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When Simulation Meets Antichains
(On Checking Language Inclusion of Nondeterministic Finite (Tree) Automata)?

Parosh Aziz Abdulla1, Yu-Fang Chen1, Lukáš Holík2, Richard Mayr3, and Tomáš Vojnar2

1Uppsala University 2Brno University of Technology 3University of Edinburgh

Abstract. We describe a new and more efficient algorithm for checking univer-
sality and language inclusion on nondeterministic finite word automata (NFA)
and tree automata (TA). To the best of our knowledge, the antichain-based ap-
proach proposed by De Wulf et al. was the most efficient one so far. Our idea is
to exploit a simulation relation on the states of finite automata to accelerate the
antichain-based algorithms. Normally, a simulation relation can be obtained fairly
efficiently, and it can help the antichain-based approach to prune out a large por-
tion of unnecessary search paths. We evaluate the performance of our new method
on NFA/TA obtained from random regular expressions and from the intermediate
steps of regular model checking. The results show that our approach significantly
outperforms the previous antichain-based approach in most of the experiments.

1 Introduction

The language inclusion problem for regular languages is important in many applica-
tion domains, e.g., formal verification. Many verification problems can be formulated
as a language inclusion problem. For example, one may describe the actual behaviors of
an implementation in an automaton A and all of the behaviors permitted by the specifi-
cation in another automaton B . Then, the problem of whether the implementation meets
the specification is equivalent to the problem L(A)⊆ L(B).

Methods for proving language inclusion can be categorized into two types: those
based on simulation (e.g., [7]) and those based on the subset construction (e.g., [6, 10–
12]). Simulation-based approaches first compute a simulation relation on the states of
two automata A and B and then check if all initial states of A can be simulated by some
initial state of B . Since simulation can be computed in polynomial time, simulation-
based methods are usually very efficient. Their main drawback is that they are incom-
plete. Simulation preorder implies language inclusion, but not vice-versa.

On the other hand, methods based on the subset construction are complete but in-
efficient because in many cases they will cause an exponential blow up in the number
of states. Recently, De Wulf et al. [13] proposed the antichain-based approach. To the
best of our knowledge, it was the most efficient one among all of the methods based
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on the subset construction. Although the antichain-based method significantly outper-
forms the classical subset construction, in many cases, it still sometimes suffers from
the exponential blow up problem.

In this paper, we describe a new approach that nicely combines the simulation-
based and the antichain-based approaches. The computed simulation relation is used
for pruning out unnecessary search paths of the antichain-based method.

To simplify the presentation, we first consider the problem of checking universality
for a word automaton A . In a similar manner to the classical subset construction, we
start from the set of initial states and search for sets of states (here referred to as macro-
states) which are not accepting (i.e., we search for a counterexample of universality).
The key idea is to define an “easy-to-check” ordering� on the states of A which implies
language inclusion (i.e., p � q implies that the language of the state p is included in
the language of the state q). From �, we derive an ordering on macro-states which
we use in two ways to optimize the subset construction: (1) searching from a macro-
state needs not continue in case a smaller macro-state has already been analyzed; and
(2) a given macro-state is represented by (the subset of) its maximal elements. In this
paper, we take the ordering � to be the well-known maximal simulation relation on the
automaton A . In fact, the anti-chain algorithm of [13] coincides with the special case
where the ordering � is the identity relation.

Subsequently, we describe how to generalize the above approach to the case of
checking language inclusion between two automata A and B , by extending the ordering
to pairs each consisting of a state of A and a macro-state of B .

In the second part of the paper, we extend our algorithms to the case of tree au-
tomata. First, we define the notion of open trees which we use to characterize the lan-
guages defined by tuples of states of the tree automaton. We identify here a new ap-
plication of the so called upward simulation relation from [1]. We show that it implies
(open tree) language inclusion, and we describe how we can use it to optimize existing
algorithms for checking the universality and language inclusion properties.

We have implemented our algorithms and carried out an extensive experimentation
using NFA obtained from several different sources. These include NFA from random
regular expressions and also 1069 pairs of NFA generated from the intermediate steps
of abstract regular model checking [5] while verifying the correctness of the bakery
algorithm, a producer-consumer system, the bubble sort algorithm, an algorithm that
reverses a circular list, and a Petri net model of the readers/writers protocol. We have
also considered tree-automata derived from intermediate steps of abstract regular tree
model checking. The experiments show that our approach significantly outperforms the
previous antichain-based approach in almost all of the considered cases. (Furthermore,
in those cases where simulation is sufficient to prove language inclusion, our algorithm
has polynomial running time.)

The remainder of the paper is organized as follows. Section 2 contains some basic
definitions. In Section 3, we begin the discussion by applying our idea to solve the uni-
versality problem for NFA. The problem is simpler than the language inclusion problem
and thus we believe that presenting our universality checking algorithm first makes it
easier for the reader to grasp the idea. The correctness proof of our universality check-
ing algorithm is given in Section 4. In Section 5 we discuss our language inclusion



checking algorithm for NFA. Section 6 defines basic notations for tree automata and
in Section 7, we present the algorithms for checking universality and language inclu-
sion for tree automata. The experimental results are described in Section 8. Finally, in
Section 9, we conclude the paper and discuss further research directions.

2 Preliminaries

A Nondeterministic Finite Automaton (NFA) A is a tuple (Σ,Q, I,F,δ) where: Σ is an
alphabet, Q is a finite set of states, I ⊆ Q is a non-empty set of initial states, F ⊆ Q is
a set of final states, and δ ⊆ Q×Σ×Q is the transition relation. For convenience, we
use p a−→ q to denote the transition from the state p to the state q with the label a.

A word u = u1 . . .un is accepted by A from the state q0 if there exists a sequence
q0u1q1u2 . . .unqn such that qn ∈ F and q j−1

u j−→ q j for all 0 < j≤ n. Define L(A)(q) :=
{u | u is accepted by A from the state q} (the language of the state q in A). Define the
language L(A) of A as

S
q∈I L(A)(q). We say that A is universal if L(A) = Σ∗. Let

A = (Σ,QA , IA ,FA ,δA) and B = (Σ,QB , IB ,FB ,δB) be two NFAs. Define their union
automaton A ∪B := (Σ,QA ∪QB , IA ∪ IB ,FA ∪FB ,δA ∪δB). We define the post-image
of a state Post(p) := {p′ | ∃a ∈ Σ : (p,a, p′) ∈ δ}.

A simulation on A = (Σ,Q, I,F,δ) is a relation � ⊆ Q×Q such that p � r only if
(i) p ∈ F =⇒ r ∈ F and (ii) for every transition p a−→ p′, there exists a transition r a−→ r′

such that p′ � r′. It can be shown that for each automaton A = (Σ,Q, I,F,δ), there exists
a unique maximal simulation which can be computed in O(|Σ||δ|) [8].

Lemma 1. Given a simulation � on an NFA A , p� r =⇒ L(A)(p)⊆ L(A)(r).

