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Abstract: 

Plane-wave density functional theory has been applied in a novel way to help interpret the molecular 

crystal structure disorder observed in the orthorhombic zigzag phase of plumbocene, Pb(C5H5)2. A 

crystal lattice comprising uniformly staggered C5H5 rings was found to be lower in energy by 2.8 kJ 

mol
-1

 per unit cell, compared to a uniformly eclipsed packing arrangement. This energy difference 

has been attributed to the difference in the strength of intermolecular interactions between the 

Pb(C5H5)2 chains for the two different lattices. The calculations performed allowed the determination 

of the crystallographic occupancy factors by a quantum mechanical technique for the first time. 
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Introduction 

It is hard to underestimate the impact computational chemistry has had over the last 15 years. The 

chemist’s understanding of structure, reaction mechanism and vibrational properties to name but a few 

have all benefited enormously as a consequence of collaboration between theory and experiment. To-

date the traditional ab initio modeling codes that have been employed (e.g. GAUSSIAN1) simulate 

isolated molecules, but whilst this style of calculation is clearly relevant to studying gas-phase systems, 

it is not nearly so applicable to the condensed state. Many properties of the solid state could be amenable 

to calculation if an alternative modeling approach capable of handling periodic systems were adopted.  

 

One example of a style of modeling suitable for the solid state is plane-wave density functional theory 

(DFT),2 which can simulate a repeating unit such as a crystallographic unit cell. The lattice parameters 

and atomic positions can all be varied to minimize the crystal lattice energy, atomic forces and unit cell 

stress. As the two different styles of calculation are both quantum mechanical in nature, they share many 

common features in their calculation procedure. After periodicity, the biggest difference between the 

two calculation approaches relates to the construction of the molecular wavefunction, Y. The periodic 

method requires a periodic wavefunction, and therefore uses a set of plane waves and a series of 

pseudopotentials (in effect describing Yvalence and Ycore, respectively) rather than a set of Gaussian-type 

functions centred on each atom, as in the isolated molecule approach. In practice, increasing the energy 

threshold applied to the repeating unit model-system increases the number of plane waves that are 

included in the calculation. This offers the advantage of constructing a wavefunction that can be 



 

3 

systematically improved, rather than a truncated one, and thus helps to reduce possible error in the 

calculation due to an incomplete basis set. 

  

With the ability to calculate properties of molecular crystal lattices quantum mechanically, many 

interesting questions on structure and bonding in the solid state can now be addressed. One area that can 

in principle be tackled is molecular crystal disorder, a cause of frustration commonly encountered in X-

ray crystallography, where the arrangement of atoms in different unit cells are not all identical. The 

problem of disorder is a complex one. It is a random effect; that is the several different arrangements of 

atoms in an asymmetric unit can be assembled randomly to create an infinite number of different 

packing arrangements. All arrangements, however, must have similar energies to have reasonable 

probabilities of occurring, and similar unit cell dimensions in order that all the random unit cells can 

pack together efficiently in an infinite superlattice. Several different classifications of disorder exist. For 

example, in site occupancy disorder it is impossible to differentiate between two elements that scatter X-

rays to a very similar degree (e.g. C and N). This could give rise to a simple wrong assignment of 

ligands such as CO and NO, or fail to assign the position of a heteroatom in an aromatic ring. 

Alternatively, in positional or orientational disorder a whole molecule or, more confusingly, just part of 

the molecule, can be distributed over different sites, which are usually related by rotation, reflection or 

inversion. Moreover, the disorder can be static (i.e. the disordered atoms have two or more ‘rest’ 

positions, about which they vibrate) or dynamic (i.e. with sufficient thermal energy, the atomic positions 

can switch back and forth between the different positions). Although it is not possible to distinguish 

between static and dynamic disorder based on the results obtained from one data set collection, by 

carrying out investigations at lower temperatures, it may be possible to ‘freeze out’ dynamic disorder 

and observe, for example, a freely rotating group settle into a single position. Alternatively, upon 

cooling dynamic disorder may pass smoothly over into static disorder, at which point the disorder will 

be ‘locked in’ and no further significant change in the diffraction pattern will be observed.  
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If the disorder is, for example, between two positions in the cell, then in the data analysis the system is 

modelled with the disordered unit in both positions, and an occupancy factor dictates the weighting or 

probability of each position. Clearly for dynamic and static disorder the occupancy factor has a slightly 

different meaning, implying the fractions of time spent in each position for the former, or the fractions 

of molecules in each position in the latter. In either case if the occupancy factor is not known an initial 

value of 0.5 is assumed, and with good quality data it is then refined. 

