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Abstract 

Fixation durations vary when we read text or inspect a natural scene. Past studies 

suggest that this variability is controlled by the visual input available within the current 

fixation. The present study directly compared the control of fixation durations in reading and 

scene viewing in a common experimental paradigm, and attempted to account for the control 

of these durations within a common modeling framework using the CRISP architecture 

(Nuthmann, Smith, Engbert, & Henderson, 2010). In the experimental paradigm, a stimulus 

onset delay paradigm was used. A visual mask was presented at the beginning of critical 

fixations, which delayed the onset of the text or scene, and the length of the delay was varied. 

Irrespective of task, two populations of fixation durations were observed. One population of 

fixations was under the direct control of the current stimulus, increasing in duration as delay 

increased. A second population of fixation durations was relatively constant across delay. 

Additional task-specific quantitative differences in the adjustment of fixation durations were 

found. The pattern of mixed control of fixation durations obtained for scene viewing has been 

previously simulated with the CRISP model of fixation durations. In the present work, the 

model’s generality was tested by applying its architecture to the text reading data, with task-

specific influences realized by different parameter settings. The results of the numerical 

simulations suggest that global characteristics of fixation durations in scene viewing and 

reading can be explained by a common mechanism. 

 

239 words 
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Introduction 

During the course of a complex visual-cognitive task such as reading or picture 

viewing, our eyes move from one location to another at an average rate of 3 to 5 times per 

second (for recent reviews see Henderson, 2003, 2007; Rayner, 1998, 2009a). Between these 

movements (saccades), the eyes come to rest for brief periods of time (fixations). The 

durations of individual fixations have been found to reflect ongoing perceptual and cognitive 

activity, providing a powerful method for investigating underlying perceptual and cognitive 

processes (Rayner, 1998). Reading and scene viewing both engage vision, but reading also 

engages language. Despite the undeniable differences between tasks, stimulus processing in 

both tasks is subject to the restrictions that arise from the operation of the oculomotor system.  

 
Fixation Durations in Reading and Scene Perception 

The influence of visual and cognitive factors on fixation durations in complex visual-

cognitive tasks is widely acknowledged. In reading, fixation durations are influenced by 

perceptual variables as well as by linguistic variables (see Rayner, 1998, for a review). 

Specifically, local word properties such as length, frequency, and predictability exert 

consistent effects on fixation durations (e.g., Kliegl, Nuthmann, & Engbert, 2006). Readers 

look longer at long words than at short words (e.g., Just & Carpenter, 1980; Kliegl, et al., 

2006; Rayner, Sereno, & Raney, 1996). Word frequency effects represent a key empirical 

marker for lexical processing: Low frequency words are fixated longer than high frequency 

words (e.g., Inhoff & Rayner, 1986; Just & Carpenter, 1980; Kliegl, et al., 2006; Rayner & 

Duffy, 1986). Such benchmark findings are now explicitly accounted for by computational 

models of eye-movement control in reading (see below).  

In comparison, the relationship between fixation durations and visual-perceptual and 

cognitive influences in scene viewing is less well studied. There is evidence that fixation 

durations are sensitive to global scene processing difficulty, manipulated as global image 
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degradation. For example, low-pass filtered images produce longer fixation durations than 

either high-pass or unfiltered images (Mannan, Ruddock, & Wooding, 1995), and reducing 

the luminance of a scene leads to increased fixation durations (Loftus, 1985). Whether local 

effects equivalent to visual and lexical effects in reading can be observed for objects in 

scenes is currently not well explored (see Henderson, 2011, for a review). Predictability 

(sentence-word consistency) has immediate effects on fixation durations in reading, but 

predictability effects in scenes (object-scene consistency) tends to be observed only on 

aggregate measures of fixation time (e.g., Henderson, Weeks, & Hollingworth, 1999; Võ & 

Henderson, 2009). Furthermore, Wang, Hwang, and Pomplun (2010) recently investigated 

the effects of object size and linguistics-based and scene-based frequency on object fixation 

times. Large objects were fixated longer than small objects, and small and large objects 

induced very different frequency and predictability effects, but most of these effects were 

observed for gaze duration and total viewing time only, not for first fixation durations.  

 
Task Comparisons 

In reading, the “scene” consists of well-defined and neatly ordered word objects, and 

most of the time the eyes simply move from left to right through a line of text. In comparison, 

a picture of a real-world scene is typically much more complex and the direction and size of 

eye movements is much less predictable than in reading (Henderson, 2003). Analyses of 

fixation positions have provided some evidence that the eye-movement control system directs 

the eyes in terms of word units in reading (McConkie, Kerr, Reddix, & Zola, 1988; Rayner, 

1979) and object units during scene viewing (Nuthmann & Henderson, 2010). 

How do measures of eye movements compare across reading and scene viewing? At a 

basic level, eye movements can be characterized by means and variations in fixation 

durations and saccade lengths. It is clear that global eye-movement characteristics differ 

between the two tasks. Fixations durations in scene perception tend to have a longer average 
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duration than in reading, and the range of fixation durations is greater (Henderson & 

Hollingworth, 1998; Rayner, 1998). The basis for this difference is not yet clear. The distance 

the eyes move in scene perception is typically larger than that in reading (Henderson & 

Hollingworth, 1998; Rayner, 1998). Furthermore, studies measuring the visual or perceptual 

span in reading (McConkie & Rayner, 1975) and scene viewing (Saida & Ikeda, 1979) and/or 

real-world search (Parkhurst, Culurciello, & Niebur, 2000) suggest that information is taken 

in from a wider area in scenes than in reading. It could be that fixation durations in scene 

viewing are longer because more information is being taken in. Alternatively, longer fixation 

durations in scene viewing could be due to the need for more complex decisions about where 

to move next. 

Another way to look at similarities and differences across viewing tasks is to study eye-

movement measures at the level of the individual. If a given viewer’s fixation durations and 

saccade amplitudes are long in one task, are they long in other tasks as well? Although an 

individual’s fixation durations and saccade amplitudes tend to correlate across non-reading 

tasks (Andrews & Coppola, 1999; Castelhano & Henderson, 2008; Rayner, Li, Williams, 

Cave, & Well, 2007), eye-movement parameters in reading do not tend to correlate with 

scene viewing (Andrews & Coppola, 1999; Rayner, et al., 2007). 

In sum, previous research has established that (1) means and distributions of fixation 

durations differ across reading and scene viewing, and (2) subjects with long/short fixations 

in scene viewing will not necessarily make long/short fixations in the reading task as well. 

These findings could be taken to suggest that eye-movement control fundamentally differs 

between scene viewing and reading. On the other hand, there are reasons to suppose that eye 

movements in the two tasks draw on the same underlying control processes. First, the neural 

circuitry for controlling eye movements is the same. Second, in both scene viewing and 

reading, eye movements are partly a consequence of visual acuity limitations. We move our 
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eyes to place the fovea on that part of the text or picture we want to see clearly. Therefore, 

the function of the movements is the same. Third, for both tasks, new information about the 

text or scene is brought into the information processing system during the time that the eyes 

are in fixation, and control of timing of the fixations may therefore be similar. Fourth, the 

fine details of how the cognitive system interacts with the oculomotor system are likely to 

differ as a function of task (Rayner, 2009a), but this interaction is subject to the restrictions 

that arise from the operation of the oculomotor system. Most notably, it takes a significant 

amount of time to program an eye movement, and this places constraints on oculomotor 

control. Based on these considerations, it has been suggested that eye-movement control 

models developed in one domain must have the potential for generalization to others 

(Engbert, Nuthmann, Richter, & Kliegl, 2005; Nuthmann & Engbert, 2009), and that 

modeling approaches should aim at a constructive convergence across scene viewing and 

reading (Henderson & Smith, 2009; Nuthmann, et al., 2010). 

 
The Stimulus Onset Delay Paradigm 

The stimulus onset delay paradigm provides a method for investigating whether and 

how fixation durations are controlled ‘online’ by the current visual input. It is particularly 

suitable for comparing tasks because it can be applied to visual stimuli of all kinds, and it 

selectively manipulates global stimulus processing difficulty.  

Three decades ago, the text onset delay (TOD) paradigm was used to investigate the 

control of fixation durations in reading (Morrison, 1984; Rayner & Pollatsek, 1981). In these 

experiments, a visual mask was presented at the end of each saccade, which delayed the onset 

of the text, and the length of the delay was varied (between 25 and 300 ms). If fixation 

durations are directly controlled by the current visual text input, one would expect 

programming of the saccade to be delayed until text on which to base programming became 

visible (Rayner & Pollatsek, 1981). When the text onset delay lasted less than 150 ms, 
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fixation duration increased proportionally with the delay duration, indicating that fixation 

duration is under direct control. In the longer delay conditions, there was an additional 

population of fixations that ended while the mask was still present, suggesting that their 

preparation had already started on the previous fixation. 