For convenience, we call a set of states in A a macro-state, i.e., a macro-state is
a subset of Q. A macro-state is accepting if it contains at least one accepting state,
otherwise it is rejecting. For a macro-state P, define L(A)(P) :=

S
p∈P L(A)(p). We

say that a macro-state P is universal if L(A)(P) = Σ∗. For two macro-states P and R,
we write P �∀∃ R as a shorthand for ∀p ∈ P.∃r ∈ R : p� r. We define the post-image
of a macro-state Post(P) := {P′ | ∃a ∈ Σ : P′ = {p′ | ∃p ∈ P : (p,a, p′) ∈ δ}}. We use
A⊆ to denote the set of relations over the states of A that imply language inclusion, i.e.,
if �∈ A⊆, then we have p� r =⇒ L(A)(p)⊆ L(A)(r).

3 Universality of NFAs

The universality problem for an NFA A = (Σ,Q, I,F,δ) is to decide whether L(A) =
Σ∗. The problem is PSPACE-complete. The classical algorithm for the problem first
determinizes A with the subset construction and then checks if every reachable macro-
state is accepting. The algorithm is inefficient since in many cases the determinization
will cause a very fast growth in the number of states. Note that for universality checking,
we can stop the subset construction immediately and conclude that A is not universal
whenever a rejecting macro-state is encountered. An example of a run of this algorithm
is given in Fig. 1. The automaton A used in Fig. 1 is universal because all reachable
macro-states are accepting.
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tion 1”, “Antichain”, “Classical” are the macro-states gener-
ated by our approach with the maximal simulation and Op-
timization 1, the antichain-based approach, and the classical
approach, respectively.

Fig. 1. Universality Checking Algorithms

In this section, we propose a more efficient approach to universality checking. In
a similar manner to the classical algorithm, we run the subset construction procedure
and check if any rejecting macro-state is reachable. However, our algorithm augments
the subset construction with two optimizations, henceforth referred to as Optimization 1
and Optimization 2, respectively.

Optimization 1 is based on the fact that if the algorithm encounters a macro-state
R whose language is a superset of the language of a visited macro-state P, then there
is no need to continue the search from R. The intuition behind this is that if a word is
not accepted from R, then it is also not accepted from P. For instance, in Fig. 1(b), the
search needs not continue from the macro-state {s2,s3} since its language is a superset
of the language of the initial macro-state {s1,s2}. However, in general it is difficult to
check if L(A)(P)⊆ L(A)(R) before the resulting DFA is completely built. Therefore,
we suggest to use an easy-to-compute alternative based on the following lemma.

Lemma 2. Let P, R be two macro-states, A be an NFA, and � be a relation in A⊆.
Then, P�∀∃ R implies L(A)(P)⊆ L(A)(R).

Note that in Lemma 2,� can be any relation on the states of A that implies language
inclusion. This includes any simulation relation (Lemma 1). When � is the maximal
simulation or the identity relation, it can be efficiently obtained from A before the subset
construction algorithm is triggered and used to prune out unnecessary search paths.

An example of how the described optimization can help is given in Fig. 1(b). If �
is the identity, the universality checking algorithm will not continue the search from
the macro-state {s1,s2,s4} because it is a superset of the initial macro-state. In fact,
the antichain-based approach [13] can be viewed as a special case of our approach
when � is the identity. Notice that, in this case, only 7 macro-states are generated (the
classical algorithm generates 13 macro-states). When � is the maximal simulation, we
do not need to continue from the macro-state {s2,s3} either because s1 � s3 and hence



Algorithm 1: Universality Checking
Input: An NFA A = (Σ,Q, I,F,δ) and a relation �∈ A⊆.
Output: TRUE if A is universal. Otherwise, FALSE.
if I is rejecting then return FALSE ;1
Processed:= /0;2
Next:={Minimize(I)};3
while Next 6= /0 do4

Pick and remove a macro-state R from Next and move it to Processed;5
foreach P ∈ {Minimize(R′) | R′ ∈ Post(R)} do6

if P is rejecting then return FALSE ;7

else if 6 ∃S ∈ Processed∪Next s.t. S�∀∃ P then8

Remove all S from Processed∪Next s.t. P�∀∃ S;9
Add P to Next;10

return TRUE11

{s1,s2} �∀∃ {s2,s3}. In this case, only 3 macro-states are generated. As we can see
from the example, a better reduction of the number of generated states can be achieved
when a weaker relation (e.g., the maximal simulation) is used.

Optimization 2 is based on the observation that L(A)(P) = L(A)(P\{p1}) if there
is some p2 ∈ P with p1 � p2. This fact is a simple consequence of Lemma 2 (note that
P �∀∃ P \ {p1}). Since the two macro-states P and P \ {p1} have the same language,
if a word is not accepted from P, it is not accepted from P \ {p1} either. On the other
hand, if all words in Σ∗ can be accepted from P, then they can also be accepted from
P\{p1}. Therefore, it is safe to replace the macro-state P with P\{p1}.

Consider the example in Fig. 1. If � is the maximal simulation relation, we can
remove the state s2 from the initial macro-state {s1,s2} without changing its language,
because s2 � s1. This change will propagate to all the searching paths. With this opti-
mization, our approach will only generates 3 macro-states, all of which are singletons.
The result after apply the two optimizations are applied is shown in Fig. 1(c).

Algorithm 1 describes our approach in pseudocode. In this algorithm, the function
Minimize(R) implements Optimization 2. The function does the following: it chooses
a new state r1 from R, removes r1 from R if there exists a state r2 in R such that r1 � r2,
and then repeats the procedure until all of the states in R are processed. Lines 8–10 of
the algorithm implement Optimization 1. Overall, the algorithm works as follows. Till
the set Next of macro-states waiting to be processed is non-empty (or a rejecting macro-
state is found), the algorithm chooses one macro-state from Next, and moves it to the
Processed set. Moreover, it generates all successors of the chosen macro-state, mini-
mizes them, and adds them to Next unless there is already some �∀∃-smaller macro-
state in Next or in Processed. If a new macro-state is added to Next, the algorithm at the
same time removes all �∀∃-bigger macro-states from both Next and Processed. Note
that the pruning of the Next and Processed sets together with checking whether a new
macro-state should be added into Next can be done within a single iteration through
Next and Processed. We discuss correctness of the algorithm in the next section.



4 Correctness of the Optimized Universality Checking

In this section, we prove correctness of Algorithm 1. Due to the space limitation,
we only present an overview. A more detailed proof can be found in [2]. Let A =
(Σ,Q, I,F,δ) be the input automaton. We first introduce some definitions and nota-
tions that will be used in the proof. For a macro-state P, define Dist(P) ∈ N∪ {∞}
as the length of the shortest word in Σ∗ that is not in L(A)(P) (if L(A)(P) = Σ∗,
Dist(P) = ∞). For a set of macro-states MStates, the function Dist(MStates) ∈ N∪
{∞} returns the length of the shortest word in Σ∗ that is not in the language of some
macro-state in MStates. More precisely, if MStates = /0, Dist(MStates) = ∞, otherwise,
Dist(MStates) = minP∈MStatesDist(P). The predicate Univ(MStates) is true if and only
if all the macro-states in MStates are universal, i.e., ∀P ∈MStates : L(A)(P) = Σ∗.

Lemma 3 describes the invariants used to prove the partial correctness of Alg. 1.

Lemma 3. The below two loop invariants hold in Algorithm 1:

1. ¬Univ(Processed∪Next) =⇒ ¬Univ({I}).
2. ¬Univ({I}) =⇒ Dist(Processed) > Dist(Next).