 

Disorder, whether occurring for whole molecules or just part of a molecule, may result in a shortage of 

high-angle data of significant intensity being collected, which inevitably results in a structure with lower 

precision. Thus, refined parameters may have larger uncertainties than would otherwise occur for a 

system free from disorder, and finer structural details may be lost. It is a common condition: over 16% 

of entries in the Cambridge Structural Database report problems associated with disorder.3  

 

The application of periodic quantum mechanical calculations can offer valuable help in interpreting all 

types of crystal structure disorder. Due to the random nature of disorder, the number of possible 

different packing arrangements is infinite, and therefore by definition presents an intractable problem.  

However, calculations on a series of sensibly constructed models can give insight into the principles that 

are important in driving the crystal lattice packing. This in turn can result in calculated values for 

occupancy factors, which can assist the crystal structure determination. Moreover, as the precision of the 

simulation may be better than that of the experimental structure, the calculations can form a basis for the 

construction of geometric parameter restraints to be used in the least-squares refinement. This offers the 

advantage that all parameters are then able to refine (including, for example, H atom positions), thereby 

giving structures that are as accurate as possible and have realistic estimates of standard deviations for 

all parameters. This principle of including structural information calculated quantum mechanically to 

assist in the refinement of experimental structural data was recently reported for gas-phase electron 

diffraction, where its application has revolutionised the structure determination for small molecules.4 
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However, such an approach has hitherto never been applied to the problem of disorder in solid-state 

periodic lattices. 

 

Like their transition metal counterparts,5 main group metallocenes are some of the oldest metallocene 

compounds known.6 In contrast to all other Group 14 (Si-Pb) complexes of this type, which are 

monomeric in the solid state, gas phase and solution, plumbocene exhibits a rich diversity of polymeric 

solid-state polymorphism. The orthorhombic, zigzag polymorph is one of the classic, text-book 

structures in organometallic chemistry, and was first prepared by Fischer et al. in 1956.7 The molecular 

structure of this phase was determined some 10 years later.8 However, owing to the poor quality of the 

X-ray diffraction data at that time, an ambiguity transpired over assignment of the correct space group; 

the choice of Pnma or Pna21 was only resolved in a recent, more accurate redetermination of the 

structure, which revealed that only the former space group could fit the crystal data and structure 

refinement.9 Nonetheless, this polymorph shows orientational disorder, such that the bridging C5H5 

rings comprising the two columns in the unit cell are assigned randomly to two different positions, 

which in the redetermination were assumed to be of equal weight (i.e. an occupancy factor of 0.5 for 

both orientations). In the past 10 years or so there has been renewed interest in the structures and 

reactivities of main group metallocenes, paralleling in many ways the earlier surge in interest in their 

transition metal counterparts.10 The particular interest in plumbocene stems from the observation of 

other solvent-free polymorphs whereby the structure adopted depends on the medium and temperature of 

crystallisation; a cyclic hexagonal oligomer11 and a tetragonal, helical phase12 have been structurally 

characterised. The observed structural flexibility of plumbocene and its fundamental importance to 

organometallic chemistry make it an ideal candidate for quantum mechanical investigations of the solid 

state. 

 

The main purpose of this paper is to demonstrate the complementary nature of plane-wave density 

functional theory and X-ray diffraction for the determination of molecular structures when an 
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inconclusive result is obtained on the basis of experimental data alone. In this paper we present the 

results obtained by plane-wave DFT for two idealised packing arrangements of the orthorhombic, zigzag 

polymorph of plumbocene. These ‘extreme-case’ models are constructed from a 1 ´ 1 ´ 1 lattice [i.e. 

