

Edinburgh Research Explorer

Managing Real-World System Configurations with Constraints

Citation for published version:
Delaet, T, Anderson, P & Joosen, W 2008, Managing Real-World System Configurations with Constraints.
in Networking, 2008. ICN 2008. Seventh International Conference on. IEEE Computer Society, pp. 594-601.
DOI: 10.1109/ICN.2008.38

Digital Object Identifier (DOI):
10.1109/ICN.2008.38

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Networking, 2008. ICN 2008. Seventh International Conference on

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28962889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ICN.2008.38
https://www.research.ed.ac.uk/portal/en/publications/managing-realworld-system-configurations-with-constraints(52e80122-4d21-425f-80b0-63a02b6716e3).html

Managing real-world system configurations with constraints

Thomas Delaet
Department of Computer Science,

Katholieke Universiteit Leuven, Belgium
thomas@cs.kuleuven.be

Paul Anderson
School of Informatics,

University of Edinburgh, UK
dcspaul@inf.ed.ac.uk

Wouter Joosen
Department of Computer Science,

Katholieke Universiteit Leuven, Belgium
wouter@cs.kuleuven.be

Abstract

Managing large computing infrastructures in a reliable
and efficient way requires system configuration tools which
accept higher-level specifications. This paper describes an
interface between the established configuration tool LCFG,
and the experimental configuration tool PoDIM. The com-
bined system is used to generate explicit real-world con-
figurations from high-level, constraint-based specifications.
The concept is validated using live data from a large pro-
duction installation. This demonstrates that a loosely-
coupled, multi-layer approach can be used to construct con-
figuration tools which translate high-level requirements into
deployable production configurations.

1 Introduction

The Computing Research Association’s report on
”Grand Challenges in Information Systems” [9] identifies
reliability and the control of complexity as two of the
major current challenges to Information Systems research.
Many modern systems require sufficiently complex config-
urations that are beyond the ability of system administra-
tors to reliably configure by hand; configuration errors are
the biggest contributors to service failures (between 40%
and 51%), and these errors take the longest time to repair
[22], [21], [20]. Autonomics [18] offers the promise of self-
configuring systems which will help to reduce these costs,
but there is a considerable gap between the vision of a fully
autonomic system and the practical tools currently available
for configuring the infrastructure of a computing site [4].
Smith and Anderson argued in [23] that a modular approach
with autonomic capability at several levels provides a route
towards this vision.

Sources LCFG
Server XML

XML

LCFG
Clients

Figure 1. The LCFG Architecture

This paper describes a practical example of the modu-
lar approach; the high-level experimental configuration tool
PoDIM [12] is interfaced to the the well-proven (but es-
sentially low-level) configuration tool LCFG [7]. This cre-
ates a configuration system which automatically generates
correct host configurations from specifications of site-wide
constraints.

Section 2 describes the LCFG and PODIM tools. Sec-
tion 3 describes the architecture used to combine the two
systems. Next, we describe a detailed example of a real
configuration problem and show how it can be solved by
the combined tool in Section 4. Further examples are pre-
sented in section 5. Some of the limitations of the prototype
system are described in Section 6, and we end with a sec-
tion on related work 7 before presenting the conclusions in
Section 8.

1

v1lfass
Typewritten Text
Delaet, T., Anderson, P., & Joosen, W. (2008). Managing Real-World System Configurations with Constraints. In Networking, 2008. ICN 2008. Seventh International Conference on. (pp. 594-601). IEEE Computer Society. 10.1109/ICN.2008.38

2 Background

2.1 LCFG

LCFG [7] is an established configuration framework for
managing large numbers of Unix systems. It is particularly
concerned with specifying and managing the relationships
between clients and servers in large installations. The un-
derlying principles are described in [4], and full documen-
tation is available from the web site [3]. Figure 1 shows a
simple version of the LCFG architecture which operates as
follows:

• The configuration for an entire site is described by a
set of declarative source files, held on a master server.
These source files may be managed by different people
and describe different aspects of the overall configura-
tion, such as a “web server”, a “student machine” or a
“laptop”.

• The LCFG compiler continuously monitors changes to
these source files and immediately recompiles the con-
figuration for all hosts affected by any changes.

• The result of the compilation is one XML profile for
each client node. The profile defines explicit values
for all of the configuration parameters (resources) of
that host1.