Due to the finite number of macro-states, we can show that Algorithm 1 eventually
terminates. Algorithm 1 returns FALSE only if either the set of initial states is rejecting,
or the minimized version of some successor R′ of a macro-state R chosen from Next
on line 5 is found to be rejecting. In the latter case, due to Lemma 2, R′ is also reject-
ing. Then, R is non-universal, and hence Univ(Processed∪Next) is false. By Lemma 3
(Invariant 1), we have A is not universal. The algorithm returns TRUE only when Next
becomes empty. When Next is empty, Dist(Processed) > Dist(Next) is not true. There-
fore, by Lemma 3 (Invariant 2), A is universal. This gives the following theorem.

Theorem 1. Algorithm 1 always terminates, and returns TRUE iff the input automaton
A is universal.

5 The Language Inclusion Problem

The technique described in Section 3 can be generalized to solve the language-inclusion
problem. Let A and B be two NFAs. The language inclusion problem for A and B is to
decide whether L(A) ⊆ L(B). This problem is also PSPACE-complete. The classical
algorithm for solving this problem builds on-the-fly the product automaton A ×B of
A and the complement of B and searches for an accepting state. A state in the product
automaton A×B is a pair (p,P) where p is a state in A and P is a macro-state in B . For
convenience, we call such a pair (p,P) a product-state. A product-state is accepting iff p
is an accepting state in A and P is a rejecting macro-state in B . We use L(A ,B)(p,P) to
denote the language of the product-state (p,P) in A×B . The language of A is not con-
tained in the language of B iff there exists some accepting product-state (p,P) reachable
from some initial product-state. Indeed, L(A ,B)(p,P) = L(A)(p)\L(B)(P), and the
language of A ×B consists of words which can be used as witnesses of the fact that
L(A) ⊆ L(B) does not hold. In a similar manner to universality checking, the algo-
rithm can stop the search immediately and conclude that the language inclusion does
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Fig. 2. Language Inclusion Checking Algorithms

not hold whenever an accepting product-state is encountered. An example of a run of
the classical algorithm is given in Fig. 2. We find that L(A) ⊆ L(B) is true and the
algorithm generates 13 product-states (Fig. 2(c), the area labeled “Classical”).

Optimization 1 that we use for universality checking can be generalized for lan-
guage inclusion checking as follows. Let A =(Σ,QA , IA ,FA ,δA) and B =(Σ,QB , IB ,FB ,
δB) be two NFAs such that QA ∩QB = /0. We denote by A ∪B the NFA (Σ,QA ∪
QB , IA ∪ IB ,FA ∪FB ,δA ∪δB). Let � be a relation in (A ∪B)⊆. During the process of
constructing the product automaton and searching for an accepting product-state, we
can stop the search from a product-state (p,P) if (a) there exists some visited product-
state (r,R) such that p � r and R �∀∃ P, or (b) ∃p′ ∈ P : p � p′. Optimization 1(a) is
justified by Lemma 4, which is very similar to Lemma 2 for universality checking.

Lemma 4. Let A , B be two NFAs, (p,P), (r,R) be two product-states, where p, r are
states in A and P, R are macro-states in B , and � be a relation in (A ∪B)⊆. Then,
p� r and R�∀∃ P implies L(A ,B)(p,P)⊆ L(A ,B)(r,R).

By the above lemma, if a word takes the product-state (p,P) to an accepting product-
state, it will also take (r,R) to an accepting product-state. Therefore, we do not need to
continue the search from (p,P).

Let us use Fig. 2(c) to illustrate Optimization 1(a). As we mentioned, the antichain-
based approach can be viewed as a special case of our approach when � is the iden-
tity. When � is the identity, we do not need to continue the search from the product-
state (p2,{q1,q2}) because {q2} ⊆ {q1,q2}. In this case, the algorithm generates 8
product-states (Fig. 2(c), the area labeled “Antichain”). In the case that � is the maxi-
mal simulation, we do not need to continue the search from product-states (p1,{q2}),
(p1,{q1,q2}), and (p2,{q1,q2}) because q1 � q2 and the algorithm already visited
the product-states (p1,{q1}) and (p2,{q2}). Hence, the algorithm generates only 6
product-states (Fig. 2(c), the area labeled “Optimization 1(a)”).

If the condition of Optimization 1(b) holds, we have that the language of p (w.r.t.
A) is a subset of the language of P (w.r.t. B). In this case, for any word that takes p
to an accepting state in A , it also takes P to an accepting macro-state in B . Hence,
we do not need to continue the search from the product-state (p,P) because all of its
successor states are rejecting product-states. Consider again the example in Fig. 2(c).



With Optimization 1(b), if � is the maximal simulation on the states of A ∪B , we do
not need to continue the search from the first product-state (p1,{q1}) because p1 � q1.
In this case, the algorithm can conclude that the language inclusion holds immediately
after the first product-state is generated (Fig. 2(c), the area labeled “Optimization 1(b)”).

Observe that from Lemma 4, it holds that for any product-state (p,P) such that p1 �
p2 for some p1, p2 ∈ P, L(A ,B)(p,P) = L(A ,B)(p,P \ {p1}) (as P �∀∃ P \ {p1}).
Optimization 2 that we used for universality checking can therefore be generalized for
language inclusion checking too.

We give the pseudocode of our optimized inclusion checking in Algorithm 2, which
is a straightforward extension of Algorithm 1. In the algorithm, the definition of the
Minimize(R) function is the same as what we have defined in Section 3. The function
Initialize(PStates) applies Optimization 1 on the set of product-states PStates to avoid
unnecessary searching. More precisely, it returns a maximal subset of PStates such that
(1) for any two elements (p,P), (q,Q) in the subset, p 6� q∨Q 6�∀∃ P and (2) for any
element (p,P) in the subset, ∀p′ ∈ P : p 6� p′. We define the post-image of a product-
state Post((p,P)) := {(p′,P′) | ∃a∈Σ : (p,a, p′)∈ δ,P′= {p′′ | ∃p∈P : (p,a, p′′)∈ δ}}.

Algorithm 2: Language Inclusion Checking
Input: NFA A = (Σ,QA , IA ,FA ,δA ), B = (Σ,QB , IB ,FB ,δB ). A relation � ∈ (A ∪B)⊆.
Output: TRUE if L(A)⊆ L(B). Otherwise, FALSE.
if there is an accepting product-state in {(i, IB ) | i ∈ IA} then return FALSE ;1
Processed:= /0;2
Next:= Initialize({(i,Minimize(IB )) | i ∈ IA});3
while Next 6= /0 do4

Pick and remove a product-state (r,R) from Next and move it to Processed;5
foreach (p,P) ∈ {(r′,Minimize(R′)) | (r′,R′) ∈ Post((r,R))} do6

if (p,P) is an accepting product-state then return FALSE ;7
else if 6 ∃p′ ∈ P s.t. p� p′ then8

if 6 ∃(s,S) ∈ Processed∪Next s.t. p� s∧S�∀∃ P then9

Remove all (s,S) from Processed∪Next s.t. s� p∧P�∀∃ S;10
Add (p,P) to Next;11

return TRUE12

Correctness: Define Dist(P) ∈ N∪{∞} as the length of the shortest word in the lan-
guage of the product-state P or ∞ if the language of P is empty. The value Dist(PStates)∈
N∪ {∞} is the length of the shortest word in the language of some product-state in
PStates or ∞ if PStates is empty. The predicate Incl(PStates) is true iff for all product-
states (p,P) in PStates, L(A)(p)⊆ L(B)(P). The correctness of Algorithm 2 can now
be proved in a very similar way to Algorithm 1, using the invariants below:

1. ¬Incl(Processed∪Next) =⇒ ¬Incl({(i, IB) | i ∈ IA}).
2. ¬Incl({(i, IB) | i ∈ IA}) =⇒ Dist(Processed) > Dist(Next).