one unit cell containing four Pb(C5H5)2 molecules] where the C5H5 rings in the columns are either all-

eclipsed in one position or all-staggered over two positions (see Figure 1). The purpose of running these 

calculations was to determine the absolute energies of these two conformations and the factors upon 

which the energies depend. In addition to simulating the two different crystal lattices, further 

calculations were performed on one-dimensional infinite chains of [Pb(C5H5)2]¥ in the eclipsed and 

staggered conformations. This demonstrates another useful facet of periodic quantum mechanical 

calculations; namely the periodic cell can take any size or shape. Removing half the atoms from the unit 

cell to leave one intact Pb(C5H5)2 chain and preserving periodicity in the b lattice vector direction only, 

will allow a one-dimensional calculation on an infinite chain to be performed.  As the same basis set and 

level of theory is employed for both the three-dimensional and one-dimensional periodic calculations it 

is therefore possible to apply plane-wave DFT to investigate the energetics of intermolecular 

interactions between neighboring molecular fragments.  
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(a) 

(b) 

(c) 

O b 

a 

Figure 1 Figure Caption: Crystal lattice diagrams of the orthorhombic phase of plumbocene.  

(a) The disordered cell (viewed along the b axis, the C5H5 rings that give rise to columns are 

disordered over two possible sites).  From this, two extreme-case models have been resolved: 

(b) eclipsed and (c) staggered. 
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Theoretical Calculations 

Crystal lattices. A set of plane-wave DFT calculations was undertaken using the CASTEP 4.2 

simulation code.2 A generalised gradient approximation (PW91) was used for the exchange and 

correlation potential,13 and an energy cut-off of 450 eV generated a basis set that allowed the total 

energy of the system to converge to 0.1 eV atom-1. For the two different crystal lattices integrations over 

the symmetrised Brillouin zone were performed using two k-points generated via the Monkhurst-Pack 

scheme.14 Simultaneous optimisation of crystal lattice parameters and atomic relaxation were performed 

under the space group symmetry constraints in line with the experimental structure determination (see 

Figures 2 and 3). Note that the two disordered rings are non-centrosymmetric. Therefore, depending on 

which ring position is chosen, two different Cpcent-Pb-m-Cpcent angles (where Cpcent denotes the centroid 

of the C5H5 ring) can arise. Thus in the eclipsed lattice, the two different conformations for the 

[Pb(C5H5)3] units present in the unit cell both possess Cs symmetry, having been constructed from 

disordered C5H5 rings in the same orientation. This is described as a ‘duu’ (or the opposite ‘udd’) 

orientation, or ‘ddd’ (‘uuu’), where ‘d’ and ‘u’ pertain to the disordered column C5H5 rings,  ‘up’ (u) 

denoting a C5H5 ring pointing directly out of the [Pb(C5H5)3] molecular plane, ‘down’ (d) a ring 

pointing in the opposite direction. Conversely, in the staggered lattice the [Pb(C5H5)3] units are 

constructed from C5H5 rings disordered over both positions, and thus only one unique [Pb(C5H5)3] 

structure ‘ddu’ (‘uud’) exists in the unit cell, and it has C1 symmetry. 

 

 

 [Pb(C5H5)2]¥ (one-dimensional periodic). One Pb(C5H5)2 chain was selected from each of the two 

fully optimised crystal lattices and placed in a periodic cell (box size a = c =16.000,  b = 9.582 and 

9.673 Å for eclipsed and staggered respectively, i.e. periodic in lattice parameter b only) (see Figure 2), 

and subjected to a single-point energy calculation. Values for lattice parameters a and c were chosen so 

that they gave rise to not overly-long calculation times and could still be considered to generate isolated 

model-systems (the closest contact between neighbouring molecules exceeding 9 Å). The same energy 
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cut-off was used as for the crystal lattice calculations to generate the same quality basis set, thus 

allowing direct comparison of the absolute energies obtained. Calculations were performed using 1 k-

point located at the G position (0,0,0) in the Brillouin zone.  

 



 

10 

(a) 

(b) 

Figure 2 Figure Caption: Lattice diagrams of the [Pb(C5H5)2]¥ periodic cells (a) eclipsed and (b) 

staggered. 



 

11 

 

Results and Discussion 

Crystal lattices. The results obtained in the simultaneous optimisation of unit cell parameters and 

atomic positions for the two lattices are given in Table 1 and Figures 3 and 4. 