• The client includes a modular set of components, each
responsible for a self-contained subsystem, such as
inetd or apache. When the client receives a new
profile, it notifies all those components whose re-
sources have changed, and they immediately reconfig-
ure the subsystem to correspond to the new configura-
tion.

A number of properties of LCFG are important to note
for the discussions which follow:

• The LCFG source descriptions are declarative. They
describe the desired state of the system configuration,
rather than some process for achieving that state. The
LCFG client components automatically monitor this
desired state and take any appropriate action to syn-
chronise the actual state with the desired state.

• The LCFG source files contain specifications for dif-
ferent aspects of the configuration. It is common for
these aspects to overlap – for example, a file specifying
the security requirements for machines at a particular
site may contain parameters which are also specified in
the source file for some other aspect of a particular ma-
chine, such as “laptop”. The LCFG compiler resolves

1A typical profile may contain about 5000 resources.

these conflicts – either by using specific precedence
rules, or by demanding human intervention.

• LCFG supports a concept known as a spanning map.
This allows inter-machine dependencies to be collated,
and presented as part of the configuration for a particu-
lar machine. For example, the configuration for a fire-
wall may be automatically constructed from the con-
figuration of all the machines at a site which are run-
ning external services. This ensures that the firewall
state is never out of step with the running services.

• LCFG is capable of fully prescriptive configuration.
This means that clients can be completely configured
(even installed from scratch) without any manual con-
figuration.

• The input language to LCFG has a very simple syntax
and can easily be generated by other processes.

• The configuration process is centralised and takes
place on a single server.

Its simple syntax and the fact that it takes care of
the lower level details of configuration management make
LCFG particularly suitable as a testbed for experiments
in higher-level configuration automation (see, for example
[6]); some process can inspect configuration parameters,
and automatically generate other configuration parameters
(both as simple key-value pairs). The generated parameters
can be written to a simple source file and the compiler will
take care of composing them with the manually specified
parameters and deploying the reconfiguration.

2.2 PoDIM

PoDIM is a recent prototype for configuration manage-
ment which translates high level configuration management
specifications to lower level parameters. It can be best de-
scribed as a configuration management compiler; it does not
deploy configurations, but generates a lower level represen-
tation which can be used as input to other tools for fur-
ther processing and deployment. We limit our description
of PoDIM to the features that are relevant for this paper; a
full description and justification of the input language and
runtime environment can be found in [12].

PoDIM is based on an object-oriented model of configu-
ration, which supports multiple-inheritance. Examples of
classes include “DHCP server”, “DNS client” and “web
server”. Instances of these classes are created to represent
real configurable objects such as services or interfaces; ev-
ery configurable physical object must be represented by a
simulated instance in the PoDIM model. The input to the
PoDIM compiler consists of a set of rules that defines the
objects to be created, their types, and their relationships.

A system administrator uses the PoDIM rule language
to configure the network services. This results in assigning
a set of roles to each device in the network. For example,
“machine A acts as a web server and DHCP server”, “Ma-
chine B acts as a DNS server”, “All machines act as IPv4
nodes or routers”. PoDIM’s creation rules express role as-
signments precisely. Since every real world object is sim-
ulated in the PoDIM runtime, rules must exist for all real
world objects to be created. In general, a creation rule in-
structs a set of objects to create other objects. For example,
we instruct machine A to create a web server and a DHCP
server.

A distinguishing feature of the rule language is the abil-
ity to specify constraints instead of explicit values; for ex-
ample, we can express high-level requirements such as: “A
device should not provide more then 4 network services“,
“I want two DHCP servers on each subnet” or “One of my
servers should configure itself as a web server”.

Before illustrating the use of constraints, we show how
regular role assignments are performed in PoDIM. Listing 1
shows a creation rule to express that every machine should
configure itself as a DNS client.

c r e a t i o n
DNS CLIENT
s e l e c t DEVICE

Listing 1. “All machines must act as DNS
clients”.

In many cases, we want to express not only the type of
objects need to be created, but also how many. We can do
this using constraints; for example, listing 2 shows the spec-
ification for: “A device should not provide more then 4 net-
work services”.

c r e a t i o n c o n s t r a i n t
[0 : 4] SERVER
s e l e c t DEVICE

Listing 2. “A device should not provide more
then 4 network services”.