The stimulus onset delay paradigm has also been used to investigate the control of 

fixation durations in scene viewing (Henderson & Pierce, 2008; Henderson & Smith, 2009; 

Shioiri, 1993; van Diepen, Wampers, & d'Ydewalle, 1998). In the scene onset delay 

paradigm, participants examine photographs of real-world scenes while engaged in a viewing 

task (e.g., scene memorization, visual search). During the saccade prior to a pre-specified 

critical fixation, the scene is replaced with a mask, which delays the onset of the scene. The 

scene reappears after the manipulated delay period. Again, if fixation durations are directly 

controlled by the current visual input, programming of the next eye movement should be 

delayed until there is scene information present on which to base that programming. Two 

fixation populations were identified. One population increased with scene onset delay, 

whereas the second population remained relatively constant across delays (Henderson & 

Pierce, 2008; Henderson & Smith, 2009). The two populations of fixation durations were 

separated by a gap which is likely due to saccadic inhibition (Reingold & Stampe, 2002, 

2004). 

The qualitative pattern of results from scene viewing appears to be consistent with the 

results from reading. However, the details of the onset delay experiments for reading and 

scene viewing have differed, and a direct comparison has not yet been conducted. In the 

present study, we compared the two tasks directly to study qualitative and quantitative 

similarities and differences. In a within-subject design, participants were tested on both text 

reading and scene viewing, and the implementation of stimulus onset delays was identical in 

both tasks. 
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Models of Eye-Movement Control in Reading 

Over the past three decades, research on the nature of eye-movement control in 

reading has not only generated a large body of empirical findings but has also led to the 

development of complex and sophisticated theoretical approaches and computational models 

(see Rayner, 2009b; Reichle, Rayner, & Pollatsek, 2003, for reviews). The following 

discussion will focus on the two most advanced models in the field: the E-Z Reader model 

(Reichle, Pollatsek, Fisher, & Rayner, 1998; Reichle, et al., 2003; Reichle, Rayner, & 

Pollatsek, 2012 this issue; Reichle, Warren, & McConnell, 2009) and the SWIFT model 

(Engbert, Longtin, & Kliegl, 2002; SWIFT 2: Engbert, et al., 2005; SWIFT 3: Schad & 

Engbert, 2012 this issue). In particular, we will briefly discuss their implementations with 

regard to the control of fixation durations, and their potential for generalizability beyond 

reading. 

At the level of saccade programming, both models share the notion that saccades are 

programmed in two stages. Evidence from basic oculomotor research suggests that there is an 

initial, labile stage that is subject to cancellation, followed by a non-labile stage in which the 

saccade program can no longer be cancelled (Becker & Jürgens, 1979). At the level of 

saccade timing, however, the two models differ quite substantially with regard to the 

mechanisms that control fixation durations. What triggers a new saccade program is 

conceptualized to be lexical processing (E-Z Reader) or a random timer (SWIFT). 

According to the E-Z Reader model, eye movements are under the direct and 

immediate control of lexical properties of a given word (Reichle, et al., 1998). As a result, 

their deployment honors the serial order in which words occur (see Reichle, Liversedge, 

Pollatsek, & Rayner, 2009, for discussion), At the end of an early stage of a word 

identification process (L1), a saccade is programmed to the next word. In sum, saccade 

programs are triggered by lexical processing, and the model thus implements a strong form of 
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direct control of fixation durations. 

In comparison, the SWIFT model implements a weaker coupling between saccade 

timing and processing of the currently fixated word (Engbert, et al., 2002; Engbert, et al., 

2005). In this model, saccade programs are not initiated by the completion of a cognitive 

process, but by an autonomous timer. However, lexical processing difficulty (of the currently 

fixated word) modulates fixation durations by inhibiting the timer so that it delays the 

initiation of the next saccade program. As a result, fixation durations will be lengthened, 

allowing additional time for lexical processing. The inhibition acts with a delay, so that any 

difficulty that comes with the processing of word n results not only in longer fixation on 

word n (an immediacy effect) but also in longer fixation on word n+1 (a spillover effect) 

(Engbert, et al., 2005). In short, difficulty in lexical processing produces delays in the 

initiation of the saccade program terminating the fixation. 

The present study investigated the mechanisms that control when the eyes move. With 

regard to these “when” decisions in reading and scene viewing, the stimulus onset paradigm 

provides a test bed for models advocating a strong (E-Z Reader) or less strong (SWIFT) 

coupling between saccade timing and stimulus processing, an issue we will discuss in depth 

in the General Discussion.  

Models of Attentional Selection in Natural Scenes  

Most current computational models of scene viewing and visual search incorporate 

the concept of a bottom-up saliency map (in differing implementations) with or without top-

down control (e.g., Itti & Koch, 2000; Navalpakkam & Itti, 2005; Parkhurst, Law, & Niebur, 

2002; Torralba, Oliva, Castelhano, & Henderson, 2006; Zelinsky, 2008; see Tatler, Hayhoe, 

Land, & Ballard, 2011, for a review). These models seek to predict fixation locations 

(where), but they typically ignore fixation durations (when). It is probably fair to say that 

these models describe spatial selection and attention shifts rather than gaze control. A notable 
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exception is the Target Acquisition Model (TAM) by Zelinsky (2008, 2012 this issue) which 

was designed to predict scan paths in visual search. The model attempts to detect the target in 

the scene and generates eye movements to bring a simulated fovea closer to what is currently 

considered to be the most likely target candidate. The model’s behavior is driven by a target 

map representing the visual similarity between the target and the search scene. Immediately 

following each eye movement, the search scene is transformed to reflect the human visual 

system’s retinal acuity limitations. An eye movement is made once a critical threshold is 

reached, and time is reflected in terms of a sequencing of eye movements. However, TAM 

does not incorporate an explicit saccade-programming module, and it currently does not 

explain the durations of individual fixations. 

 
The CRISP Model  

While there exist a number of advanced computational models explaining fixation 

durations (when?) and fixation positions (where?) in reading (for an overview of several of 

these models, see the 2006 special issue of Cognitive Systems Research), our own CRISP 

model is currently the only theoretical approach and computational model that was 

specifically developed to account for variations in fixation durations during scene viewing 

(Nuthmann, et al., 2010). 

CRISP is a timer (C)ontrolled (R)andom-walk with (I)nhibition for (S)accade 

(P)lanning model. The model architecture can be summarized with three main principles. 

First, a random walk process generates inter-saccadic intervals and thus variations in fixation 

durations. Second, moment-to-moment difficulties in visual and cognitive processing can 

immediately inhibit (i.e., delay) saccade initiation, leading to longer fixation durations. Third, 

saccade programming comprises two stages: an initial, labile stage that is subject to 

cancellation, and a later, non-labile stage (Becker & Jürgens, 1979; Reichle, et al., 1998). In 
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the following section, these three modeling principles are discussed in a bit more detail. 

Additional information can be found in Nuthmann et al. (2010). 

-------------------------------- 

Insert Figure 1 about here 

-------------------------------- 

In CRISP, the saccade timer is implemented as a random walk process (cf., Ratcliff & 

Rouder, 1998; Reddi, Asrress, & Carpenter, 2003; Roitman & Shadlen, 2002). The random 

walk timing signal accumulates toward a threshold. When the threshold is reached, a new 

saccade program is initiated (Figure 1, Figure 2). The main parameter is the transition rate for 

the random walk (i.e., the elementary steps toward threshold), which determines how fast the 

process of saccade timing operates. The transition rate r1 is defined as  

, (1) 

where N is the number of states the process can adopt, and tsac

for further details see Nuthmann, et al., 2010

 is the mean duration of the 

timing signal. Specifically, the random walk is implemented as a discrete-state continuous-

time Markov process with exponentially distributed waiting times between elementary 

transitions ( ).  

In the CRISP model, processing difficulty can inhibit (i.e., delay) saccade timing and 

programming, resulting in longer fixation durations. This can happen in two ways: (1) current 

processing demands modulate the random walk’s transition rate, and (2) processing 

difficulties can lead to saccade cancellation (cf., Vergilino-Perez, Collins, & Doré-Mazars, 

2004; Yang, 2009; Yang & McConkie, 2001) (inhibitory elements are marked in red in 

Figure 1). It is worth highlighting that conceptualizing the timer as a random walk process 

allows for continuous crosstalk between visual-cognitive processing and saccade timing: The 

random walk creates a trajectory approaching threshold over time which can be modulated at 

any point by visual-cognitive events.  
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Two simulations with the baseline model parameters from Nuthmann et al. (2010), 

summarized in Table 1, illustrate this principle. To mimic low processing load (“easy”), the 

random walk transition rate was arbitrarily increased (r2 = r1 / 0.80). Figure 2 shows one 

example of the timing signal (Figure 2a) and the fixation duration distribution obtained in the 

condition mimicking low processing load (Figure 2b); the distribution is shifted towards 

shorter fixation durations. In case of high processing load (“difficult”), the rate was decreased 

by the same factor (r2 = r1 * 0.80). Due to greater processing load, the completion threshold 

is reached later in time (Figure 2c as compared to Figure 2a). Increased processing demands 

slow down the timer. This delays the initiation of the next saccade program, and eventually 

leads to longer fixation durations. Accordingly, we observe a rightward-shift of the obtained 

fixation duration distribution towards longer fixation durations (Figure 2d).