6 Tree Automata Preliminaries

To be able to present a generalization of the above methods for the domain of tree
automata, we now introduce some needed preliminaries on tree automata.

A ranked alphabet Σ is a set of symbols together with a ranking function # : Σ→N.
For a ∈ Σ, the value #(a) is called the rank of a. For any n ≥ 0, we denote by Σn
the set of all symbols of rank n from Σ. Let ε denote the empty sequence. A tree t
over a ranked alphabet Σ is a partial mapping t : N∗ → Σ that satisfies the following
conditions: (1) dom(t) is a finite, prefix-closed subset of N∗ and (2) for each v∈ dom(t),
if #(t(v)) = n ≥ 0, then {i | vi ∈ dom(t)} = {1, . . . ,n}. Each sequence v ∈ dom(t) is
called a node of t. For a node v, we define the ith child of v to be the node vi, and the ith

subtree of v to be the tree t ′ such that t ′(v′) = t(viv′) for all v′ ∈N∗. A leaf of t is a node
v which does not have any children, i.e., there is no i ∈ N with vi ∈ dom(t). We denote
by T (Σ) the set of all trees over the alphabet Σ.

A (finite, non-deterministic, bottom-up) tree automaton (abbreviated as TA in the
sequel) is a quadruple A = (Q,Σ,∆,F) where Q is a finite set of states, F ⊆Q is a set of
final states, Σ is a ranked alphabet, and ∆ is a set of transition rules. Each transition rule
is a triple of the form ((q1, . . . ,qn),a,q) where q1, . . . ,qn,q ∈ Q, a ∈ Σ, and #(a) = n.
We use (q1, . . . ,qn)

a−→ q to denote that ((q1, . . . ,qn),a,q) ∈ ∆. In the special case where
n = 0, we speak about the so-called leaf rules, which we sometimes abbreviate as a−→ q.

Let A = (Q,Σ,∆,F) be a TA. A run of A over a tree t ∈ T (Σ) is a mapping π :
dom(t)→Q such that, for each node v ∈ dom(t) of arity #(t(v)) = n where q = π(v), if

qi = π(vi) for 1≤ i≤ n, then ∆ has a rule (q1, . . . ,qn)
t(v)−−→ q. We write t π=⇒ q to denote

that π is a run of A over t such that π(ε) = q. We use t =⇒ q to denote that t π=⇒ q for
some run π. The language accepted by a state q is defined by L(A)(q) = {t | t =⇒ q},
while the language of A is defined by L(A) =

S
q∈F L(A)(q).

7 Universality and Language Inclusion of Tree Automata

To optimize universality and inclusion checking on word automata, we used relations
that imply language inclusion. For the case of universality and inclusion checking on
tree automata, we now propose to use relations that imply inclusion of languages of
the so called “open” trees (i.e., “leafless” trees or equivalently trees whose leaves are
replaced by a special symbol denoting a “hole”) that are accepted from tuples of tree
automata states. We formally define the notion below. Notice that in contrast to the
notion of a language accepted from a state of a word automaton, which refers to possible
“futures” of the state, the notion of a language accepted at a state of a TA refers to
possible “pasts” of the state. Our notion of languages of open trees accepted from tuples
of tree automata states speaks again about the future of states, which turns out useful
when trying to optimize the (antichain-based) subset construction for TA.

Consider a special symbol � 6∈ Σ with rank 0, called a hole. An open tree over
Σ is a tree over Σ∪� such that all its leaves are labeled1 by �. We use T �(Σ) to
denote the set of all open trees over Σ. Given states q1, . . . ,qn ∈ Q and an open tree

1 Note that no internal nodes of an open tree can be labeled by � as #(�) = 0.



t with leaves v1, . . . ,vn, a run π of A on t from (q1, . . . ,qn) is defined in a similar
way as the run on a tree except that for each leaf vi, 1 ≤ i ≤ n, we have π(vi) =
qi. We use t(q1, . . . ,qn)

π=⇒ q to denote that π is a run of A on t from (q1, . . . ,qn)
such that π(ε) = q. The notation t(q1, . . . ,qn) =⇒ q is explained in a similar man-
ner to runs on trees. Then, the language of A accepted from a tuple (q1, . . . ,qn) of
states is L�(A)(q1, . . . ,qn) = {t ∈ T � | t(q1, . . . ,qn) =⇒ q for some q ∈ F}. Finally,
we define the language accepted from a tuple of macro-states (P1, . . . ,Pn) ⊆ Qn as
the set L�(A)(P1, . . . ,Pn) =

S{L�(A)(q1, . . . ,qn) | (q1, . . . ,qn) ∈ P1× . . .×Pn}. We
define Posta(q1, . . . ,qn) := {q | (q1, . . . ,qn)

a−→ q}. For a tuple of macro-states, we let
Posta(P1, . . . ,Pn) :=

S{Posta(q1, . . . ,qn) | (q1, . . . ,qn) ∈ P1×·· ·×Pn}.
Let us use t� to denote the open tree that arises from a tree t ∈ T (Σ) by replacing

all the leaf symbols of t by � and let for every leaf symbol a ∈ Σ, Ia = {q | a−→ q} is the
so called a-initial macro-state. Languages accepted at final states of A correspond to
the languages accepted from tuples of initial macro-states of A as stated in Lemma 5.

Lemma 5. Let t be a tree over Σ with leaves labeled by a1, . . . ,an. Then t ∈ L(A) if
and only if t� ∈ L�(A)(Ia1 , . . . , Ian).

7.1 Upward Simulation

We now work towards defining suitable relations on states of TA allowing us to optimize
the universality and inclusion checking. We extend relations � ∈ Q×Q on states to tu-
ples of states such that (q1, . . . ,qn)� (r1, . . . ,rn) iff qi � ri for each 1≤ i≤ n. We define
the set A⊆ of relations that imply inclusion of languages of tuples of states such that
� ∈ A⊆ iff (q1, . . . ,qn)� (r1, . . . ,rn) implies L�(A)(q1, . . . ,qn)⊆ L�(A)(r1, . . . ,rn).

We define an extension of simulation relations on states of word automata that satis-
fies the above property as follows. An upward simulation on A is a relation �⊆Q×Q
such that if q� r, then (1) q ∈ F =⇒ r ∈ F and (2) if (q1, . . . ,qn)

a−→ q′ where q = qi,
then (q1, . . . ,qi−1,r,qi+1, . . . ,qn)

a−→ r′ where q′ � r′. Upward simulations were dis-
cussed in [1], together with an efficient algorithm for computing them.2

Lemma 6. For the maximal upward simulation � on A , we have � ∈ A⊆.