 

The two models give calculated unit cells with very similar dimensions, indicating that they could 

pack together efficiently to create a disordered superstructure. Both cells are, however, slightly bigger 

than the experimentally determined lattice, with lattice parameters a, b and c overestimated by 3, 2, and 

10%, i.e. ca. 0.5, 0.2 and 0.7 Å, respectively. These discrepancies are not due to a weakness in the 

calculation to simulate intramolecular bonding, but rather are due to underestimation of the weak 

interactions between the Pb(C5H5)2 chains. Thus in the a direction, whilst rPb-Cpcent is reproduced to 

within 0.05 Å, the distance between the chains in this direction is overestimated by ca. 0.2 Å for the two 

lattices. Similarly, in the c direction the stacking distance between identical Pb(C5H5)2 chains is 

overestimated by as much as 0.7 Å. The direction along the Pb(C5H5)2 chains is represented by b, and 

with no intermolecular chain interactions to model, is the most accurately determined of the three lattice 

parameters, with the simulation overestimating the chain length by just 0.04 and 0.13Å (eclipsed and 

staggered, respectively). 

 

Considering the molecular parameters in more detail, the two calculated structures return near-

identical values for the average C-C ring distance (1.408 Å, c.f. 1.395 Å by experiment). The Pb-Cpcent 

distance, which was assumed in the experiment to be unaffected by the nearby disordered C5H5 rings, 

was found to be slightly longer in the calculation compared to the X-ray structure (by 0.03 – 0.05 Å), but 

crucially not identical in the two lattices. The disordered distance Pb-m-Cpcent was much more variable 

in the calculations, differing by –0.06 - +0.12 Å from the experimental values. However, whilst it is true 

that any improvement in the calculation to correct for an incomplete basis set or weakness in the DFT 

functional is likely to improve the absolute values vs. experiment, if the bond lengths in question are 
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electronically similar the discrepancies in the differences between bond lengths would be expected to be 

much smaller. This is indeed the case, with the calculations reproducing rPb-m-Cpcent – rPb-Cpcent to 

within 0.10 Å of the experimental value. This information could form the basis for the construction of 

geometric parameter restraints to use in a re-refinement of the original X-ray data to allow subtle 

structural differences to be revealed in the region of the molecule assumed to be unaffected by the 

disorder; information that is detectable by quantum mechanics but lost to large thermal ellipsoids in the 

experiment.   

  

 

 From the solid-state calculations, the staggered lattice arrangement is found to be lower in energy 

than the eclipsed conformation by 2.8 kJ mol-1 per unit cell, or 0.7 kJ mol-1 per Pb(C5H5)2 molecule. 

Assuming that there is no interaction between cells (i.e. a superlattice of alternating staggered and 

eclipsed cells would generate an energy per unit cell exactly midway between the two extremes) and the 

entropy of the two lattices is the same, then it is possible to predict a Boltzmann distribution for the 

molecular arrangement of Pb(C5H5)2 molecules in an averaged, randomised unit cell, in effect 

generating a calculated occupancy factor. Thus, at the temperature of crystal growth (300 K),9 the 

Boltzmann distribution gives an occupancy of ca. 43:57 (eclipsed to staggered), compared to the 

experimentally assumed value of 50:50. If the disorder is a function of temperature (i.e. dynamic, not 

static; the molecules can rearrange in the crystal) then at the temperature of X-ray data collection (173 

K), this balance should shift to ca. 38:62. At temperatures below 40 K, quantum mechanics predicts that 

less than 10% of molecules will occupy the eclipsed position, and thus the lattice would tend towards 

the non-disordered, fully staggered arrangement.  In principle at least, a series of low-temperature X-ray 

data collections could be employed to confirm or deny the variation in occupancy factors predicted by 

quantum mechanics, assuming that no phase transitions to other polymorphs of plumbocene would 

occur over such a broad range of temperature. 
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[Pb(C5H5)2]¥ (one-dimensional periodic). With a statistically significant difference in crystal lattice 

energy identified, the remaining question to address is why the staggered arrangement is lower in energy 

than the eclipsed. To this end, a further series of calculations was performed on the two different 

[Pb(C5H5)2]¥ molecular chain conformations (see Figure 2 and Table 2), with coordinates frozen in 

positions obtained from the full crystal lattice optimisations. From this, an interesting result emerges. 