-------------------------------- 

1 

Insert Figure 2 about here 

-------------------------------- 

The model assumptions about saccade programming are consistent with current 

evidence concerning basic oculomotor control: Saccade programming is completed in 

different stages and saccade programs can partly overlap in time (Becker & Jürgens, 1979). 

Specifically, saccades are programmed in two stages: an early, labile stage that can be 

canceled by the initiation of subsequent saccadic programs, followed by a non-labile stage 

that is not subject to cancellation. The durations of these two programming stages are 

sampled from gamma distributions with means τlab and τnlab Table 1 ( ). After termination of a 

non-labile saccade program, a saccade is executed with mean duration τex Table 1 ( ). The 

CRISP model combines autonomous timing and temporally overlapping saccade 

programming, a feature it shares with the SWIFT model of eye-movement control (Engbert, 

et al., 2002; SWIFT 2: Engbert, et al., 2005; Nuthmann & Engbert, 2009; SWIFT 3: Schad & 



Running head: FIXATION DURATIONS IN SCENES AND TEXTS 

 13 

Engbert, 2012 this issue). As a consequence, saccade programs can be initiated before the 

processing of information from the current fixation. Instances where the corresponding 

saccade program was started before the onset of that particular fixation will lead to relatively 

short fixation durations, as was demonstrated in a simulation study (Nuthmann, et al., 2010). 

These simulations also demonstrated that the implemented saccade cancellation mechanism 

prolongs fixation durations.  

-------------------------------- 

Insert Table 1 about here 

-------------------------------- 

The current instantiation of CRISP models the control of fixation durations without 

taking fixation positions into account (Nuthmann, et al., 2010), a reasonable first step given 

the relative independence of “when” and “where” decisions in eye-movement control (see 

Findlay & Walker, 1999). In its current implementation the model does not perform an 

analysis of scene content. Although this is a limitation, the model provides a general 

computational framework for exploring the extent to which fixation durations are under 

perceptual and cognitive control during scene viewing. The long-term goal of the research 

program is to add a “where” module to the model.  

Our current modeling efforts are guided by the principle of model generalizability 

(e.g., Pitt, Myung, & Zhang, 2002). We propose that the duration of fixations is similarly 

controlled across viewing tasks. Therefore, it is important to determine whether the model 

can capture global characteristics of fixation durations in other tasks like reading.  

 
The Present Study  

The aim of the present study was to explore the following working hypothesis: The 

timing and programming of saccades, and thus the control of fixation durations, is not 

fundamentally different in scene viewing and reading. Global characteristics of fixation 
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durations in both tasks can be explained by common model architecture. To be clear, the 

emphasis is on global eye-movement characteristics, ignoring the task-specific local effects 

on fixation durations that undeniably exist. To compare the control of fixation durations in 

reading and scene viewing, we used the stimulus onset delay paradigm to selectively 

manipulate global stimulus processing difficulty by delaying text or scene presentation during 

critical fixations (e.g., Henderson & Pierce, 2008; Rayner & Pollatsek, 1981). Based on 

results from previous studies applying the stimulus onset delay paradigm to texts (Morrison, 

1984; Rayner & Pollatsek, 1981) and scenes (Henderson & Pierce, 2008; Henderson & 

Smith, 2009), we expect to see two populations of fixation durations, one that is directly 

controlled by the current visual stimulus, and a second one that is not. This qualitative 

signature should be observed in both text reading and scene viewing. In addition to these 

qualitative similarities we expect task-specific quantitative differences in the adjustment of 

fixation durations. The pattern of mixed control of fixation durations is modeled with the 

CRISP model of fixation durations (Nuthmann, et al., 2010), with task-specific influences 

realized by different parameter settings. If eye-movement control operates similarly in 

reading and scene viewing, we should be able to capture the main characteristics of both with 

the same basic modeling architecture. 

 
Methods 

Participants and Apparatus 

Twelve participants (4 males; mean age = 21.5 yrs) took part in the experiment. All 

had normal or corrected-to-normal vision. Stimuli were presented on a 21-inch CRT monitor 

with a refresh rate of 140 Hz at a viewing distance of 90 cm. A chin rest was used to keep 

participants’ head position stable. During stimulus presentation, participants’ eye movements 

were recorded using an SR Research EyeLink 1000 eye tracker. Eye position was sampled at 

1000 Hz and saccades prior to critical fixations were detected online with a nine-sample 
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saccade detection model using a velocity trigger of 50º/s. Viewing was binocular, but only 

the right eye was tracked. Stimulus presentation and response recording were controlled via 

Experiment Builder (SR Research, Canada).  

Materials 

Each participant completed both a text reading and a scene viewing condition. In the 

reading condition, participants read 25 pages of text. Each page presented a story adapted 

from Aesop’s fables. In total, the 25 fables comprised 2923 words. Each fable and display 

page was composed of 100 to 133 (mean 116.9) words, distributed across 11 to 13 left-

justified lines of text, with line spacing of 1.35° (42 pixels). Maximum line length was 50 

characters, and one character (14 pixels) subtended 0.45 degrees of visual angle horizontally. 

Word lengths ranged between 1 and 14 characters, with a mode of 3 and a mean of 4 

characters. The text was presented in black on a white background. 

In the scene viewing condition, participants viewed 40 unique full-color 800 × 600 

pixel photographs of real-world scenes (20 indoor, 20 outdoor) from a variety of scene 

categories. Each scene subtended a visual angle of 25.78º × 19.48º. 

Procedure 

Participants were instructed to remember the texts for a subsequent comprehension 

test and to memorize the scenes for a subsequent memory test, neither of which was 

administered. Participants were told to ignore any occasional flicker they might notice.  

Stimulus onset delay was implemented using a saccade-contingent display change 

technique, where every sixth saccade was manipulated as follows (Figure 3, supplementary 

Movie 1): The stimulus was erased from the CRT and replaced by a mask during the saccade, 

when visual transients were suppressed (Ross, Morrone, Goldberg, & Burr, 2001). When the 

eyes landed in the critical fixation following this saccade, the stimulus was no longer visible. 

Following the predetermined delay, the stimulus reappeared. Participants were presented 
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delays of 0 (control), 300, 400, 600, 800 ms, or infinite. In the 0-ms delay control condition, 

the stimulus (text or scene) was replaced with itself so that phenomenally it was continuously 

present but the computer code generating changes in the other conditions was controlled. In 

the infinite delay condition the stimulus only reappeared when participants moved their eyes 

to end the critical fixation (cf., Yang & McConkie, 2001). To avoid phosphor persistence, a 

color noise mask was presented during the delay.  

In the text reading condition, the setup differed from previous text onset delay studies 

(Morrison, 1984; Rayner & Pollatsek, 1981) in a number of ways. First, we used paragraph-

long, multi-line sentences as opposed to single sentences. In addition, in the present study we 

used comparatively long delays. The shortest delay in our study (300 ms) coincides with the 

longest delay condition in previous studies. Second, in previous studies the text was delayed 

during each fixation, whereas in the present study the delay only happened every sixth 

fixation. Third, the stimulus onset was delayed with the same full-display noise mask in the 

scene viewing and the text reading conditions. As a result, the mask obscured all lines of text 

in the text reading condition. In comparison, in previous studies the visual mask (an 

interlaced square wave grating) covered the entire line of text or a number of characters 

around the current point of gaze only (Morrison, 1984; Rayner & Pollatsek, 1981). Display 

changes administered during eye fixations can lead to saccadic inhibition (Reingold & 

Stampe, 2002, 2004), and previous research has shown that large sudden onsets (i.e., display 

changes) produced stronger saccadic inhibition than small flickers (Reingold & Stampe, 

2003). In the present experiment, a full-screen mask was used. When the mask is removed to 

reveal the stimulus at the end of the delay, saccadic inhibition is likely to be stronger than 

when using a smaller mask. However, the larger mask allowed us to compare scene viewing 

and reading under similar onset delay conditions. Also, saccadic inhibition would not be 

expected in the infinite delay condition since all display changes in that condition took place 



Running head: FIXATION DURATIONS IN SCENES AND TEXTS 

 17 

during saccades. 

An experimental trial took place as follows. First, calibration was checked. Then, a 

fixation cross was presented at a top left location on the screen. Once the participant had 

fixated the cross, the trial was initiated. In the scene viewing condition, each scene was 

presented for 40 saccades, allowing the implementation of one instance of each delay 

condition in each trial. In the reading condition, each text was presented until the subject 

pressed the spacebar on the keyboard to signify that they had finished reading. Within each 

scene or text, delay values were chosen pseudo-randomly for each critical fixation. 

Presentation order of text reading and scene viewing blocks was counterbalanced across 

subjects and the presentation order of items was randomized within a given block. 