The proof of this lemma can be obtained as follows. We first show that the maximal
upward simulation � has the following property: If (q1, . . . ,qn)

a−→ q′ in A , then for
every (r1, . . . ,rn) with (q1, . . . ,qn) � (r1, . . . ,rn), there is r′ ∈ Q such that q′ � r′ and
(r1, . . . ,rn)

a−→ r′. From (q1, . . . ,qn)
a−→ q′ and q1 � r1, we have that there is some rule

(r1,q2, . . . ,qn)
a−→ s1 such that q′ � s1. From the existence of (r1,q2, . . . ,qn)

a−→ s1 and
from q2 � r2, we then get that there is some rule (r1,r2,q3, . . . ,qn)

a−→ s2 such that s1 �
s2, etc. Since the maximal upward simulation is transitive [1], we obtain the property
mentioned above. This in turn implies Lemma 6.

2 In [1], upward simulations are parameterized by some downward simulation. However, upward
simulations parameterized by a downward simulation greater than the identity cannot be used
in our framework since they do not generally imply inclusion of languages of tuples of states.



Algorithm 3: Tree Automata Universality Checking
Input: A tree automaton A = (Σ,Q,F,∆) and a relation � ∈ A⊆.
Output: TRUE if A is universal. Otherwise, FALSE.
if ∃a ∈ Σ0 such that Ia is rejecting then return FALSE ;1
Processed:= /0;2
Next:= Initialize{Minimize(Ia) | a ∈ Σ0};3
while Next 6= /0 do4

Pick and remove a macro-state R from Next and move it to Processed;5
foreach P ∈ {Minimize(R′) | R′ ∈ Post(Processed)(R)} do6

if P is a rejecting macro-state then return FALSE ;7

else if 6 ∃Q ∈ Processed∪Next s.t. Q�∀∃ P then8

Remove all Q from Processed∪Next s.t. P�∀∃ Q;9
Add P to Next;10

return TRUE11

7.2 Tree Automata Universality Checking

We now show how upward simulations can be used for optimized universality checking
on tree automata. Let A = (Σ,Q,F,∆) be a tree automaton. We define T �

n (Σ) as the
set of all open trees over Σ with n leaves. We say that an n-tuple (q1, . . . ,qn) of states
of A is universal if L�(A)(q1, . . . ,qn) = T �

n (Σ), this is, all open trees with n leaves
constructible over Σ can be accepted from (q1, . . . ,qn). A set of macro-states MStates is
universal if all tuples in MStates∗ are universal. From Lemma 5, we can deduce that A
is universal (i.e., L(A) = T (Σ)) if and only if {Ia | a ∈ Σ0} is universal.

The following Lemma allows us to design a new TA universality checking algorithm
in a similar manner to Algorithm 1 using Optimizations 1 and 2 from Section 3.

Lemma 7. For any�∈A⊆ and two tuples of macro-states of A , we have (R1, . . . ,Rn)�∀∃
(P1, . . . ,Pn) implies L�(A)(R1, . . . ,Rn)⊆ L�(A)(P1, . . . ,Pn).

Algorithm 3 describes our approach to checking universality of tree automata in
pseudocode. It resembles closely Algorithm 1. There are two main differences: (1) The
initial value of the Next set is the result of applying the function Initialize to the set
{Minimize(Ia) | a ∈ Σ0}. Initialize returns the set of all macro-states in {Minimize(Ia) |
a ∈ Σ0}, which are minimal w.r.t. �∀∃ (i.e., those macro states with the best chance
of finding a counterexample to universality). (2) The computation of the Post-image
of a set of macro-states is a bit more complicated. More precisely, for each symbol
a ∈ Σn,n ∈ N, we have to compute the post image of each n-tuple of macro-states
from the set. We design the algorithm such that we avoid computing the Post-image
of a tuple more than once. We define the Post-image Post(MStates)(R) of a set of
macro-states MStates w.r.t. a macro-states R ∈MStates. It is the set of all macro-states
P = Posta(P1, . . . ,Pn) where a ∈ Σn,n ∈ N and R occurs at least once in the tuple
(P1, . . . ,Pn) ∈ MStates∗. Formally, Post(MStates)(R) =

S
a∈Σ{Posta(P1, . . . ,Pn) | n =

#(a),P1, . . . ,Pn ∈MStates,R ∈ {P1, . . . ,Pn}}.



The following theorem states correctness of Algorithm 3, which can be proved using
similar invariants as in the case of Algorithm 1 when the notion of distance from an
accepting state is suitably defined (see [2] for more details).

Theorem 2. Algorithm 3 always terminates, and returns TRUE if and only if the input
tree automaton A is universal.

7.3 Tree Automata Language Inclusion Checking

We are interested in testing language inclusion of two tree automata A =(Σ,QA ,FA ,∆A)
and B = (Σ,QB ,FB ,∆B). From Lemma 5, we have that L(A)⊆ L(B) iff for every tu-
ple a1, . . . ,an of symbols from Σ0, L�(A)(IA

a1
, . . . , IA

an) ⊆ L�(B)(IB
a1

, . . . , IB
an). In other

words, for any a1, . . . ,an ∈ Σ0, every open tree that can be accepted from a tuple of
states from IA

a1
× . . .× IA

an can also be accepted from a tuple of states from IB
a1
× . . .× IB

an .
This justifies a similar use of the notion of product-states as in Section 5. We de-
fine the language of a tuple of product-states as L�(A ,B)((q1,P1), . . . ,(qn,Pn)) :=
L�(A)(q1, . . . ,qn)\L�(B)(P1, . . . ,Pn). Observe that we obtain that L(A) ⊆ L(B) iff
the language of every n-tuple (for any n ∈ N) of product-states from the set {(i, IB

a ) |
a ∈ Σ0, i ∈ IA

a } is empty.
Our algorithm for testing language inclusion of tree automata will check whether it

is possible to reach a product-state of the form (q,P) with q ∈ FA and P∩FB = /0 (that
we call accepting) from a tuple of product-states from {(i, IB

a ) | a ∈ Σ0, i ∈ IA
a }. The

following lemma allows us to use Optimization 1(a) and Optimization 2 from Section 5.

Lemma 8. Let � ∈ (A ∪B)⊆. For any two tuples of states and two tuples of product-
states such that (p1, . . . , pn) � (r1, . . . ,rn) and (R1, . . . ,Rn) �∀∃ (P1, . . . ,Pn), we have
L�(A ,B)((p1,P1), . . . ,(pn,Pn))⊆ L�(A ,B)((r1,R1), . . . ,(rn,Rn)).