Often, we don’t care which DEVICE will act as the web
server, as long as one device is configured to do so. This can
be expressed with a group by clause as illustrated in Listing
3. This applies a rule to a whole group of objects. Listing 3
states that “One device with the label “server” must act as a
web server”.

c r e a t i o n c o n s t r a i n t
[0 : 4] WEB SERVER
s e l e c t DEVICE

where DEVICE . l a b e l s . has (” s e r v e r ”)
group by DEVICE . l a b e l s . has (” s e r v e r ”)

Sources LCFG
Server XML

XML

LCFG
Clients

XML

Podim server

Profile includes
"Spanning map"

Podim output
included in

sources

Figure 2. The LCFG/PoDIM Interface

Listing 3. “One device with the label “server”
must act as a web server”.

The syntax of the select-clause is modeled after SQL SE-
LECT statements [2]. The name of a table (class name in
our case) follows the select keyword. The optional where
clause excludes rows (objects conforming to the class name)
where the boolean expression evaluates to false. The group
by clause is used to apply a rule to a group of objects.

It is important to remember that PoDIM does not directly
manage real world objects; it manipulates representations of
the real world objects and generates a per-device XML file
for each object. This file includes the objects (roles) that
are assigned to a device. Other tools can then use this XML
file for further processing and deployment on the physical
devices.

3 Combining LCFG and PoDIM

This section describes how LCFG has been provided
with an experimental interface to PoDIM which allows
PoDIM’s constraint-resolution process to be tested and
evaluated on real-world configurations. Figure 2 shows the
architecture for the combined system:

• One host runs the PoDIM server which is managed by
a custom LCFG component (lcfg-podim).

• The LCFG schema for the PoDIM component spec-
ifies that certain configuration parameters should be
collated from all other machines and passed to PoDIM
(using a spanning map). For example, the hostnames,
subnets and configured services of all other machines
can all be easily collected.

• Whenever any of this information changes, the com-
ponent is notified and PoDIM runs to re-evaluate the
constraints. This may result in a re-allocation of ser-
vices to hosts, for example.

• The output from PoDIM is passed back to the LCFG
compiler as simple LCFG source files. The compiler
notices any changes to these files and recompiles the
configuration for any affected hosts, thus implement-
ing the computed configuration.

Notice that this loose coupling does have a number of
side-effects which may be undesirable in a production sys-
tem; for example, the reconfiguration occurs in two phases
– the compiler actually deploys the manual changes before
the constraints can be evaluated and the computed changes
can be deployed. It would clearly be preferable to deploy all
of these changes as a single atomic action. This latency also
provides a potential for oscillation if the automatic changes
have consequences for the input to the constraint process.
However, these problems would be easily solved in a pro-
duction implementation, and they do not affect the validity
of these experimental results.

The custom LCFG component includes all the necessary
code to convert from the LCFG spanning map to the PoDIM
input, and from the PoDIM output to the LCFG source.

4 An Example Application

The current state of the art in configuration management
supports explicit assignment of roles to machines; for ex-
ample: “Configure machine X as a DHCP server”. Our ex-
perimental system is capable of defining looser constraint-
based assignments, such as: “Configure 2 DHCP servers on
each subnet”. In this example, roles (a DHCP server) are
assigned to groups of machines (every subnet).

Specifying the desired configuration in a looser way has
several advantages:

• Looser specifications allow dynamic adaption (au-
tonomic reconfiguration) when the network setup
changes. For example: suppose machine X is a DHCP
server. A rule that states “Configure machine X as a
DHCP server” results in a non-functional network if
machine X goes down. The looser rule - “Configure
2 DHCP servers on each subnet” - allows the DHCP
server role to be automatically assigned to another ma-
chine if X goes down.

• Looser specifications are closer to the high level re-
quirements of the system and require less manual
translation. For example “We want a redundant DHCP
setup” can be translated directly into a rule such as:
“Configure 2 DHCP servers on each subnet”.

• There is less chance of specifications conflicting be-
cause different administrators are not forced to over-
specify their requirements.