-------------------------------- 

Insert Figure 3 about here 

-------------------------------- 

Gaze Data Analysis 

Saccades were defined with a 50º/sec velocity threshold using a nine-sample saccade 

detection model. Raw data were converted into a fixation sequence matrix using SR Research 

Data Viewer.  

 
Results 

Behavioral Data 

The scene onset delay data from this experiment were previously used for a CRISP 

simulation study reported in Nuthmann et al. (2010). The present analyses focus on the text 

reading data and on comparison with the scene viewing data. 

Trial duration. The average trial duration was 14.1 sec for scene viewing and 31.9 

sec for text reading. Critical fixations that began before the stimulus was completely erased 

from the CRT and in which the participant blinked were removed from analysis. For the 
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scene viewing data, there were on average 26.6 (out of 40) valid data points per participant 

and delay condition. In the text reading condition, where trial duration was determined by 

participants’ reading behavior, 25 texts provided an average of 64.3 valid critical fixations 

per participant and delay condition. Thus, statistical power was greater in the text reading 

than in the scene viewing conditions. 

Total number of fixations during the delay. The delays tested in the present study 

varied between 300 and 800 ms. As a first global manipulation check, we analyzed the 

number of fixations that participants made, on average, when the stimulus was delayed. This 

analysis excluded the infinite delay condition since there was always only one fixation. For 

the other delay conditions, Figure 4 displays the results in a stacked bar graph. Each delay 

condition on the x-axis is represented by two bars. The left bar (T) represents the text reading 

data and the right bar (S) the scene viewing data. Each stack displays the relative frequencies 

of the eyes making exactly 1, 2, 3, 4, or ≥ 5 fixations during stimulus absence. When there 

was only one fixation during stimulus onset delay, the eyes didn’t move before the stimulus 

reappeared. The probability of a single fixation decreased as the delays got longer. For delays 

longer than 300 ms, there was an effect of task: Participants were more likely to wait for the 

stimulus to return when reading a text as opposed to viewing a scene. This was true even 

though the average fixation duration was shorter in reading than in scene viewing (0-ms 

delay control condition in Table 2, Figure 5). In contrast, when there was more than one 

fixation during stimulus delay, the critical fixation was terminated while the mask was 

present, and one or more additional fixations were made before the stimulus reappeared. 

Generally, as delays got longer participants tended to make more additional fixations before 

the stimulus reappeared. 

-------------------------------- 

Insert Figure 4 about here 
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-------------------------------- 

Mean fixation durations. The remaining analyses considered the duration of critical 

fixations. First, the data from the control condition confirm that fixation durations in reading 

have a shorter average duration than in scene perception (Table 2), and the range of fixation 

durations is smaller (Figure 5), a common finding (Henderson & Hollingworth, 1998). With 

regard to the stimulus onset delay manipulations, if all fixations were directly controlled by 

the text or scene, then the observed critical fixation durations should increase in proportion to 

the duration of the stimulus onset delay (Rayner & Pollatsek, 1981; see Figure 3 in Yang, 

2009, for visualization). That is, critical fixation durations are predicted to be the sum of the 

mean fixation duration (Table 2: reading 184 ms, scene viewing 262 ms) and the stimulus 

onset delay. This relationship is formalized by the following regression equation: 

critical fixation duration = mean fixation duration + 1 * delay duration (2) 

If fixation durations perfectly reflect the availability of useful visual information, then the 

slope of the empirical fixation duration function should approach 1.0. In the present study, 

average critical fixation durations increased with onset delay in both text reading and scene 

viewing (Table 2). For statistical analyses, one-way repeated measures ANOVAs with delay 

(0, 300, 400, 600, 800 ms) as the factor were performed on data from each task. In both tasks, 

the increase in fixation duration across delays was significant [text reading: F(4,11) = 90.53, 

p < .001; scene viewing: F(4,11) = 22.44, p < .001]. However, the slope of the relating 

fixation duration to delay was not as steep as predicted by the linear increase hypothesis (text 

reading data: slope = 0.22, y-intercept = 312 ms; scene viewing data: slope = 0.24, y-intercept 

= 331 ms). This is not surprising given that, as discussed earlier, a certain percentage of 

critical fixations were terminated during the delay (Figure 4). 

-------------------------------- 

Insert Table 2 about here 
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-------------------------------- 

Fixation duration distributions. Logically, the increase in fixation duration in the 

delay conditions can result from a certain amount of lengthening of all critical fixations, or 

from an even greater lengthening for only some subset of the critical fixations. Previous 

analyses have shown that two groups of fixations are found in this paradigm, one influenced 

by delay and the other unaffected by delay (Henderson & Pierce, 2008; Henderson & Smith, 

2009; Morrison, 1984; Nuthmann, et al., 2010). To investigate this issue in the present study, 

Figure 5 shows the distributions of fixation durations as a function of delay condition and 

task. Each panel compares the text and scene data for a given delay condition or the 0-ms 

delay control condition. Vertical broken lines mark the duration of the delay as a reference 

point. Figure 6 provides an additional visualization where all distributions are superimposed, 

which allows for a more direct comparison of the different delay conditions with the 0-ms 

delay control condition. 

With respect to the fixation duration distributions, there are two initial comparisons to 

make. First, how do the onset delay conditions in each task compare to their respective 0-ms 

delay control condition, and second, how do the onset delay conditions compare across the 

text reading and scene viewing tasks. As can be seen in Figure 5, for the non-infinite delay 

conditions, fixation duration distributions appeared to be bimodal in both the text reading and 

the scene viewing tasks. Two-term Gaussian models [a1*exp(-((x-b1)/c1)^2) + a2*exp(-((x-

b2)/c2)^2)] were fit to the data from these delay conditions, separately for each task and 

delay (Figure 5). One-term Gaussian models were fit to the fixation duration distributions 

from the 0-ms delay control condition and the infinite delay condition. Each term of a fitted 

Gaussian distribution is described by a mean and standard deviation. The mean denotes the 

location of the peak, and the standard deviation describes how much the values spread around 

the mean. In reading, it appears that the first peaks of the 300 to 800-ms delay conditions 
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were somewhat shifted towards longer fixation durations when compared to the 0-ms delay 

normal reading control condition (Figure 6a). Also, the standard deviation was larger than in 

the control condition, and it somewhat increased with onset delay. This rightward shift in 

fixation duration distributions was also observed for the scene viewing data, though there was 

no clear pattern concerning the standard deviations. With regard to the second modes of the 

distributions, they appeared more peaked (smaller standard deviations) in reading compared 

to scene viewing. 

-------------------------------- 

Insert Figure 5 about here 

-------------------------------- 

-------------------------------- 

Insert Figure 6 about here 

-------------------------------- 

For a given stimulus onset delay, fixations with durations longer than the delay reflect 

those for which the eyes waited until the stimulus returned before moving. Fixations with 

durations shorter than the delay represent those for which the eyes moved before the stimulus 

returned. For analysis, one could simply assign each fixation to one or the other population. 

However, it appears that the composite bimodal distributions (Figure 5) represent a mixture 

of two more-or-less overlapping distributions. Therefore, the modes of the fitted two-term 

Gaussian distributions were analyzed rather than the fixation duration means for the two 

populations (cf., Henderson & Pierce, 2008; Henderson & Smith, 2009). For each task, we 

then performed regression analyses over the first and second modes of the fitted distributions 

(Figure 7). For the second (or late) distribution modes, these analyses demonstrate that 

fixation durations increased linearly and in a one-to-one relationship with delay, in both 

reading and scene viewing: text reading data, slope = 0.99, y-intercept = 185 ms; scene 
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viewing data, slope = 1.07, y-intercept = 183 ms. For the reading data, the intercept matches 

the average fixation duration in reading (185 ms vs. 184 ms). For the scene viewing data, the 

intercept is lower than predicted by the linear increase hypothesis (183 ms vs. 262 ms). 

However, these intercepts should be interpreted with caution; according to our understanding 

of saccadic inhibition and its implementation in the CRISP model, they do not directly 

translate to average fixation durations (see below). 

A second pair of regression analyses was performed over the first (or early) modes of 

the fitted distributions (Figure 7). The results showed that fixation durations remained 

constant across delay: text reading data, slope = 0.06, y-intercept = 249 ms; scene viewing 

data, slope = 0.04, y-intercept = 250 ms. The regression slopes did not significantly differ 

from 0 (p > .05). Overall, this pattern of data for scene viewing closely replicates the results 

from past scene viewing studies using the same paradigm (Henderson & Pierce, 2008; 

Henderson & Smith, 2009). The qualitative similarity of the pattern for reading in the same 

paradigm is novel and interesting. 