It is also possible to use Optimization 1(b) where we stop searching from product-
states of the form (q,P) such that q � r for some r ∈ P. However, note that this opti-
mization is of limited use for tree automata. Under the assumption that the automata A
and B do not contain useless states, the reason is that for any q ∈ QA and r ∈ QB , if q
appears at a left-hand side of some rule of arity more than 1, then no reflexive relation
from � ∈ (A ∪B)⊆ allows q� r.3

Algorithm 4 describes our method for checking language inclusion of TA in pseu-
docode. It closely follows Algorithm 2. It differs in two main points. First, the ini-
tial value of the Next set is the result of applying the function Initialize on the set
{(i,Minimize(IB

a )) | a ∈ Σ0, i ∈ IA
a }, where Initialize is the same function as in Algo-

rithm 2. Second, the computation of the Post image of a set of product-states means
that for each symbol a ∈ Σn,n ∈ N, we construct the Posta-image of each n-tuple of
product-states from the set. Like in Algorithm 3, we design the algorithm such that we

3 To see this, assume that an open tree t is accepted from (q1, . . . ,qn) ∈ Qn
A ,q = qi,1≤ i≤ n. If

q � r, then by the definition of �, t ∈ L�(A ∪B)(q1, . . . ,qi−1,r,qi+1, . . . ,qn). However, that
cannot happen, as A ∪B does not contain any rules with left hand sides containing both states
from A and states from B .



Algorithm 4: Tree Automata Language Inclusion Checking
Input: TAs A and B over an alphabet Σ. A relation � ∈ (A ∪B)⊆.
Output: TRUE if L(A)⊆ L(B). Otherwise, FALSE.
if there exists an accepting product-state in

S
a∈Σ0
{(i, IB

a ) | i ∈ IA
a } then return FALSE ;1

Processed:= /0;2

Next:=Initialize(
S

a∈Σ0
{(i,Minimize(IB

a )) | i ∈ IA
a });3

while Next 6= /0 do4
Pick and remove a product-state (r,R) from Next and move it to Processed;5
foreach (p,P) ∈ {(r′,Minimize(R′)) | (r′,R′) ∈ Post(Processed)(r,R)} do6

if (p,P) is an accepting product-state then return FALSE ;7
else if 6 ∃p′ ∈ P s.t. p� p′ then8

if 6 ∃(q,Q) ∈ Processed∪Next s.t. p� q∧Q�∀∃ P then9

Remove all (q,Q) from Processed∪Next s.t. q� p∧P�∀∃ Q;10
Add (p,P) to Next;11

return TRUE12

avoid computing the Posta-image of a tuple more than once. We define the post im-
age Post(PStates)(r,R) of a set of product-states PStates w.r.t. a product-state (r,R) ∈
PStates. It is the set of all product-states (q,P) such that there is some a ∈ Σ,#(a) = n
and some n-tuple ((q1,P1), . . . ,(qn,Pn)) of product-states from PStates that contains at
least one occurrence of (r,R), where q ∈ Posta(q1, . . . ,qn) and P = Posta(P1, . . . ,Pn).

Theorem 3. Algorithm 4 always terminates, and returns TRUE iff L(A)⊆ L(B).

8 Experimental Results

In this section, we describe our experimental results. We concentrated on experiments
with inclusion checking, since it is more common than universality checking in various
symbolic verification procedures, decision procedures, etc. We compared our approach,
parameterized by maximal simulation (or, for tree automata, maximal upward simu-
lation), with the previous pure antichain-based approach of [13], and with classical
subset-construction-based approach. We implemented all the above in OCaml. We used
the algorithm in [9] for computing maximal simulations. In order to make the figures
easier to read, we often do not show the results of the classical algorithm, since in all of
the experiments that we have done, the classical algorithm performed much worse than
the other two approaches.

8.1 The Results on NFA

For language inclusion checking of NFA, we tested our approach on examples generated
from the intermediate steps of a tool for abstract regular model checking [5]. In total,
we have 1069 pairs of NFA generated from different verification tasks, which included
verifying a version of the bakery algorithm, a system with a parameterized number of



40000

A h

30000

35000

40000

Antichain

Simulation

25000

30000

35000

40000

Antichain

Simulation

15000

20000

25000

30000

35000

40000

Antichain

Simulation

10000

15000

20000

25000

30000

35000

40000

Antichain

Simulation

0

5000

10000

15000

20000

25000

30000

35000

40000

Antichain

Simulation

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1000 2000 3000 4000 5000 6000

Antichain

Simulation

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1000 2000 3000 4000 5000 6000

Antichain

Simulation

(a) Detailed results

Size Antichain Simulation
0 - 1000 0.059 0.099
1000 - 2000 1.0 0.7
2000 - 3000 3.6 1.69
3000 - 4000 11.2 3.2
4000 - 5000 20.1 4.79
5000 - 33.7 6.3

(b) Average execution time for different NFA
pair sizes (in seconds)

Fig. 3. Language inclusion checking on NFAs generated from a regular model checker

producers and consumers communicating through a double-ended queue, the bubble
sort algorithm, an algorithm that reverses a circular list, and a Petri net model of the
readers/writers protocol (cf. [5, 4] for a detailed description of the verification prob-
lems). In Fig. 3 (a), the horizontal axis is the sum of the sizes of the pairs of automata4

whose language inclusion we check, and the vertical axis is the execution time (the time
for computing the maximal simulation is included). Each point denotes a result from in-
clusion testing for a pair of NFA. Fig. 3 (b) shows the average results for different NFA
sizes. From the figure, one can see that our approach has a much better performance than
the antichain-based one. Also, the difference between our approach and the antichain-
based approach becomes larger when the size of the NFA pairs increases. If we compare
the average results on the smallest 1000 NFA pairs, our approach is 60% slower than
the the antichain-based approach. For the largest NFA pairs (those with size larger than
5000), our approach is 5.32 times faster than the the antichain-based approach.
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Fig. 4. Language inclusion checking on NFA generated from regular expressions

We also tested our approach using NFA generated from random regular expressions.
We have two different tests: (1) language inclusion does not always hold and (2) lan-
guage inclusion always holds5. The result of the first test is in Fig. 4(a). In the figure,

4 We measure the size of the automata as the number of their states.
5 To get a sufficient number of tests for the second case, we generate two NFA A and B from

random regular expressions, build their union automaton C = A ∪B , and test L(A)⊆ L(C ).



the horizontal axis is the sum of the sizes of the pairs of automata whose language in-
clusion we check, and the vertical axis is the execution time (the time for computing
the maximal simulation is included). From Fig. 4(a), we can see that the performance
of our approach is much more stable. It seldom produces extreme results. In all of the
cases we tested, it always terminates within 10 seconds. In contrast, the antichain-based
approach needs more than 100 seconds in the worst case. The result of the second test
is in Fig. 4(b) where the horizontal axis is the length of the regular expression and the
vertical axis is the average execution time of 30 cases in milliseconds. From Fig. 4(b),
we observe that our approach has a much better performance than the antichain-based
approach if the language inclusion holds. When the length of the regular expression is
900, our approach is almost 20 times faster than the antichain-based approach.

When the maximal simulation relation � is given, a natural way to accelerate the
language inclusion checking is to use � to minimize the size of the two input au-
tomata by merging �-equivalent states. In this case, the simulation relation becomes
sparser. A question arises whether our approach has still a better performance than the
antichain-based approach in this case. Therefore, we also evaluated our approach under
this setting. Here again, we used the NFA pairs generated from abstract regular model
checking [5]. The results show that although the antichain-based approach gains some
speed-up when combined with minimization, it is still slower than our approach. The
main reason is that in many cases, simulation holds only in one direction, but not in the
other. Our approach can also utilize this type of relation. In contrast, the minimization
algorithm merges only simulation equivalent states.

