinguish between migrant and latent inputs, 
we place a bar above the latent input indicating 
that it should not receive a signal. To distinguish 
between latent and migrant outputs, we place a 
bar below the latent output indicating that no 
output signal can leave.

Figure 3 shows a hypothetical cell compartment 
in which there are no interactions. Proteins A 
and B pass through this compartment with-
out interacting. They have migrant inputs and 
outputs. The origin of protein C has not been 
deemed relevant, but is involved in downstream 
interactions and so has a latent input. Protein D 
propagates into the compartment, but triggers 
subsequent pathways that are not of interest and 
so are truncated. Protein D has a latent output.

In order to distinguish between proteins, com-
plexes and genes, we use rectangles with rounded 
corners to describe proteins and rectangles with 
square corners to describe complexes. 

In order to capture the logic of the pathways, 
we use the logic operators described above. Here 
we denote AND, OR and NOT using the sym-
bols ‘&’, ‘|’ and ‘!’, respectively and we enclose 
these symbols in circular nodes. AND and OR 
both take two inputs and produce one output. 
NOT takes one input and produces one output. 
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Figure 2. The discretization of continuous data. Here we show TNF expression 
levels recorded by microarray during infection of bone marrow derived macrophage 
cells by cytomegalovirus.
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The inputs are generally related to the 
outputs by the logic operators. For example, 
suppose we have a hypothetical pathway in 
which, within one compartment, proteins A 
and B bind to form the complex A:B and pro-
teins C and D bind to form the complex C:D. 
Suppose also that a fifth protein, E, binds to 
either complex before translocating to a dif-
ferent compartment. We would describe this 
as shown in Figure 4. 

One input can relate to several outputs and, 
for large networks of signaling pathways, this 
can lead to overlapping lines. A small black cir-
cle is used to distinguish between meaningful 

junctions between lines, where a signal is propa-
gated, and overlapping lines where a signal is not 
propagated (see Figure 5 for an example).

In pathways where transcriptional capacity is 
itself variable, for example in systems in which 
genes may be knocked down, we want to include 
genes as two state signals that may or may not be 
active. We include genes as grey rounded rect-
angles, similar in shape to the proteins. A tran-
scriptional event, in which transcription factor A 
activates gene B to produce protein B, is shown 
in Figure 6. Genes do not carry signals from other 
cell compartments and so, by  definition, are 
latent inputs to a section.

Cell compartment – cytosol – inputs

Cell compartment – cytosol – outputs

Protein C

Protein C

Protein A

Protein A

Protein B

Protein B

Protein D

Protein D

Figure 3. Proteins translocating into and out of the cytosol. Protein C is a latent input. Protein D 
is a latent output.

Cell compartment – cytosol – inputs

Cell compartment – cytosol – outputs

Protein A Protein B Protein C Protein D

I

Complex
A:B:E/C:D:E

&

& &

Protein E

Figure 4. A hypothetical pathway through the cytosol in which either complex [A:B] or 
 complex [C:D] can bind with protein E before translocating out of the cytosol.
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A key feature of this type of notation is that 
new pathways can be added to existing models 
in an orderly and neat fashion by adding new 
lines between the inputs and outputs. 

A modification of this notation allows us 
to present the pathways in a modular and 
more compact fashion. Each output from a 

compartment draws upon multiple input sig-
nals and so we can represent a pathway at a 
level that describes just the inputs and the out-
put. Each of these relations would only require 
one line and so the interaction described in 
Figure 4 would be simplified to the form shown 
in Figure  7. Such a representation would not 
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Figure 5. The logic representation of a section of the Jak–Stat signaling pathway.
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allow us to make predictions of the output, 
but may be useful for succinctly summarizing 
a pathway. 

Several freely available software platforms 
facilitate the construction and ana lysis of logic 
pathways. The notation we have described here 
can be built in free-form schematic software, 
such as yEd. Electrical engineering software 
can also be used, using the iconography of the 
field [107–109].

Logic statements
The logic also allows us to write the pathway 
dependencies as a logic statement. In order to do 
this in a fashion that is consistent with the dia-
grams, we must introduce a text-based notation.

Each entity on the pathway is given a name 
and we use parenthesis to indicate the type of 
the entity. Square brackets denote complexes, 
curly brackets denote genes and angled brack-
ets denote proteins. Thus protein A, gene B and 
complex C:D are denoted <A>, {B} and [C:D], 
respectively. Activation and phosphorylation are 
denoted with the superscripts * and P. For exam-
ple, phosphorylated protein A and active gene B 
are denoted with <A>P and {B}*. Latent inputs 
and outputs are denoted with an underline, for 
example <A>.