-------------------------------- 

Insert Figure 7 about here 

-------------------------------- 

 
Saccadic inhibition and infinite delay. Apparent in Figure 5 is a dip in the fixation 

duration distribution at each non-infinite text or scene onset delay. This dip likely reflects 

saccadic inhibition induced by the reappearance of the text or scene after the delay (Reingold 

& Stampe, 2002, 2004). To what extent could saccadic inhibition be responsible for the 

increased fixation durations in the stimulus onset delay conditions? Maximum saccadic 

inhibition typically occurs 100 ms following the onset of a visual change, and the inhibition 

period is followed by a recovery period with increased saccadic activity (Reingold & Stampe, 

2002, 2004). The saccadic inhibition signature depends on the characteristics of the baseline 



Running head: FIXATION DURATIONS IN SCENES AND TEXTS 

 23 

fixation duration distribution obtained in the absence of a visual change, and is strongest 

when the onset time of the visual change equals median baseline saccadic reaction time 

minus 100 ms (Reingold & Stampe, 2002, their Figure 1). This logic can be applied to the 

present data by using the mean fixation durations in the 0-ms delay baseline conditions as 

reference (Table 2). Accordingly, the stimulus onset delays that are expected to produce 

maximum saccadic inhibition are 84 ms for text reading (184 – 100 = 84 ms) and 162 ms for 

scene viewing (262 – 100 = 162 ms). In the present experiment, the reinstatement of the 

stimulus took place between 300 and 800 ms following the onset of the critical fixation. 

Those delay durations should be too long to produce major dips in fixation duration 

distributions due to saccadic inhibition, because they hit the baseline distributions toward the 

tails or even beyond the tails (see 0-ms delay baseline distributions in Figure 5). This is 

particularly striking in the reading task where 93% of valid fixations in the normal reading 

control condition were shorter than 300 ms. Still, we observe clear bimodality in fixation 

duration distributions for the non-infinite onset delay conditions (Figure 5, Figure 6) because 

a considerable number of directly controlled fixations are lengthened beyond the duration of 

the delay. If they were not delayed, there would be no fixations from which to create a 

saccadic inhibition dip. Therefore, even though saccadic inhibition appears to lengthen 

fixation durations, it cannot alone account for the longer fixation durations observed in the 

stimulus onset delay conditions (cf., Henderson & Pierce, 2008; Henderson & Smith, 2009).  

The experiment included an infinite delay condition to test directly whether effects of 

the delay indicating direct control of fixation durations were contaminated by saccadic 

inhibition related to motion transients during fixations. In the case of an infinite delay, both 

the initial critical stimulus disappearance and the subsequent stimulus reappearance took 

place during a saccade. Consequently, there were no motion transients during fixations to 

produce saccadic inhibition. Conceptually, the infinite delay differed from the other delay 
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conditions in that holding fixation until the stimulus returned proved to be an unsuccessful 

strategy. However, this was not recognizable to the participants as infinite delays were 

randomly intermixed with the other delay conditions. Indeed, until 800 ms into the critical 

fixation, the infinite delay was indistinguishable from the longest delay condition. 

The data from the infinite delay condition are informative in several ways. First, these 

data provide further evidence for direct control of fixation durations. In both tasks, on 

average critical fixations lasted longer in the infinite delay compared to the 0-ms delay 

control condition (Table 2), and the corresponding distributions were shifted towards longer 

fixation durations (Figure 5, Figure 6). Second, there were differences in the adjustment of 

fixation durations in the two tasks. The average fixation duration in reading was found to be 

shorter and the corresponding distribution much more peaked than in scene viewing (Table 2, 

Figure 5). Yet in the infinite delay condition, participants were more inclined to prolong 

fixations in reading than in scene viewing, as is evident from a broader fixation duration 

distribution for reading compared to scene viewing (Figure 5). Third, for each task the initial 

part of the infinite delay fixation duration distribution corresponded quite well with the first 

modes in the non-infinite delay conditions, as can be seen from the superimposed 

distributions in Figure 6. All of these results suggest that the fixation duration distribution 

obtained for the infinite delay is the more appropriate baseline distribution for evaluating 

effects of saccadic inhibition on fixation durations than is the 0-ms delay condition. In the 

infinite delay condition, 63.3% (reading) and 55.1% (scene viewing) of critical fixations were 

longer than 300 ms, leaving enough fixations to create a saccadic inhibition dip during the 

300-ms delay. 

 
Simulated Data 

The data from the scene onset delay condition in the experiment have been previously 

simulated with the CRISP model (Nuthmann, et al., 2010). The simulated data qualitatively 
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reproduced the two populations of fixation durations observed in the empirical data. In 

particular, there was good qualitative agreement between simulated and empirical fixation 

duration distributions (Nuthmann, et al., 2010). To test the generality hypothesis outlined 

above, in the present simulations the very same model architecture was applied to the data 

from the text onset delay condition. Thus, model generalizability was analyzed in the 

restricted sense of parameter changes. Generally, this is a much more stringent test than 

adding new parameters to the model (Nuthmann & Engbert, 2009). 

Model adjustments. CRISP simulations of fixation duration data from the stimulus 

onset delay paradigm allow testing a small set of simple rules for the modulation of saccade 

timing and saccade programming by visual-cognitive processing. Specifically, in CRISP 

current processing demands modulate the random walk’s transition rate, and processing 

difficulty can lead to saccade cancellation (Nuthmann, et al., 2010, for the scene onset delay 

data). The details of these assumptions will be discussed next, now referring to the text onset 

delay data.  

First, the model assumes that difficulties in moment-by-moment visual and cognitive 

processing lead to adjustments in the random walk’s transition rate. The general principle 

was introduced above, including visualizations in Figure 2. In the text onset delay simulations 

it was adapted as follows: When the text is removed from view during the onset delay, the 

mean random walk transition rate r1

e.g., Sereno, Rayner, & Posner, 1998

 is considerably reduced. The implementation takes an 

eye-brain lag of 50 ms into account ( ), so 50 ms 

following text offset, the mean transition rate is reduced from r1 to r0. Thus, the random walk 

process is slowed down, which delays the initiation of the next saccade program. Fifty 

milliseconds after the text reappears, the rate recovers to its default value r1

Saccade cancellation provides a second mechanism contributing to prolonged fixation 

durations in the stimulus onset delay paradigm. The underlying rationale is that removing the 

.  
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text from view interrupts the preparation of eye movements. If a labile saccade program is 

active when the text disappears, it is subject to stochastic cancellation. This processing-

related saccade cancellation mechanism is also subject to the 50-ms eye-to-brain lag. A 

second cancellation mechanism was implemented as response to the text reappearance during 

fixation (see below). A visualization of the corresponding implementation in the scene onset 

delay paradigm is provided in Nuthmann et al. (2010, Figure 7). 

In sum, the model comprises parameters related to saccade timing (tsac, N, r0/ r1) and 

saccade programming (τlab, τnlab, τex), including two probabilities of saccade cancellation 

(p1canc, p2canc Table 3), all of which are summarized in . For simulation of the text onset delay 

data, the mean duration of saccade execution (τex

Sivanandam & 

Deepa, 2007

) was fixed at 40 ms (the value was 

estimated from the saccade durations in the experiment). For all other parameters, best-fitting 

values were determined with a genetic algorithm optimization technique (

). The genetic algorithm minimized a goodness-of-fit measure, which quantified 

how much the simulated fixation duration distribution and average fixation duration deviated 

from the experimentally observed data. The ranges for the parameter values were informed 

by findings from basic oculomotor research, which ensured their psychological and/or 

neurophysiological plausibility. The details of the general fitting procedure are provided in 

Appendix B in Nuthmann et al. (2010). The corresponding best-fitting parameter values are 

listed in Table 3. To facilitate comparisons, parameter estimates for the scene onset delay 

data, taken from Nuthmann et al. (2010), are also presented.2

-------------------------------- 

  

Insert Table 3 about here 

-------------------------------- 

 
Text onset delay data. For the most part, fixation duration analyses in the reading 

and scene perception literatures occur at the level of the means. Analyses of the empirical 
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stimulus onset delay data convincingly demonstrate that the changes in mean critical fixation 

durations reflect distinct patterns at the level of the underlying distributions. Thus, the 

primary goal of the simulations was to go beyond the mean and reproduce the distributions 

for the critical fixations. The behavioral data show a number of key features, which must be 

captured by any simulated data. First, the simulations must replicate the relatively small 

range of fixation durations observed in normal reading. Second, they must reproduce 

lengthened critical fixation durations in the infinite delay condition, including a shift of the 

modal portion of the distribution towards longer fixation durations, and an increased tail. 

Third, for all other delay conditions the simulations must reproduce the typical bimodal 

fixation duration distributions, including an accurate proportion of fixations that were 

prolonged beyond the duration of the delay. The data from the different delay conditions 

were simulated and fit jointly in an implementation that closely mirrored the sequence of 

events in the experiment. Specifically, simulated text onset delays took place every sixth 

saccade, and delay values were chosen pseudo-randomly for each critical fixation. Simulated 

sequences of fixation durations were obtained from 12 statistical subjects and 25 arbitrary 

texts per subject, using the best-fitting values for model parameters (Table 3). 

Figure 8 plots the resulting fixation duration distributions for the critical fixations. 