We have also evaluated the performance of our approach using backward language
inclusion checking combined with maximal backward simulation. As De Wulf et al. [13]
have shown in their paper, backward language inclusion checking of two automata is
in fact equivalent to the forward version on the reversed automata. This can be easily
generalized to our case. The result is very consistent to what we have obtained; our
algorithm is still significantly better than the antichain-based approach.

8.2 The Results on TA

For language inclusion checking on TA, we tested our approach on 86 tree automata
pairs generated from the intermediate steps of a regular tree model checker [3] while
verifying the algorithm of rebalancing red-black trees after insertion or deletion of a leaf

Size Antichain Simulation Diff. # of Pairs(sec.) (sec.)
0 - 200 1.05 0.75 140% 29

200 - 400 11.7 4.7 246% 15
400 - 600 65.2 19.9 328% 14
600 - 800 3019.3 568.7 531% 13
800 - 1000 4481.9 840.4 533% 5

1000 - 1200 11761.7 1720.9 683% 10

Table 1. Language inclusion checking on TA

node. The results are given
in Table 1. Our approach has
a much better performance
when the size of a TA pair
is large. For TA pairs of size
smaller than 200, our approach
is on average 1.39 times faster
than the antichain-based ap-
proach. However, for those of
size above 1000, our approach
is on average 6.8 times faster
than the antichain-based approach.



9 Conclusion

We have introduced several original ways to combine simulation relations with an-
tichains in order to optimize algorithms for checking universality and inclusion on NFA.
We have also shown how the proposed techniques can be extended to the domain of tree
automata. This was achieved by introducing the notion of languages of open trees ac-
cepted from tuples of tree automata states and using the maximal upward simulations
parameterized by the identity proposed in our earlier work [1]. We have implemented
the proposed techniques and performed a number of experiments showing that our tech-
niques can provide a very significant improvement over currently known approaches.
In the future, we would like to perform even more experiments, including, e.g., experi-
ments where our techniques will be incorporated into the entire framework of abstract
regular (tree) model checking or into some automata-based decision procedures. Apart
from that, it is also interesting to develop the described techniques for other classes of
automata (notably Büchi automata) and use them in a setting where the transitions of
the automata are represented not explicitly but symbolically, e.g., using BDDs.
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A Correctness of the NFA Universality Checking

The following lemma is implied directly by the fact that if L(A)(P) ⊆ L(A)(R), then
the shortest word rejected by R is also rejected by P.

Lemma 9. Let P and R be two macro-states such that L(A)(P) ⊆ L(A)(R). We have
Dist(P)≤ Dist(R).

Lemma 3. The below two loop invariants hold in Algorithm 1:

1. ¬Univ(Processed∪Next) =⇒ ¬Univ({I}).
2. ¬Univ({I}) =⇒ Dist(Processed) > Dist(Next).

Proof. It is trivial to see that the invariants hold at the entry of the loop, taking into
account Lemma 2 covering the effect of the Minimize function. We show that the in-
variants continue to hold when the loop body is executed from a configuration of the
algorithm in which the invariants hold. We use Processedold and Nextold to denote the
values of Processed and Next when the control is on line 4 before executing the loop
body and we use Processednew and Nextnew to denote their values when the control gets
back to line 4 after executing the loop body once. We assume that Nextold 6= /0.

Let us start with Invariant 1. Assume first that Univ(Processedold ∪Nextold) holds.
Then, R must be universal, which holds also for all of its successors and, due to Lemma 2,
also for their minimized versions, which may be added to Next on line 10. Hence,
Univ(Processednew ∪Nextnew) holds after executing the loop body, and thus Invariant
1 holds too. Now assume that ¬Univ(Processedold ∪Nextold) holds. Then, ¬Univ({I})
holds, and hence Invariant 1 must hold for Processednew and Nextnew too.

We proceed to Invariant 2 and we assume that ¬Univ({I}) holds (the other case be-
ing trivial). Hence, Dist(Processedold) > Dist(Nextold) holds. We distinguish two cases:

1. Dist(R)= ∞ or ∃Q∈Processedold : Dist(Q)≤Dist(R). In this case, Dist(Processed)
will not decrease on line 5. From Dist(Processedold) > Dist(Nextold), there exists
some macro-state R′ in Nextold s.t. Dist(R′) = Dist(Nextold) < Dist(Processedold)≤
Dist(Q) ≤ Dist(R). Therefore, Dist(Next) will not change on line 5 either. More-
over, for any macro-state P, removing Q s.t. P�∀∃ Q from Next and Processed on
line 9 and then adding P to Next on line 10 cannot invalidate Dist(Processednew) >
Dist(Nextnew) since Dist(P)≤ Dist(Q) due to Lemmas 2 and 9. Hence, Invariant 2
must hold for Processednew and Nextnew too.

2. Dist(R) 6= ∞ and ¬∃Q ∈ Processedold : Dist(Q) ≤ Dist(R). In this case, the value
of Dist(Processed) decreases to Dist(R) on line 5. Clearly, Dist(R) 6= 0 or else we
would have terminated before. Then there must be some successor R′ of R which
is either rejecting (and the loop stops without getting back to line 4) or one step
closer to rejection, meaning that Dist(R′) < Dist(R). Moreover, R′ either appears
in Nextnew or there already exists some R′′ ∈ Nextold such that R′′ �∀∃ R′, meaning
that Dist(Processednew) > Dist(Nextnew). It is impossible that ∃R′′ ∈ Processedold :
R′′ �∀∃ R′, because ∀R′′ ∈ Processedold : Dist(R′′) > Dist(R) > Dist(R′) and from
Lemmas 2 and 9, R′′ �∀∃ R′ implies Dist(R′′) < Dist(R′). Furthermore, if some
macro-state is removed from Processed on line 9, Dist(Processed) can only grow,
and hence we are done. ut



Lemma 10 (Termination). Algorithm 1 eventually terminates.

Proof. For the algorithm not to terminate, it would have to be the case that some macro-
state is repeatedly added into Next. However, once some macro-state R is added into
Next, there will always be some macro-state Q ∈ Processed∪Next such that Q �∀∃ R.
This holds since R either stays in Next, moves to Procesed, or is replaced by some
Q such that Q �∀∃ R in each iteration of the loop. Hence, R cannot be added to Next
for the second time since a macro-state is added to Next on line 10 only if there is no
Q ∈ Processed∪Next such that Q�∀∃ R. ut

Theorem 1. The algorithm terminates with the return value FALSE if the input au-
tomaton A is not universal. Otherwise, it terminates with the return value TRUE.