The absolute energy for the eclipsed chain is slightly lower than that for the staggered (by ca. 0.01 eV or 

1.0 kJ mol-1). Therefore the conformations of the individual Pb(C5H5)2 molecules in the chains are not 

directly responsible for the difference in packing energy in the two idealised crystal lattices. This is 

consistent with ab initio calculations reported recently for different conformations of the isolated 

molecule using Gaussian basis sets.15,16  

 

However, by comparing the energy obtained for the isolated chain with the value per chain in the 

corresponding crystal lattice it is possible to obtain the energy of interaction between the chains in the 

crystal lattice. Thus, the chain intermolecular interactions are assigned an energy of 27.7 kJ mol-1 in the 

eclipsed lattice, and 30.2 kJ mol-1 in the staggered lattice. The difference in intermolecular energy (2.5 

kJ mol-1) is very close to the difference in packing energies observed between the two idealised lattices 

(2.8 kJ mol-1). It can therefore be concluded that the stronger chain interactions in the staggered lattice 

offer it a slight increase in stability, compared to the eclipsed case. 
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Table 1 Table Title: Experimental and calculated crystal parameters of the orthorhombic phase of 

Pb(C5H5)2 

 

Parameters (Å, º) Experimental Calculated  

Lattice  eclipsed staggered 

a 16.294 16.722 16.764 

b 9.539 9.582 9.673 

c 5.896 6.564 6.547 

V 916.4 1051.8 1061.6 

Calculation    

E (eV) - -13544.44329 -13544.47255 

DE (kJ mol-1)  

(per unit cell) 

- +2.8 0.0 

 

 

Table 2 Table Title: Calculated single-point energies for one-dimensional Pb(C5H5)2 isolated chains 

 

Parameter eclipsed staggered 

Lattice (Å)   

a 16.000 16.000 

b 9.582 9.673 

c 16.000 16.000 

Calculation   

E(eV) -6771.93424 -6771.92375 

DE (lattice/2 – chain) (kJ mol-1) 27.7 30.2 
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Figure 3 Figure Caption: Schematic diagram for the eclipsed lattice showing (a) experimental and 

(b) calculated geometric parameters [distances (Å) and angles (º)], and relative C5H5 ring 

orientation in each [Pb(C5H5)3] unit (d = ‘down’, i.e. C-H pointing directly away, u = ‘up’ C-H 

pointing directly upwards).   
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Figure 4 Figure Caption: Schematic diagram for the staggered lattice showing (a) experimental and (b) 

calculated geometric parameters [distances (Å) and angles (º)], and relative C5H5 ring orientation in each 

[Pb(C5H5)3] unit (d = ‘down’, i.e. C-H pointing directly away, u = ‘up’ C-H pointing directly upwards).   
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Conclusion 

 

In this paper we have described the application of plane-wave density functional theory to shed light 

on the nature of the molecular crystal structure disorder observed in the orthorhombic zigzag polymorph 

of plumbocene, Pb(C5H5)2. The energies obtained from the optimisation of the idealised crystal lattice 

arrangements derived from the disordered cell have allowed crystallographic occupancy factors to be 

calculated by a quantum mechanical technique for the first time. This has revealed a very close 

agreement between experiment and theory at room temperature, but that at lower temperatures one well-

defined packing arrangement is increasingly favoured. Furthermore, a potential basis for constructing 

geometric parameter constraints, data often crucial to refinement of X-ray diffraction data, has been 

identified. Finally, single-point energy calculations performed on Pb(C5H5)2 chains taken from the two 

different crystal lattices have highlighted the importance of chain-chain interactions in determining the 

greater stability of the staggered conformation. 

 

Combined with conventional crystallographic packages, this approach could provide an important tool 

for determinations in a wealth of future studies where disorder in periodic structures is observed. In 

addition to the pragmatic nature of this work we have demonstrated, using Pb(C5H5)2 as the illustrative 

example, firstly how energy differences between the disordered lattices may be determined and, 

secondly, how the origins of the discrepancies may be elucidated. Despite the application of this new 

technique to a simplified 1 ´ 1 ´ 1 unit of the structure of plumbocene, with access to bigger 

computational resources other packing arrangements based on a bigger superlattice (e.g. 2 ´ 2 ´ 2) could 

also be envisaged, providing a potentially greater level of accuracy in the calculated occupancy factors. 
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