Each panel compares the simulated and empirical data for a given text onset delay condition 

or the 0-ms delay control condition. Overall, the simulations with the CRISP model captured 

the fixation duration distributions well. The fit was qualitatively accurate and quantitatively 

satisfactory. First of all, the simulations replicated the relatively small range of fixation 

durations observed in normal reading. In addition, for all non-infinite delay conditions, the 

simulations qualitatively reproduced the typical bimodal fixation duration distributions. The 

infinite delay condition proved to be an important boundary condition as it allowed us to 

determine the extent to which the results were contaminated by saccadic inhibition. 
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Compared to the control data, the empirical fixation duration distribution for the infinite 

delay was skewed toward longer fixation durations, indicating that fixation durations are 

under direct control of the current visual input. This signature was well captured by the 

simulated data. Having eliminated saccadic inhibition in the infinite delay, unimodal 

distributions were observed and reproduced. According to the model architecture, simulated 

fixation durations were lengthened due to an adjustment in the random walk transition rate of 

the timing signal and processing-related saccade cancellation. In the case of an infinite delay 

the text reappeared during a saccade, while it was restored during a fixation in the other delay 

conditions. In the CRISP framework, a significant proportion of currently labile saccade 

programs is cancelled in response to a visual display change during fixation (Nuthmann, et 

al., 2010). In the stimulus onset delay simulations this had the effect of prolonging the 

latency from stimulus reinstatement. Model simulations produced a unimodal distribution for 

the infinite delay and bimodal distributions for all other delays, suggesting that this additional 

saccade cancellation mechanism indeed contributed to the saccadic inhibition dip observed in 

these distributions. The fit was less satisfactory in the 300-ms delay condition: The second 

mode of the distribution, reflecting the recovery from saccadic inhibition, was less peaked in 

the simulated data than in the empirical data. 

-------------------------------- 

Insert Figure 8 about here 

-------------------------------- 

We conclude this section with a comment on how task-specific influences were 

realized in the model simulations. To account for global characteristics of fixation durations 

in reading and scene viewing, we assumed that participants implement different global 

parameter settings when reading texts as opposed to viewing scenes. The reading data were 

fit independently of the scene viewing data (see also footnote 1), and we allowed all free 
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model parameters to vary across tasks. As a result, both saccade timing and saccade 

programming parameters differed across tasks (Table 3). Specifically, for the reading task a 

lower mean value for the random timer (tsac

 

), accompanied by smaller variance (larger N), 

was obtained. Shorter saccade latency, defined as the sum of labile and non-labile stages of 

saccade programming, was estimated for reading compared to scene viewing. Generally, a 

profound psychological interpretation of these differences appears to be out of place as we 

did not test specific hypotheses, and did not fit the data from the two tasks simultaneously.  

General Discussion 

The goal of the present study was to compare the control of fixation durations in 

reading and scene viewing. The stimulus onset delay paradigm (e.g., Henderson & Pierce, 

2008; Rayner & Pollatsek, 1981) was used to investigate whether and how fixation durations 

are controlled ‘online’ by the current visual input (a text or a scene). Key empirical findings 

were simulated with the CRISP model of fixation durations (Nuthmann, et al., 2010), with 

task-specific influences realized by different parameter settings. The results suggest that 

global characteristics of fixation durations in scene viewing and reading can be explained by 

a common control system. 

 
Generalizability of Eye-Movement Models across Tasks 

A good computational model of cognition must fulfill the criterion of generalizability 

(e.g., Pitt, et al., 2002). Generalizability refers to the model’s ability to account for more than 

one effect in one particular task. With regard to reading models, it has been suggested that 

models of eye-movement control in reading must have the potential for generalization to non-

reading tasks (Engbert, et al., 2005; Nuthmann & Engbert, 2009). It appears that the issue 

requires differentiated views with regard to different non-reading tasks. Of all contemporary 

reading models, the SWIFT model was designed as a general model of eye-movement 
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control, where reading is looked upon as a case study (Engbert, et al., 2005). In a recent 

simulation study (Nuthmann & Engbert, 2009), the model’s generality beyond reading was 

successfully tested with a z-string scanning paradigm, where all letters of the text are replaced 

by the letter z (preserving spaces, punctuation and case sensitivity). Z-string scanning 

approximates reading without lexical processing and shares the visuomotor requirements 

with reading. In comparison, the similarities between reading and non-reading tasks like 

scene perception and visual search, where eye movements operate in two dimensions, are less 

obvious.  

When eye-movements are compared across reading, scene perception, and search, 

fixation durations and saccade lengths in reading do not correlate well with those measures in 

scene perception and search (Andrews & Coppola, 1999; Rayner, et al., 2007). This has been 

taken as evidence that the mechanisms that guide the eyes during reading are specific to the 

reading task (Rayner, 2009a; Rayner, et al., 2007). In a recent review, Rayner (2009a) argued 

that it is “somewhat hazardous to generalize across these tasks in terms of eye movement 

behaviour” (p. 1459). There is no doubt that reading is unique; reading and scene viewing 

both engage vision, but reading also engages language. With the present work we asked a 

more nuanced question: At what level of a model’s architecture does reading differ from 

other tasks? The approach taken here is that at the most basic level of saccade timing and 

programming, reading and scene viewing are not fundamentally different. Irrespective of the 

task, eye movements are made to compensate for the lack of high resolution vision outside of 

the fovea, the same neural circuitry is involved in controlling these movements, and how the 

cognitive system interacts with the oculomotor system is subject to the restrictions that arise 

from the operation of the oculomotor system.  

 
Stimulus Onset Delay Experiment: Mixed Control of Fixation Durations in Reading 

and Scene Viewing 
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We investigated the control of fixation durations in reading and scene viewing by 

using the stimulus onset delay paradigm. This paradigm is particularly suitable for task 

comparisons as it can be applied to visual stimuli of all kinds, and it selectively manipulates 

global stimulus processing difficulty. In a within-subject design, participants read texts and 

viewed pictures of real-world scenes presented on a computer screen, with the same 

implementation of stimulus onset delays in both tasks. A saccade-contingent display change 

technique was used to present a full-screen visual mask at the beginning of specific critical 

fixations, which delayed the onset of the text or scene. The duration of the delay varied 

between 300 and 800 ms. In an additional infinite delay condition the stimulus only 

reappeared when participants moved their eyes to end the critical fixation. The main question 

was how the duration of the critical fixation would be affected by the onset delay.  

The results showed that the distribution of fixation durations changed as a function of 

delay. Irrespective of task, two populations of fixation durations were observed. One 

population of fixations increased in duration as delay increased, suggesting that they were 

under the direct control of the current stimulus. A second population of fixation durations 

was relatively constant across delay, suggesting that they were insensitive to the current 

visual input. This qualitative pattern was observed for both reading and scene viewing. 

However, additional task-specific quantitative differences in the adjustment of fixation 

durations were found. Any interpretation of task effects must take the differences in baseline 

fixation duration distributions into account (see Yang, 2009; Yang & McConkie, 2001, for an 

analysis of saccade hazard levels). These baseline distributions were provided by data from 

the 0-ms delay control condition. Fixation duration was found to be less variable for reading, 

with fewer long fixations than in scene viewing (Figure 5), which accords with previous 

findings (Henderson & Hollingworth, 1998). In the experiment, the minimum stimulus onset 

delay was 300 ms. In the baseline distributions, only 7% (reading) or 29% (scene viewing) of 
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valid fixations were longer than 300 ms. Analyses of the number of fixations made during the 

delay (Figure 4), and the duration of critical fixations in the non-infinite and infinite delay 

conditions (Table 2, Figure 5, Figure 6), all demonstrated that participants were more likely 

to wait for the stimulus to return when reading a text as opposed to viewing a scene. 

Apparently, delaying the stimulus was more disruptive in reading than in scene viewing, 

which suggests that the availability of useful visual information during fixation is of even 

greater importance in reading.  

For each non-infinite text or scene onset delay there was a dip in the fixation duration 

distribution, reflecting saccadic inhibition induced by the reappearance of the text or scene 

after the delay (Reingold & Stampe, 2002, 2004). However, saccadic inhibition cannot be the 

sole account for increased fixation durations observed in the stimulus onset delay conditions 

(cf., Henderson & Pierce, 2008; Henderson & Smith, 2009). The most direct evidence 

supporting this conclusion was obtained from the infinite delay condition, where fixation 

durations are not affected by saccadic inhibition. When encountering an (unpredictable) 

infinite delay, participants considerably prolonged their fixation durations compared to the 0-

ms delay control condition even though no saccadic inhibition was produced (Table 2, Figure 

5, Figure 6). With regard to saccadic inhibition, the present results are in line with a study by 

Yang (2009) that attempted to disentangle the effects of processing difficulty and visually-

induced saccadic inhibition in experiments utilizing the gaze-contingent display change 

technique. Using a dual text-change paradigm, he found that a combination of both factors is 

responsible for the changes in fixation duration. 

