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The mechanism for nucleo-cytoplas-
mic transport of integral membrane 

proteins is poorly understood compared 
to transport of soluble molecules. We 
recently demonstrated that at least four 
distinct mechanisms can contribute to 
transport of integral proteins through 
the peripheral channels of the nuclear 
pore complex. One of these requires hav-
ing multiple phenylalanine-glycine (FG) 
pairings on the integral protein. It also 
requires the nuclear pore complex pro-
tein Nup35, which separately contains 
FG repeats. FG-repeats on nuclear pore 
complex proteins in the central channel 
have been proposed to interact with FGs 
on transport receptors to facilitate trans-
port of soluble proteins. Here we show 
that FG repeats occur quite frequently 
in both transmembrane and soluble 
proteins identified in multiple separate 
proteomic analyses of nuclear envelopes. 
We postulate that the FG repeats enable 
these proteins to function as their own 
transport receptors.

The nuclear envelope (NE) is a double-
membrane system that shields the genome 
from cytoplasmic activities. Nonetheless, 
interdependence between the nucleus and 
the rest of the cell requires the directed 
exchange of material between the two 
compartments. Transport of soluble 
proteins >40–60 kDa in and out of the 
nucleus is thought to occur through a 
receptor-mediated mechanism. A nuclear 
localization signal (NLS) on the cargo 
(the protein to be transported) is recog-
nized by the receptor (importins or expor-
tins). The receptor-cargo complex then 
moves through the central channel of 
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nuclear pore complexes (NPCs) that are 
inserted into the NE at perforations where 
the outer and inner nuclear membranes 
(INM) join.1,2 NPCs are >60 MDa struc-
tures containing multiple copies of over 
30 nucleoporins.3 Although mechanistic 
detail remains elusive, movement through 
the central channel is generally thought 
to involve iterative interactions of the 
transport receptors with phenylalanine-
glycine (FG) repeats that occur on several 
nucleoporins.4 It is generally accepted that 
the FG-repeat regions of nucleoporins 
are unstructured and form some kind of 
entropic barrier to diffusion,5,6 but there is 
considerable contention as to the precise 
nature of the barrier and how transport 
receptors interact with it. An early study 
argued that FGs on different nucleoporins 
interact with FGs that occur on several 
transport receptors (e.g., importin ß has 
four FGs) to support processive movement 
through the channel,7 but removal of 50% 
of the FGs on nucleoporins did not block 
transport thus raising the possibility that 
they are not essential for transport.8

Despite these controversies, transport 
of soluble proteins through the central 
channel is comparatively well character-
ized compared to the transport of integral 
membrane proteins. After their synthesis 
in the endoplasmic reticulum integral pro-
teins of the INM must translocate into 
the nucleus. The endoplasmic reticulum 
is continuous with the outer membrane 
of the NE and so it was initially thought 
that proteins diffused in the membrane to 
where NPCs are inserted and then con-
tinue diffusing in the membrane on the 
outer face of the NPC to get to the INM. 
This idea was based on cryo-electron 
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proteins, yet this enrichment compared 
to other integral proteins encoded in the 
genome was still observed when remov-
ing all predicted membrane spans from 
consideration.17

Here we show further that this enrich-
ment for FG-containing proteins is 
observed in separate NE fractions isolated 
from different tissues,19,20 demonstrat-
ing the universality of the observation 
and that it does not reflect an artifact of 
a particular NE purification approach  
(Fig. 1A). Even more intriguingly enrich-
ment for FG-containing soluble pro-
teins is also observed in the isolated NEs  
(Fig. 1B). In the case of the transmem-
brane proteins it makes sense that the small 
size of the peripheral channels would pre-
clude the binding of transport receptors 
that tend to be themselves greater in mass 
than the ~60 kDa limit these 100 Å chan-
nels could accommodate. Conventional 
dogma has always suggested that soluble 
proteins require transport receptors; 
however, only a miniscule percentage of 
nuclear proteins have been directly tested 
and our observation of enrichment in 
FG-containing soluble proteins suggests 
that, provided the FGnucleoporin:FGreceptor 
interaction model is correct, some nuclear 
proteins could use these FGs to similarly 
serve as their own transport receptors. 
Intriguingly, the DEAD-box helicase 
Dbp5 that binds RNA was also found to 
play an important role in RNA export21 
and Dbp5 has five FGs. We observe that 
several RNA-binding proteins that were 
found in the NE datasets have 6–9 FGs,22 
consistent with the idea that these pro-
teins could essentially coat mRNAs and 
facilitate their export by effectively acting 
as additional transport receptors. Their 
identification in NE preparations would 
indicate a population caught in the act 
of transport. Thus we propose that the 
appearance of FGs in proteins might serve 
as a backup and/or an alternative to the 
standard NLS and receptor-mediated 
mechanisms for transport.
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