Suppose we want to enforce the specification “Config-
ure 2 DHCP servers on each subnet”. Listing 4 shows
this rule in PoDIM’s rule language. It specifies that ex-
actly two objects of the DHCP SERVER class need to
be created. Since DHCP servers are bound to a net-
work interface, the NETWORK INTERFACE objects are
responsible for creating DHCP server objects. Finally, the
group by statement specifies that the rule should not be
applied to every NETWORK INTERFACE object, but to
groups of NETWORK INTERFACE objects. The groups
are defined as the set of interfaces in the same sub-
net. The “layer3 network” is an attribute of the NET-
WORK INTERFACE class and is populated by every net-
work interface object with the set of network interfaces in
the same subnet.

c r e a t i o n c o n s t r a i n t
[2 : 2] DHCP SERVER

s e l e c t NETWORK INTERFACE
group by NETWORK INTERFACE . l a y e r 3 n e t w o r k

Listing 4. “Configure 2 DHCP servers on each
subnet”.

Besides the rule shown above, rules for representing the
infrastructure are also needed; for example, rules that cre-
ate representations of the real devices and network inter-
faces. These are generated automatically by the LCFG
podim component from the spanning map containing the
information about hosts and IP addresses (the full rule spec-
ification can be found on the website).

The process used by PoDIM to translate these high-
level rules into deployable configurations is described in
detail in [12]. Briefly, all objects that conform to the
SELECT statement are monitored - in this case all NET-
WORK INTERFACE objects. Based on the number of
DHCP SERVER objects in the GROUP BY statement,
NETWORK INTERFACE objects are asked to take the role
of DHCP SERVER or give it back. Note that the algorithm
itself is not dependent on the type of service - in this case
DHCP SERVER.

If all rules are satisfied, PoDIM outputs a per-device
XML-representation. An example of such a representation
- containing only the relevant information for this example
- is given in Listing 5. Each device configuration contains a
tree-structure of objects and every object can contain a set of
attribute-value pairs. In this example, the tree starts with an
object of type “PC DEVICE” and has an attribute “name”.
This device has one child - it’s Ethernet interface. The Eth-
ernet interface has one child, a DHCP SERVER. Based on
these kind of files, we can determine - for each host - if it is
assigned the role of DHCP server.

<c o n f i g u r a t i o n xmlns=” h t t p : / / p u r l . o rg / podim / c m i l ”>

<o b j e c t t y p e =”PC DEVICE”>
<a t t r i b u t e s>

<name>c h a r d . i n f . ed . ac . uk< / name>
< / a t t r i b u t e s>
<c h i l d r e n>

<o b j e c t t y p e =”ETHERNET INTERFACE”>
<c h i l d r e n>

<o b j e c t t y p e =”DHCP SERVER” />
< / c h i l d r e n>

< / o b j e c t>
< / c h i l d r e n>

< / o b j e c t>
< / c o n f i g u r a t i o n>

Listing 5. XML representation of a device
configuration.

Finally, the LCFG podim component extracts the
DHCP SERVER information from the XML and creates
the necessary LCFG source statements to deploy the DHCP
server on the corresponding machine.

Our prototype system has been used to implement this
example using live data for 120 devices over 14 subnets.

5 Further Examples

The “2 DHCP servers on each subnet” rule is one exam-
ple of how roles can be assigned to machines. In this Sec-
tion, we classify and illustrate the different types of rules
for role assignments. and we show how sets of role assign-
ments interact.

5.1 Types of role assignments

Roles can be assigned to individual machines (the most
basic case) and to one or more groups of machines. In the
same way, constraints can be assigned to individual ma-
chines and to one or more groups of machines.

5.1.1 Assigning roles to machines

The most basic form of a role assignment is to assign a role
to a machine. This is the type of role assignments that is
supported by the current state of the art. An example of
such a role assignment is shown in Listing 6. The rule reads
as “machine X must be a mail server”. This rule will result
in a the activation of a mail server on machine X.

c r e a t i o n
MAIL SERVER

s e l e c t DEVICE
where DEVICE . name = ” machineX ”

Listing 6. “Machine X must be a mail server”.