 
Modeling of Stimulus Onset Delay Data with the CRISP Model 

The data from the scene onset delay condition in the experiment have been previously 

used to validate the CRISP model of fixation durations (Nuthmann, et al., 2010). In the 

present work, the model’s generality was tested by applying its architecture to the text onset 
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delay data. The general approach to modeling these data was to realize global task-specific 

influences by different model parameter settings.  

In brief, in the CRISP model there are two separate though strongly interacting time 

lines that combine to produce fixation durations in the model: random walk timing signals 

and saccade programming involving labile and non-labile stages (Nuthmann, et al., 2010). 

The random walk timing signal accumulates toward a threshold and initiates a new saccade 

program once that threshold is reached. Saccades can be programmed in parallel, and a later 

saccade program can cancel an earlier one if it is still in its labile stage of programming. The 

visual-cognitive processing module directly controls both the saccade timer and the saccade-

programming module (Figure 1). On the saccade programming time line, processing 

difficulty can lead to the cancellation of saccade programs that are currently in the making. 

The random walk saccade timer is controlled via modulation of its transition rate. Thus, 

visual-cognitive processing demands continuously and directly adjust saccade timing, 

although saccade timing itself is not coupled to certain stages of cognitive processing. Due to 

the conceptualization of saccade timing and programming in the model, the model 

simulations reproduced the mixed control of fixation durations observed in the stimulus onset 

delay paradigm, tested on both text reading and scene viewing. Roughly speaking, whether or 

not delaying stimulus information influences the critical fixation duration depends on how far 

along saccade planning has proceeded (cf., Morrison, 1984). Sometimes it will be too late to 

allow any influence. These will most likely be instances where the autonomous saccade timer 

initiated the saccade program prior to the onset of the current fixation, resulting in 

comparatively short fixations that end during the delay (see Nuthmann, et al., 2010, for in-

depth discussion). At other times inhibitory signals from the visual-cognitive processing 

module will delay the start of a new saccade program, eventually prolonging fixation 

durations. In addition, the empirical data showed signs of saccadic inhibition due to visible 
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changes in the display (Reingold & Stampe, 2002, 2004). In the model, saccadic inhibition 

was accounted for by stochastic cancellation of saccade programs.  

 
Direct Control of Fixation Durations in Reading 

Thirty years have passed since the stimulus onset delay paradigm was first used to 

investigate the direct control of fixation durations in reading (Morrison, 1984; Rayner & 

Pollatsek, 1981). Since then, important advances have been made in understanding eye 

guidance in both reading and scene viewing. It is now generally accepted that the time the 

eyes spend on a word in reading is modulated by a range of low-level visuomotor and high-

level linguistic factors (see Rayner, 1998; 2009a, for reviews). However, the debate 

concerning the direct control of fixation durations is still an ongoing one. In the case of 

reading, the direct lexical control hypothesis states that for the majority of reading fixations, 

the processing of the lexical properties of the fixated word influences the timing of the 

saccade terminating that fixation (e.g., Rayner & Pollatsek, 1981; Rayner, et al., 1996). The 

current debate is mostly concerned with the time course of lexical influences and the 

proportion of reading fixations that are impacted by lexical variables (see Reingold, Yang, & 

Rayner, 2010; Staub, White, Drieghe, Hollway, & Rayner, 2010, for discussion). 

With the present work, we took a step back and revisited the classic text onset delay 

paradigm (Morrison, 1984; Rayner & Pollatsek, 1981). Given the empirical results and 

numerical simulations obtained here for the text reading data, the question arises whether 

current models of eye-movement control in reading can principally explain the signature 

findings from the text onset delay paradigm.  

Interestingly, the first instantiation of the E-Z Reader model (Reichle, et al., 1998) set 

out to be a quantification and elaboration of Morrison’s (1984) qualitative model and its 

subsequent modifications. Morrison’s (1984) explanation for the data pattern observed in his 

text onset delay experiments was based on a consequence of parallel programming of 
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saccades: “If saccades during reading can be programmed in parallel, then some saccades 

will not appear to be programmed in response to the immediately preceding fixation, because 

they were programmed or initiated before the information had been processed or even during 

the prior fixation” (p. 678). E-Z Reader departs from Morrison’s (1984) model in that eye-

movement programming is decoupled from shifts of covert attention (Reichle, et al., 1998). 

In both models, saccades can be programmed in parallel, and a later saccade program can 

cancel an earlier one. However, in the E-Z Reader model new saccade programs are typically 

not initiated before the start of the fixation they terminate. Instead, E-Z Reader implements 

design principles reflecting strong direct control of fixation durations. In the model, saccade 

programming is time locked to word processing. Specifically, a new saccade program is 

initiated when the word processing system has completed an initial stage of processing, 

referred to as L1 (originally termed a familiarity check), on the fixated word. Therefore, in 

most cases saccade programs terminating the current fixation are initiated only after the start 

of that fixation. The completion of a later stage of word processing (L2, originally termed 

lexical access) on one word causes attention to shift to the next word so that L1

One way E-Z Reader could potentially account for the increased fixation durations 

observed in the text onset delay paradigm is to assume that processing difficulties induced by 

the text onset delay somehow extend the duration of the early lexical processing stage L

 can begin on 

that word. 

1

Rayner & Pollatsek, 1981

. 

With regard to the fixations that ended while the mask was still present, one could argue that 

subjects sometimes moved their eyes during the mask because they could not always keep 

them fixated for lengthy times ( ). To account for these fixations, it 

could be assumed that saccade initiation is proportionally delayed by the masking of text 

content until an oculomotor deadline is reached, at which time a saccade is automatically 

triggered (Henderson & Ferreira, 1990). It is conceivable that these mechanisms could 
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reproduce an increase in fixation durations and/or corresponding shifts in fixation duration 

distributions. However, they would not reproduce an apparent key feature of the text onset 

delay signature, that is the bimodality in fixation duration distributions with early modes that 

are constant across delays, and second modes that increase linearly with delay (Figure 5, 

Figure 7). In the present CRISP simulations, processing-related saccade cancellation was 

implemented as one of two mechanisms contributing to prolonged fixation durations in the 

stimulus onset delay paradigm. At the time point of stimulus disappearance, if there was a 

labile saccade program active, it was subject to stochastic cancellation. It appears that such a 

cancellation mechanism is less compatible with the E-Z Reader architecture. Conceptually, it 

appears less sensible to have L1

In sum, it appears that E-Z Reader implements a strong version of direct control of 

fixation durations, and this conceptualization might be too constrained to reproduce the 

mixed control of fixation durations observed in the text onset delay paradigm. In contrast, the 

signature finding from the stimulus onset delay paradigm can be accounted for by a model 

advocating a weaker coupling between eye-movement programming and processing of the 

currently fixated stimulus. In particular, we interpret the results of the present study as 

support for autonomous timing and temporally overlapping saccade programming as 

implemented in CRISP (

 run to completion (while the text is blocked from view 

during the delay) to initiate a new saccade program only to cancel it right away. In addition, 

when the text disappears at the beginning of a critical fixation, often there will be no active 

labile saccade program that can be cancelled.  

Nuthmann, et al., 2010) and SWIFT (Engbert, et al., 2005; Schad & 

Engbert, 2012 this issue). 

 
CRISP and SWIFT Models 

What is the relationship between the CRISP and SWIFT models? Both models share 

the core assumption that an autonomous saccade timer initiates saccade programs after 
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random time intervals, while these saccade initiation intervals can be adjusted by ongoing 

processing demands. However, the models differ in their conceptualization and 

implementation of this basic idea. In SWIFT 2 (Engbert, et al., 2005), autonomous timing 

signals are drawn from a gamma distribution, while the sampled time interval can be 

prolonged by a high activation value of the currently fixated word. In contrast, in CRISP 

(Nuthmann, et al., 2010) timing signals are implemented as discrete-state continuous-time 

random walks. An obvious advantage of such a conceptualization is the way processing 

difficulties modulate the timer, which can be implemented as a continuous process 

(Nuthmann, et al., 2010). More recently, the random-walk implementation of the autonomous 

timer has been adopted and extended by the ICAT model (Trukenbrod & Engbert, submitted) 

and subsequently by a third iteration of the SWIFT model (SWIFT 3: Schad & Engbert, 2012 

this issue). In these models, random walks control not only saccade initiation intervals (as in 

CRISP) but also the various stages of saccade programming. Furthermore, CRISP and 

SWIFT differ quite substantially in the exact mechanisms by which processing difficulties 

modulate the random timer.  