Using this notation, we can write logic state-
ments of the dependencies of each individual 
interaction and assemble, from these statements, 
descriptions of whole pathways. For example, 
referring to Figure 4, we can see the following 
individual interactions. The existence of complex 
[A:B] depends on proteins <A> and <B> and so 
we have [A:B] = <A> AND <B>. Similarly we can 
say that the existence of complex [C:D] requires 

the proteins <C> and <D>. Thus [C:D] = <C> 
AND <D>. The state that binds with the protein 
<E> is either [A:B] or [C:D] and we describe this 
state with [A:B/C:D] = [A:B] OR [C:D]. Finally, 
we know that complex [A:B:E/C:D:E] is the 
bound state of <E> with [A:B/C:D] and so we 
can say [A:B:E/C:D:E] = [A:B/C:D] AND <E>.

We can now use substitution to develop 
a description of the whole pathway. 
Starting from the pathway output, we have 
[A:B:E/C:D:E] = [A:B/C:D] AND <E> and 
here we can substitute for [A:B/C:D] using the 
interaction [A:B/C:D] = [A:B] OR [C:D]. This 
gives us [A:B:E/C:D:E] = ([A:B] OR [C:D]) 
AND <E>. We can now substitute for the com-
plex [A:B] to give [A:B:E/C:D:E] = ((<A> AND 
<B>) OR [C:D] ) AND <E>. We can also substi-
tute for [C:D] to give [A:B:E/C:D:E] = ((<A> 

Cell compartment – nucleus – inputs

Cell compartment – nucleus – outputs

Protein A Gene B

&

Protein B

Figure 6. Transcription factor A binds to gene B causing transcription and 
translation of protein B.

Cell compartment – cytosol – inputs

Cell compartment – cytosol – outputs

Protein EProtein A Protein B Protein C Protein D

Complex
A:B:E/C:D:E

Figure 7. A concise, modular representation of the pathway shown in Figure 4. A single line can 
describe all the inputs to and the output from a single pathway.
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AND <B>) OR (<C> AND <D>)) AND <E>. 
This now describes the output of the pathway 
entirely in terms of the inputs. 

There is no loss of information in going from 
a diagram of the form of Figure 4 to a textual 
notation of this form and so it provides and 
efficient representation with which to analyse 
the behavior of whole pathways. It also gives us 
an efficient way of storing and communicating 
the dependencies of whole pathways. 

Attractors of a logic system
When the latent inputs remain fixed, the path-
way will enter into either a fixed state (one 
that is not changed by the pathway logic) or 
a repeated cycle of states, if we simulate for a 
sufficient length of time. These fixed states and 
limit cycles of states are the attractors of the 
system [48,49]. This is a property of all Turing 
machines [50,51], of which a logic representation 
of a pathway is an example.

A pathway can have multiple attractors and 
the set of pathway states that will go on to reach 
each attractor are the known as the basin of 
that attractor [20,52]. 

The state of the whole pathway system, at a 
given moment, can be described by the values of 
all the variables representing the components. 
Thus, if there are N proteins, genes and com-
plexes in their various states passed between 
the sections in a pathway, we can describe the 
state of the whole pathway as a binary number 
N digits long. We can then describe the attrac-
tors and accompanying basin structure in terms 
of these binary numbers. As described earlier, 
it has been speculated that the set of attrac-
tors belonging to a pathway may correspond to 
 different  phenotypes [43].

In a logic description of a pathway with N 
components, there are 2N possible initial states. 
The logic of the pathway will yield multiple 
attractors and determining which initial states 
belong to which attractor basins can be com-
putationally complex for large pathway models. 
In the following section, we demonstrate this 
for a section of the Jak–Stat signaling pathway.

Jak–Stat signaling pathway
In Figure  5, we see a section of the Jak–Stat 
signaling pathway drawn as a logic system. 
The Jak–Stat signaling pathway is a relatively 
well understood mammalian host immune 
signaling system that contains feedback via 
extracellular signaling. It is small enough to 
be tractable to the ana lysis we propose and 
large enough to demonstrate, through the 

extracellular feedback, a range of attractors. 
Here, we use the Jak–Stat pathway to provide 
an example of how the functional behavior 
of a pathway may be analyzed and a control 
 strategy hypothesized.

The pathway itself crosses four cell compart-
ments (the extracellular space, cell membrane, 
cytosol and nucleus) and comprises eight 
migrant components (two proteins, two genes 
and four complexes) and six latent components 
(three proteins, two genes and one complex). 

If we distinguish between components in dif-
ferent compartments by labeling them using 
their location, we have the following logic to 
describe the pathway.