5.1.2 Assigning roles to groups of machines

As we have seen, explicit assignment of roles to machines
is often not desirable; in the previous example, if machine
X fails, clients will be unable to sent mail. We would like
to specify a looser rule that assigns the mail server role to
a group of machines. If the machine currently running the
mail service becomes unavailable, our system will then au-
tomatically assign the mail server role to another machine
in the group. Listing 7 illustrates this type of role assign-
ment; the rule is applied to one group of devices (those in
the mydomain.com domain) and only the devices with the
label “server” are candidates for hosting the mail service.

c r e a t i o n
MAIL SERVER

s e l e c t DEVICE
where DEVICE . domain = ” mydomain . com”

and DEVICE . l a b e l s . has (” s e r v e r ”)
group by DEVICE . domain

Listing 7. “Configure a mail server for my do-
main”.

5.1.3 Assigning constraints to machines

An extension of the previous rule allows the assignment of
a role to multiple groups of machines. Imagine that our
company policy is to have a mail server for each depart-
ment. The rule shown in Listing 8 implements this policy;
it assigns the mail server role to each group in the group by
statement, which defines the different departments.

c r e a t i o n
MAIL SERVER

s e l e c t DEVICE
where DEVICE . l a b e l s . has (” s e r v e r ”)
group by DEVICE . d e p a r t m e n t

Listing 8. “Configure a mail server for each
department”.

5.1.4 Assigning constraints to groups of machines

The need for constraint rules arises when we do not want
to limit role assignments to exactly one role. i.e. we want
to assign multiple roles or we want to specify that the num-
ber of roles of a specific type must be within an interval. We
can use this to limit the number of services permitted on any
host, and hence limit the loading. Listing 9 shows an exam-
ple in the PoDIM notation. Note how we make use of the
inheritance hierarchy of the defined classes - i.e. rule types.
We assume that all types of servers - mail, web, DHCP, . . . -
inherit from a common class “SERVER”.

c r e a t i o n c o n s t r a i n t
[0 : 2] SERVER

s e l e c t DEVICE

Listing 9. “A host can not run more than 2
services”.

A constraint can also be assigned to a group (or multiple
groups) of machines. The “2 DHCP servers on each subnet”
rule was an example of a constraint rule that is assigned to
multiple groups - the subnets - of machines. Another exam-
ple would be “there should be a minimum of 4 mail servers
active on our company network”. This rule is illustrated in
Listing 10. Note that the select clause of this rule is the
same as the rule in Listing 7 (“we want one mail server for
our domain”). In this rule, we state that there must be at
least four mail servers, without specifying an upper limit.

c r e a t i o n c o n s t r a i n t
[4 :] MAIL SERVER

s e l e c t DEVICE
where DEVICE . domain = ” mydomain . com”

and DEVICE . l a b e l s . has (” s e r v e r ”)
group by DEVICE . domain

Listing 10. “There must be at least 4 mail
servers serving mydomain.com”.

5.2 Interactions between role assignments

A real life configuration contains sets of rules which in-
teract with each other. Listing 11 shows a typical set of
rules, derived from some of the previous examples, and we
will discuss some of the interactions which arise.

c r e a t i o n c o n s t r a i n t
[4 :] WEB SERVER

s e l e c t DEVICE
where DEVICE . domain = ” mydomain . com”

and DEVICE . l a b e l s . has (” s e r v e r ”)
group by DEVICE . domain

c r e a t i o n c o n s t r a i n t
[2 : 2] FILE SERVER

s e l e c t DEVICE
group by DEVICE . d e p a r t m e n t

and DEVICE . l a b e l s . has (” s e r v e r ”)

c r e a t i o n
MAIL SERVER

s e l e c t DEVICE
where DEVICE . domain = ” mydomain . com”

and DEVICE . l a b e l s . has (” s e r v e r ”)
group by DEVICE . domain

c r e a t i o n c o n s t r a i n t

[0 : 2] SERVER
s e l e c t DEVICE where DEVICE . l a b e l s . has (” s e r v e r ”)

Listing 11. An example set of role assign-
ments.

Listing 11 illustrates the following policy:

• Configure at least 4 web servers in my network

• Configure 2 file servers on each subnet

• Configure a mail server in my network

• No host can run more than 2 services.

Notice the different interactions between rules: each de-
vice can be a member of one or more different groups
and for each group, multiple rules need to be satisfied.
The (multiple) inheritance hierarchy further complicates the
role assignment process. In our example, WEB SERVER,
FILE SERVER and MAIL SERVER all inherit from the
generic SERVER class.