 
Allocation of Visual Attention in Reading and Scene Viewing 

The present study investigated a specific aspect of attention allocation in reading and 

scene viewing, i.e., the mechanisms that control when attention or the eyes move. The 

remainder of the General Discussion concerns the mechanisms that control where attention or 

the eyes move. Specifically, we discuss whether modeling principles that were developed to 

account for the allocation of visual attention in reading could principally be applied to scene 

viewing. In E-Z Reader, visual attention is allocated serially from one word to the next and 

serial lexical processing is invoked (word n is identified, then word n+1, etc.) (Reichle, et al., 

1998; Reichle, et al., 2003; Reichle, Warren, et al., 2009). Thus, word n+1 is always the 

default saccade target. In contrast, the SWIFT model envisages a gradient of attention within 
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which a degree of parallel lexical processing can occur so that more than one word can be 

processed at a time (Engbert, et al., 2005). Saccade target selection is probabilistic in that the 

word with the highest activation in a dynamically changing field of activations has the 

highest probability of being selected as the target for the next saccade. The nature of attention 

allocation is currently an issue of much contention in the literature on eye-guidance in 

reading (Reichle, Liversedge, et al., 2009). The issue is not well explored in object and scene 

perception, but it bears much less potential for contention. When viewing a scene as opposed 

to reading a text, there is no inherent spatial order in which objects need to be processed, 

which may hinder the extrapolation of a E-Z Reader like sequential attention shift 

architecture to scene viewing (see De Graef & Germeys, 2003, for discussion). In 

comparison, the SWIFT architecture is more compatible with selection from a set of potential 

saccade targets.  

At the same time, while it is clear that scene-level features can be processed across 

the visual field during scene viewing, it has yet to be shown that objects are in fact processed 

in parallel in scene perception. Instead, the evidence from several paradigms suggests that 

focal attention is needed to recognize and encode objects into memory. For example, there is 

considerable evidence from the change blindness literature that changes to objects are not 

noticed unless the changing object is focally attended (Henderson & Hollingworth, 1999, 

2003; Rensink, O'Regan, & Clark, 1997; Simons, 2000). If objects were processed in parallel 

across the scene, one would expect that such changes would be easily noticed. Similarly, 

semantically odd or emotional objects do not appear to immediately “pop out” in a scene as 

one might expect if objects were processed in parallel (see Underwood, 2009, for a review). 

In normal scene viewing, focal attention and fixation tend to be tightly coupled (e.g., 

Hollingworth & Henderson, 2002). From this perspective, the mechanism for determining 
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where the eyes move next in scenes may not be as incompatible with the serial assumptions 

of E-Z Reader as would first appear. These issues await further investigation. 

 
Outlook 

The stimulus onset delay paradigm provides an existence proof that fixation durations 

can be modulated in real time by the stimulus available in a fixation. In the reading literature 

it is widely acknowledged that properties of the text, including local word properties as well 

as syntactic and discourse factors, exert an immediate influence on fixation durations 

(Rayner, 1998). In analogy, further research is warranted to determine whether fixation 

durations in scene viewing are also influenced by more subtle scene properties. This could 

open the door to using fixation durations as a moment-to-moment online index of attention 

and ongoing perceptual and cognitive processes during scene viewing, as has been done to 

great benefit in the reading literature. With regard to the issue of model generality, further 

empirical and computational research is required to test control principles of fixation 

durations within and across tasks. 
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Footnotes 

1

Nuthmann, et al., 2010

 When modeling the data from the scene onset delay paradigm, we assumed a 

unidirectional adjustment of fixation duration: difficulties in processing the scene during the 

delay period inhibit (i.e., delay) saccade initiation, leading to longer fixation durations 

( ). In contrast, the toy simulations in Figure 2 describe a bidirectional 

(speed up and slow down) adjustment of fixation durations. Whether one-way or two-way 

effects occur in scene viewing is an open empirical question. 

2

 

 Note that these parameters were fit by eye; no advanced fitting procedure was 

implemented. 
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Tables  

 

Table 1 

Model Parameters for Simulations With the Baseline Model 

Model Components Parameter Function Default Value

Saccade timing  

(random walk) 

a 

N number of states of 

random-walk timer 

11 

 t duration of timer 

interval (ms) 

sac 250 

Saccade 

programming 

τ labile stage (ms) lab 180 

 τ non-labile stage 

(ms) 
nlab 40 

 τ saccade execution 

(ms) 
ex 40 

a

 

 Default parameters values are taken from Nuthmann et al. (2010). 
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Table 2 

Mean Fixation Durations (and Standard Errors) in ms For Each Stimulus Onset Delay 

Condition Across Tasks 

 Stimulus onset delay 

Task 0 ms 300 ms 400 ms 600 ms 800 ms infinite 

Text 

reading 

184.3  

(6.8) 

380.1  

(16.7) 

396.1  

(23.9) 

443.3  

(27.3) 

487.3  

(35.0) 

580.7  

(77.5) 

Scene 

viewing 

262.1  

(5.6) 

396.1  

(22.6) 

440.3  

(34.4) 

464.9  

(35.5) 

525.9  

(50.1) 

462.5  

(53.0) 
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Table 3 

Model Parameters for Modeling of Fixation Durations in the Text Onset Delay and Scene Onset Delay Conditions 

Model Components Parameter Function Texts, M Texts, SD Scenes, M Scenes, SDa 

Saccade timing  

(random walk) 

a 

 

default random walk 

transition rate  

tsac N = 35  

(5–100) 

 = 226  

(100–250) 

tsac N = 17  = 250 

 r random walk 

transition rate during  

stimulus absence 

0 r0 = 0.26 * r r1 0 = 0.30 * r

Saccade programming 

1 

τ labile stage (ms) lab 104  

(50–150) 

1/3*M 180 1/3*M 

 τ non-labile stage (ms) nlab 14  

(5–50) 

1/3*M 40 1/3*M 

 τ saccade execution (ms) ex 40 1/3*M 40 1/3*M 

 p1 probability of saccade  

cancellation at stimulus  

disappearance 

canc 0.48 0.5 

 p2 probability of saccade  

cancellation at stimulus  

reappearance 

canc 0.42 0.67 
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a

 

 Parameters are taken from Nuthmann et al. (2010). 
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Figure Captions 

 

 

Figure 1. Model overview. 
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Figure 2. Processing demands modulate the random walk transition rate. Simulations with the 

baseline model. The two upper plots represent low processing load (“easy processing”) by 

showing one example timing signal (a) and the obtained fixation duration distribution (b). 

Accordingly, the two lower plots (c and d) simulate increased processing demands. To adjust 

for processing difficulty, the default random walk transition rate (cf., Equation 1 and Table 1) 

was increased (“easy processing”) or decreased (“difficult processing”) by factor 0.80. 
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Figure 3. Illustration of the stimulus onset paradigm for the text reading condition. At the first 

time-point (A), the eyes are in the fifth fixation following the last delay. After the next 

saccade is detected (B), the display is changed (vertical broken line), so that when the eyes 

begin the following critical fixation (C), the text has been removed from view. Following the 

specified delay (D), the text reappears. The duration of the remaining saccade following the 

display change (C - B) is subtracted from the specified delay (D - B) to generate the actual 

delay. Texts and mask were presented in color. 
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Figure 4. Total number of fixations during stimulus absence as a function of stimulus onset 

delay and task. For each stimulus onset delay incident it was determined how many fixations 

were made during stimulus absence. The stacked bars represent the relative frequencies of 1-, 

2-, 3-, 4-, and ≥ 5-fixation cases. For each delay condition, plotted on the x-axis, the left bar 

(T) represents the text reading data and the right bar (S) the scene viewing data.  

 

  



Running head: FIXATION DURATIONS IN SCENES AND TEXTS 

 56 

 

 

Figure 5. Distribution functions of fixation duration in the stimulus onset delay experiment. 

Frequency of occurrence is calculated for each 60-ms bin. In a given panel, the empirical text 

reading data (bold circles) are compared with scene viewing data (squares). In addition, one-

term or two-term Gaussian models were fit to the data (text data: bold solid line, scene data: 

broken line). Vertical broken lines mark the delay duration. Note that in all (non-infinite) 

delay conditions, the second peak of the distribution rises about 100 ms following stimulus 

reinstatement. 
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Figure 6. Distribution functions of fixation duration in the stimulus onset delay experiment. 

Data from Figure 5 are replotted to allow direct comparison of distributions for the different 

onset delay conditions and the 0-ms delay control condition for text reading (a) and scene 

viewing (b). For all delay conditions but the infinite delay, vertical lines mark the delay 

duration.  
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Figure 7. Modes of critical fixation duration distributions. The distribution mode in the 0-ms 

delay control condition is contrasted with the bimodal critical fixation duration distributions 

in the different delay conditions. One-term or two-term Gaussian models were fit to the data 

(see Figure 5). For each stimulus onset delay, the point below the diagonal displays the first, 

early mode of the distribution, and the point above the diagonal the second, late mode. Error 

bars represent 95% confidence intervals for the coefficient estimates. Linear regressions were 

fit to the first and second modes across the stimulus onset delay conditions; the figure shows 

the best fitting regression lines and corresponding equations. Bold symbols and equations 

represent text reading data. 
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Figure 8. Distribution functions of fixation duration in the text onset delay condition. 

Frequency of occurrence is calculated for each 60-ms bin. In a given panel, simulated data 

(solid line) are compared with empirical data (broken line). Vertical broken lines mark the 

delay duration.  

 

 