Proof. From Lemma 10, the algorithm eventually terminates. It returns FALSE only if
either the set of initial states is rejecting, or the minimized version R′ of some successor
S of a macro-state R chosen from Next on line 5 is found rejecting. In the latter case, due
to Lemma 2, S is also rejecting. Then R is non-universal, and hence Univ(Processed∪
Next) is false. By Lemma 3 (Invariant 1), we have A is not universal. The algorithm
returns TRUE only when Next becomes empty. When Next is empty, Dist(Processed) >
Dist(Next) is not true. Therefore, by Lemma 3 (Invariant 2), A is universal. ut

B Correctness of the TA Universality Checking

In this section, we prove correctness of Algorithm 3 in a very similar way to Algo-
rithm 1, using suitably modified notions of distances and ranks. Let A = (Q,Σ,∆,F)
be a TA. For n ≥ 0 and an n-tuple of macro-states (Q1, ...,Qn) where Qi ⊆ Q for
1≤ i≤ n, we let Dist(Q1, . . . ,Qn) = 0 iff Qi∩F = /0 for some i ∈ {1, . . . ,n}. We define
Dist(Q1, . . . ,Qn) = k ∈ N+ ∪{∞} iff Qi ⊆ F for all i ∈ {1, . . . ,n} and k = min({|t| |
t ∈ T �

n (Σ)∧ t 6∈ L�(A)(Q1, . . . ,Qn)}). Here, we assume min( /0) = ∞. For a set MStates
of macro-states over Q, we let Rank(MStates) = min({Dist(Q1, . . . ,Qn) | n≥ 1∧∀1≤
i≤ n : Qi ∈MStates}) and we define Univ(MStates) ⇐⇒ Rank(MStates) = ∞.

Lemma 11. The below two loop invariants hold in Algorithm 3:

1. ¬Univ(Processed∪Next) =⇒ ¬Univ({Ia | a ∈ Σ0}).
2. ¬Univ({Ia | a ∈ Σ0}) =⇒ Rank(Processed) > Rank(Processed∪Next).

Proof. It is trivial to see that the invariants hold at the entry of the loop, taking into
account Lemma 7. We show that the invariants continue to hold when the loop body
is executed from a configuration of the algorithm in which the invariants hold. We use
Processedold and Nextold to denote the values of Processed and Next when the control
is on line 4 before executing the loop body and we use Processednew and Nextnew to
denote their values when the control gets back to line 4 after executing the loop body
once. We assume that Nextold 6= /0.

Let us start with Invariant 1. Assume first that Univ(Processedold ∪Nextold) holds.
Then, R can appear within tuples constructed over Processedold ∪Nextold which are
universal only. In such a case, all macro-states Q reachable from all tuples T built over



Processedold ∪Nextold are such that when we add them to Processedold ∪Nextold, the
resulting set will still allow building universal tuples only. Otherwise, one could take a
non-universal tuple containing some of the newly added macro-states Q, replace Q by
the tuple T from which it arose, and obtain a non-universal tuple over Processedold ∪
Nextold, which is impossible. Hence, the possibility of adding the new macro-states to
Next on line 10 cannot cause non-universality of Processednew ∪Nextnew, which due
to Lemma 7 holds when adding the minimized macro-states too. Moreover, remov-
ing elements from Next or Processed cannot cause non-universality either. Hence, In-
variant 1 holds over Processednew and Nextnew in this case. Next, let us assume that
¬Univ(Processedold ∪Nextold) holds. Then, ¬Univ({Ia | a ∈ Σ0}) holds, and hence In-
variant 1 must hold for Processednew and Nextnew too.

We proceed to Invariant 2 and we assume that ¬Univ({Ia | a∈ Σ0}) holds (the other
case being trivial). Hence, Rank(Processedold) > Rank(Processedold∪Nextold) holds.
We distinguish two cases:

1. In order to build a tuple T over Processedold and Nextold that is of Dist equal to
Rank(Processedold ∪Nextold), one needs to use a macro-state Q in Nextold \ {R}.
The macro-state Q stays in Nextnew or is replaced by a �∀∃-smaller macro-state
added to Next on line 10 that, due to Lemma 7, can only allow to build tuples
of the same or even smaller Dist. Likewise, the macro-states accompanying Q in
T stay in Nextnew or Processednew or are replaced by �∀∃-smaller macro-states
added to Next on line 10 allowing to build tuples of the same or smaller Dist, due
to Lemma 7. Hence, moving R to Processed on line 5 cannot cause the invari-
ant to break. Moreover, adding some further macro-states to Next on line 10 can
only cause Rank(Processed∪Next) to decrease while removing macro-states from
Processed on line 9 can only cause Rank(Processed) to grow. Finally, replacing a
macro-state in Next by a �∀∃-smaller one as a combined effect of lines 9 and 10
can again just decrease Rank(Processed∪Next), due to Lemma 7. Hence, in this
case, Invariant 2 must hold over Processednew and Nextnew.

2. One can build some tuple T over Processedold and Nextold that is of Dist equal
to Rank(Processedold ∪Nextold) using Processedold ∪{R} only. In this case, there
must be tuples constructible over Processedold ∪{R} and containing R that are not
universal. We can distinguish the following subcases:
(a) From some of the tuples built over Processedold∪{R} and containing R, a non-

accepting macro-state is reached via a single transition of A , and the algorithm
stops without getting back to line 4.

(b) Otherwise, some of the macro-states that appear in Post(Processed,R) and that
will be added in the minimized form to Next must allow one to construct tuples
which are of Dist smaller than those based on R. This holds since if a macro-
state Q is reached from some tuple T containing R by a single transition, we can
replace T in larger tuples leading to non-acceptation by Q, and hence decrease
the size of the open tree needed to reach non-acceptation. Taking into account
Lemma 7 to cover the effect of the minimization and using a similar reasoning
as above for covering the effect of lines 9 and 10, it is then clear that Invariant 2
will remain to hold in this case.

ut



Lemma 12. Algorithm 3 eventually terminates.

Proof. An analogy of the proof of Lemma 10. ut

Theorem 2 can now be proved in a very similar way as Theorem 1.

C Correctness of the TA Language Inclusion Checking

We prove correctness of Algorithm 4 in a very similar way to Algorithm 2, using suit-
ably modified notions of distances and ranks.

Let A = (Σ,QA ,FA ,∆A) and B = (Σ,QB ,FB ,∆B) be two tree automata. For n ≥ 0
and an n-tuple of macro-states ((q1,P1), . . . ,(qn,Pn)), we let Dist((q1,P1), . . . ,(qn,Pn))=
0 iff ε∈L�(A ,B)((q1,P1), . . . ,(qn,Pn)). Otherwise we define Dist((q1,P1), . . . ,(qn,Pn))=
k ∈ N+ ∪ {∞} iff k = min({|t| | t ∈ T �

n (Σ)∧ t ∈ L�(A ,B)((q1,P1), . . . ,(qn,Pn))}).
Here, we assume min( /0)= ∞. For a set PStates of product-states, we let Rank(PStates)=
min({Dist((q1,P1), . . . ,(qn,Pn)) | n≥ 1∧∀1≤ i≤ n : (qi,Pi)∈PStates}). The predicate
Incl(PStates) is defined to be true iff Rank(PStates) = ∞.

Lemma 13. The following two loop invariants hold in Algorithm 4:

1. ¬Incl(Processed∪Next) =⇒ ¬Incl(
S

a∈Σ0
{(i, IB

a ) | i ∈ IA
a }).

2. ¬Incl(
S

a∈Σ0
{(i, IB

a ) | i ∈ IA
a }) =⇒ Rank(Processed) > Rank(Processed∪Next).

The proof is similar to that of Lemma 11.

Lemma 14. Algorithm 4 eventually terminates.

Proof. An analogy of the proof of Lemma 10. ut

Theorem 3 can now be proved in a very similar way as Theorem 1.