<IFNa_cell_membrane> = <IFNa_extra-
cellular_space>

<IFNb_cell_membrane> = <IFNb_extra-
cellular_space>

[IFNaR:Jak1:Tyk2:IFNa_cytosol] = <IFNa_
cel l_membrane> AND [IFNaR:Tyk2 : 
Jak1_cell_membrane]

[IFNaR:Jak1:Tyk2:IFNb_cytosol] = <IFNb_
extracellular_space> AND [IFNaR:Tyk2: 
Jak1_cell_membrane]

[Stat1:Stat1:IRF9_nucleus] = ((([IFNaR:Jak1: 
Tyk2: IFNa_cytosol] OR [IFNaR:Jak1:Tyk2: 
IFNb_cytosol]) AND <Stat1_cytosol>) AND 
<IRF9_cytosol>)

[Stat1:Stat2:IRF9_nucleus] = ((([IFNaR: 
Jak1:Tyk2:IFNa_cytosol] OR [IFNaR:Jak1: 
Tyk2:IFNb_cytosol]) AND <Stat1_cytosol>) 
AND (([IFNaR:Jak1:Tyk2:IFNa_cytosol] 
OR [IFNaR:Jak1:Tyk2:IFNb_cytosol]) AND 
<Stat2_cytosol>)) AND <IRF9_cytosol> 

<IFNa_extracellular_space> = ([Stat1:Stat1: 
IRF9_nuclear] OR [Stat1:Stat2:IRF9_nuclear]) 
AND {IFNa_nuclear}

<IFNb_extracellular_space> = ([Stat1:Stat1: 
IRF9_nuclear] OR [Stat1:Stat2:IRF9_nuclear]) 
AND {IFNb_nuclear}.

In order to explore the complete attractor 
basin structure of this pathway system, we 
would need to consider 2(8+6) = 214 (~16,384) 
initial states of the pathway. However, we can 
reduce this to a manageable level if we assume 
that all the latent inputs are present in an active 
state. This reduces the number of initial states 
to be considered to 28 = 256. We describe the 
states of the pathway in the form of an eight 
digit binary number in which the digits use 
the following order to describe the state of the 
 pathway components.

<IFNa_extracellular_space><IFNb_extra-
cellular_space><IFNa_cell_membrane><IFNb_
cell_membrane>[IFNar:Jak1:Tyk2:IFNa_
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cytosol][IFNaR:Jak1:Tyk2:IFNb_cytosol]
[Stat1:Stat1:IRF9_nucleus][Stat1:Stat2:IRF9_
nucleus]

To determine to which basin an initial state 
belongs, we apply the pathway logic repeatedly 
until repetition appears. For example, taking 
01001100 as the initial state, repeated  application 
of the pathway logic gives:

01001100 → 00010011 → 11000100 → 00110011 
→ 11001100 → 00110011

The last state is the same as the fourth state so 
this sequence will repeat indefinitely. From this, 
we can conclude that state 01001100 belongs to 
the attractor 00110011 → 11001100 → 00110011.

The full set of basins of attractors for this 
pathway are shown in Supplementary table 1 (see 
online www.futuremedicine.com/toc/fmb/5/2). 

The attractor states describe the stable states 
of the Jak–Stat signaling pathway as it has been 
presented and we could speculate on its modes 
of operation. By understanding the basins of 
these states, we can learn how best to intervene 
to switch the pathway from one phenotype to 
another. On pathways of this scale, this may 
be possible by pharmacologically intervening 
with a single component of the pathway. For 
example, if the pathway were operating in the 
attractor 00110011 → 11001100 → 00110011 and 
we changed the state of one protein by intro-
ducing <IFNa> to the extracellular space, we 
could transform the state 00110011 to 10110011. 
The state 10110011 belongs to the basin of the 
attractor 00111111 → 11001111 → 11110011 → 
11111100 → 00111111 and so, provided that 
<IFNa> dissipates quickly, the pathway will 
adopt the new mode of operation as a result of 
the intervention. 

On larger pathways, there are likely to be 
more attractor states and more complex means 
of switching the pathway between attractors. It 
may be possible to switch the pathway between 
different modes of operations by intervening 
at a single component, but optimal changes 
in the mode of operations could also require 
 intervention at several points in the pathway.

Conclusion
Understanding how pathogen subsystems 
exploit our own immune pathways will, by 
necessity, require a blend of computational 
and experimental biology. Here, we put for-
ward a framework based on logic theory for 
reducing the impact of combinatorial com-
plexity on pathway ana lysis that is amenable 
to computational and experimental testing. 
Such methods promise to shed much needed 

light on the emergent properties of pathway 
signaling response and regulation. They place 
us at the start of an exciting new era in micro-
biology, holding the promise of fundamentally 
new understandings of pathway  biology and 
host–pathogen interactions. 