We want to deploy three types of services (web, file and
mail) with the extra constraint that no device can run more
than two services. What happens when these rules are fed
to our system? The system will try to find an allocation of
services for each device that satisfies all rules. If such an
allocation can not be found, our prototype signals an error
and requires manual intervention from a system adminis-
trator. Possible actions could include changing the rules or
extending the number of available servers.

If the set of available servers changes, the system tries
to find a new allocation that satisfies all rules. Suppose that
machine Y has been assigned the role of file server. If we
take machine Y out of service, the file server role will be
assigned to another server in the same subnet that has less
than two server roles assigned to it.

If an extra rule is added, a new allocation is computed
with the new rule taken into account. Suppose that we
want to have two database servers in our network. Our sys-
tem tries to find servers which have not yet been assigned
two network services and assigns the role database server to
them.

6 Limitations

The prototype system described above has been imple-
mented with a very loose coupling which demonstrates the
feasibility of this approach. However, for a practical sys-
tem, there are a number of disadvantages; for example, dif-
ferent languages are required to specify the fixed parts of the
configuration (LCFG) and the constraints (PoDIM). This is
clearly undesirable, and we would like to provide a more

unified language which would be sufficiently powerful to
generate both of these underlying tool languages. The la-
tency of the combined system in evaluating constraints may
also cause spurious transient configurations to be published
during evaluation; and it is currently possible to create spec-
ifications which produce non-terminating behaviour (con-
figuration oscillation). Both of these are undesirable require
further work to eliminate.

Performance is a problem in the current prototype; the
120 node example is at the limits of practicality for the ex-
isting implementation. However, the main bottleneck is the
PoDIM compiler,and profiling shows that Eiffel’s reflection
library is by far the largest contributer to this. The per-
formance overhead is thus not caused by the algorithm for
resolving constraints but by implementation decisions, and
this is something which we intend to address.

The current system is capable of reconfiguring autonom-
ically to replace failed nodes; if a node providing a service is
removed from the configuration system, a replacement will
automatically be configured to maintain the constraint satis-
faction. However the system does not currently make use of
any monitoring information to automatically remove nodes
which appear to have failed. Given accessible monitoring
information, this should be simply a matter of adding an
additional ”liveliness” clause to the appropriate constraints.

7 Related Work

There is a wide range of system configuration tools in
use at production sites, and the capabilities of newer tools
have not advanced significantly from the survey described
in [5]. Examples of such tools include Bcfg2 [13], Cfengine
[8] and Puppet [17]. These tools are essentially low-level,
and ad-hoc automatic generation of their input is common
in practice. However, there is little published work, and we
are not aware of any similar attempts to generate practical
configurations from high-level constraints.

There is a large body of work on constraint satisfaction
[10] originating from the domain of artificial intelligence.

We are aware of two projects that use a generic constraint
solver to solve configuration management problems:

• In [19], Narain uses Alloy [15, 16, 1] to generate
configurations. Alloy is an object-oriented constraint
solver. Narain’s approach is based on creating a model
for an infrastructure based on first-order logic. Using
a number of inputs (such as the number of devices and
network interfaces) an outcome is constructed that sat-
isfies the model. The advantage of using a tool such as
Alloy is that it allows very advanced reasoning over a
configuration.

• In [14], Hinrichs et al. use Epilog, the Stanford Logic
Group’s library of automated reasoning tools, to model

the configuration of an E-commerce site as an Object-
oriented constraint satisfaction problem. The approach
used is roughly the same as Narain’s approach with Al-
loy. However, the work is limited to the specification
of constraints over individual parameters and relation-
ships between parameters. In our work, we model con-
straints at the level of roles.

As far as we are aware, none of these general solutions
have been validated on a large-scale real-world infrastruc-
ture; the examples discussed in this paper generally involve
simpler constraints over very large datasets, and there are
concerns about the performance of a more general solver in
this case. We believe that using a tool tied to the context
of configuration management has the potential for a more
scalable implementation.

8 Conclusions

We have created code to translate LCFG configurations
into PoDIM’s rule language, and to translate the PoDIM
output back in to LCFG specifications. This has been en-
capsulated in an LCFG component and deployed at a real
live site. The resulting framework has been used to imple-
ment and test constraint-based specifications involving up
to 120 live nodes.