We are hopeful, although it has not yet been 
demonstrated, that a pathway biology approach 
may lead to new and predictive insights in the 
targeting of host–pathogen interaction path-
ways. In this endeavor, new drugs that target 
the responding host’s pathways rather than the 
pathogen in isolation will become a first-line anti-
infective strategy. To quote Ernest Rutherford, 
“it is impossible until you understand it and 
then it becomes trivial”. Hopefully, in the near 
future, this challenge will become trivial.

Future perspective
Modeling methodologies that recognize, from 
the outset, the combinatorial difficulties of 
dealing with large pathways have enormous 
potential to improve our predictive understand-
ing of pathway biology. Once models are devel-
oped that have been sufficiently validated for us 
to have a high confidence in their predictions, 
these methods will allow us to explore pathway 
behavior in ways that are cheaper, quicker and 
more ethical than through laboratory research. 
An in silico experiment is considerably simpler 
and quicker to perform than its in vitro equiva-
lent and, with the development of high con-
fidence models, one would expect the in silico 
models to become the first port of call in future 
studies. In vitro and in vivo studies will be criti-
cal for enlarging and consolidating the body of 
mapped pathways and this would be by devel-
oping boundary knowledge to a level sufficient 
to be incorporated into the existing high-con-
fidence models. In other sciences, this blend of 
theory and experiment is well established and 
so the movement of cell biology in a direction 
that formalizes the position of a theoretical 
understanding will serve to bring cell biology 
to a level that allows it to better integrate with 
the other sciences. 

However, before such high confidence mod-
els can be developed, progress must be made 
on several fronts. Much of our understanding 
of the basic signaling biology has derived from 
in vitro experiments that poorly recreate in vivo 
conditions and so our current understanding is 
relatively poor of which interactions are domi-
nant and, therefore, key and which are not. 
This information is encoded in the parameter-
ization of more detailed and computationally 
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less tractable modeling methodologies and this 
problem lies at the heart of the problems with 
introducing in silico research into cell biology. 
For in  silico methods to produce high confi-
dence models, high confidence parameters 
need to be first obtained, comprehensively, for 
all types of interaction and in all conditions. 
For a single pathway, this is a colossal experi-
mental undertaking and is very hard to justify 
when the publishable output will be signifi-
cantly less than if the same financial resources 
were allocated to new in vitro studies. On a 
larger, more comprehensive scale, this barrier 
is more acute. 

The likelihood is that in the next 5 years 
several small high confidence pathway mod-
els will appear with possible pharmacological 
value. However, the difficulty of obtaining broad 
and comprehensive parameter values across all 
interactions is likely to be a longer-term issue. 
In other sciences, this level of detail has tended 

to be addressed once the boundaries of the sci-
ence have been reached, meaning that parameter 
studies will be evidence of a level of maturity in 
the field of systems biology.

Executive summary

Pathway modeling
n	By combining our understanding of the interactions within the cell, we can gain insight into the pathways that propagate signals 

around the cell.
n	Pathways can demonstrate emergent behavior, meaning behavior that cannot be determined purely by considering the  

individual interactions.
n	By learning more about the pathway structure, we will be able to devise new therapeutic strategies for manipulating cellular behavior, 

particularly in response to infection.

Pathway assembly
n	Consensus pathways can be assembled by searching the published literature.
n	This can be augmented with data-mining approaches.
n	The resulting pathway information can be presented graphically using systems biology graphical notation or one of a range of  

other notations.

Quantitative modeling
n	Quantitative modeling is part of a process of hypothesis generation, experimental testing and knowledge refinement.
n	The simplest starting point from which to build a model is from a consensus pathway diagram.
n	Combinatorial complexity ensures that model ana lysis can be extremely computationally demanding.
n	Strategies such as modularity and homeostasis can have a limited impact in reducing the computational demands.
n	Logic can be used as a modeling methodology that minimizes the combinatorial impact of pathway simulation and ana lysis as far  

as possible.

Logic representations
n	Drawing on methods analogous to electrical engineering, diagrams and logic statements can be assembled to describe the 

dependencies of pathways.
n	Logic models of pathways require fewer simulations in order to determine unknown parameters of unknown starting states than  

other models.
n	Discretization of data is required to fit data to a logic model.

Attractor states & phenotypes
n	All logic models progress to reach either a steady state or a repeated cycle of states (collectively, known as attractors).
n	The dominant behaviors of pathways correspond to attractors and the phenotypic behavior of cells has been speculated to correspond 

to the attractors of cellular signaling networks.

Conclusion
n	Logic provides a possible approach to understanding the behavior of larger networks of signaling pathways than is currently possible.
n	We propose the use of logic models for devising future therapeutic strategies that maximize efficacy and minimize side effects.
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