This has demonstrated that it is possible to create a con-
figuration tool which translates high-level constraint-based
specifications into practical, low-level configurations which
can be deployed on a real-world infrastructure. Despite
their complexity, the generated configurations are guaran-
teed to be correct with respect to the simpler constraint-
based specifications. Moreover, the system is built from a
loose coupling between separate tools, and this validates the
concept of a modular approach to autonomic configuration.

Availability

LCFG [3] and Podim [11] are both available under the
GNU Public License. The custom LCFG component, the
rule set for the DHCP server example, and detailed docu-
mentation for the PoDIM/LCFG interface are available on
the PoDIM website [11].

References

[1] The Alloy Analyzer. http://alloy.mit.edu.

[2] American National Standards Institute. ANSI X3.135-
1992: Information Systems — Database Language —
SQL (includes ANSI X3.168-1989). American Na-
tional Standards Institute, 1430 Broadway, New York,
NY 10018, USA, 1989.

[3] P. Anderson. LCFG. http://www.lcfg.org.

[4] P. Anderson. System Configuration, volume 14 of
Short Topics in System Administration. SAGE, 2006.

[5] P. Anderson, G. Beckett, K. Kavoussanakis, G. Mech-
eneau, and P. Toft. Technologies for large-scale con-
figuration management. Technical report, The Grid-
Weaver Project, December 2002.

[6] P. Anderson, P. Goldsack, and J. Paterson. SmartFrog
meets LCFG - autonomous reconfiguration with cen-
tral policy control. In Proceedings of the 2003 Large
Installations Systems Administration (LISA) Confer-
ence, Berkeley, CA, 2003. Usenix.

[7] P. Anderson and A. Scobie. LCFG - the Next Genera-
tion. In UKUUG Winter Conference. UKUUG, 2002.

[8] M. Burgess. Cfengine www site.
http://www.iu.hio.no/cfengine, 1993.

[9] Computing Research Association. Grand Research
Challenges in Information Systems, June 2002.

[10] Constraint satisfaction.
http://en.wikipedia.org/wiki/Constraint satisfaction.

[11] T. Delaet. PoDIM. http://purl.org/devel/podim.

[12] T. Delaet and W. Joosen. PoDIM: A language for
high-level configuration management. In Proceed-
ings of the Large Installations Systems Administration
(LISA) Conference, Berkeley, CA, November 2007.
Usenix Association.

[13] N. Desai, R. Bradshaw, and J. Hagedorn. Bcfg2 Trac
homepage. http://trac.mcs.anl.gov/projects/bcfg2.

[14] e. a. Hinrichts, T.L. Using object-oriented constraint
satisfaction for automated configuration generation. In
Proceedings of Utility Computing: 15th IFIP/IEEE
International Workshop on Distributed Systems: Op-
erations and Management, DSOM, 2004.

[15] D. Jackson. Alloy: a lightweight object modelling no-
tation. ACM Transactions on Software Engineering
and Methodology, 11(2):256–290, 2002.

[16] D. Jackson. Software Abstractions: Logic, Language
and Analysis. The MIT Press, 2006.

[17] L. Kanies. Puppet.
http://reductivelabs.com/projects/puppet/.

[18] J. Kephart. Technology challenges of autonomic com-
puting. Technical report, IBM Academy of Technol-
ogy Study, November 2002.

[19] S. Narain. Network configuration management via
model finding. In LISA’05: Proceedings of the 19th
conference on Large Installation System Administra-
tion Conference, pages 15–15, Berkeley, CA, USA,
2005. USENIX Association.

[20] S. Narain, T. Cheng, B. Coan, V. Kaul,
K. Parmeswaran, and W. Stephens. Building au-
tonomic systems via configuration. In Proceedings of
Autonomic Computing Workshop, June 2004.

[21] D. Oppenheimer. The importance of understanding
distributed system configuration. In Proceedings of
the 2003 Conference on Human Factors in Computer
Systems workshop, April 2003.

[22] D. A. Patterson. A simple way to estimate the cost
of downtime. In Proceedings of LISA ’02: Sixteenth
Systems Administration Conference, pages 185–188.
Usenix, Usenix, 2002.

[23] E. Smith and P. Anderson. Toward broad-spectrum au-
tonomic management. In Proceedings of ICN 2007,
The Sixth International Conference on Networking.
IEEE Computer Society Press, April 2007.

