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Abstract 

Satellite L-band synthetic aperture radar backscatter data from 1996 and 2007 (from 

JERS-1 and ALOS PALSAR respectively), were used with field data collected in 

2007 and a back-calibration method to produce biomass maps of a 15 000 km2 forest-

savanna ecotone region of central Cameroon. The relationship between the radar 

backscatter and aboveground biomass (AGB) was strong (r2 = 0.84 for ALOS HV to 

biomass plots, r2 = 0.95 relating ALOS-derived biomass for 40 suspected unchanged 

regions to JERS-1 HH). The root mean square error (RMSE) associated with AGB 

estimation varied from ~25% for AGB < 100 Mg ha-1 to ~40% for AGB > 100 Mg ha-

1 for the ALOS HV data. Change detection showed a significant loss of AGB over 

high biomass forests, due to suspected deforestation and degradation, and significant 

gains along the forest-savanna boundary, particularly in areas of low population 

density. Analysis of the errors involved showed that radar data can detect changes in 

broad AGB class in forest-savanna transition areas with an accuracy >95%. However, 

quantitative assessment of changes in AGB in Mg ha-1 at a pixel level will require 

radar images from sensors with similar characteristics collecting data from the same 

season over multiple years. 



 1. Introduction 

The interface between tropical forest and savanna in west and central Africa is a wide, 

structurally and floristically diverse mosaic of vegetation types, with forest 

penetrating deeply into the savanna biome as gallery forests along river banks, and 

also as forest patches on plateaus and in between rivers (Dai et al. 2004; Hely et al. 

2006; Menaut 1983).  The savannas in this region are not maintained by precipitation, 

there being enough rainfall to support full canopy closure except in the poorest or 

inundated soils. Instead they are maintained largely by anthropogenic disturbance 

such as fire and clearance for grazing, agriculture and timber (Bucini and Hanan 

2007; Sankaran et al. 2005). Changes in these disturbance regimes can therefore result 

in rapid changes in the woody cover of this region. Due to the large extent of the 

tropical forest-savanna ecotone in Africa (1.28 million km2 is forest-savanna mosaic, 

compared with 2.36 million km2 forest and 4.12 million km2 woodland (Mayaux et al. 

2004)), any changes in the woody vegetation cover and the resulting feedbacks could 

have significant implications for biodiversity and the carbon cycle (Lewis et al. 2006). 

Such ecotones are also important as they are transitional habitats that appear to be 

areas of evolutionary dynamism, storing genetic diversity and acting as an important 

locus for the generation of new species (Smith et al. 1997, 2001).  

 

Dynamics of woody vegetation in this ecotone are the result of the integration of a 

variety of different competing processes, each with an unknown magnitude and 

spatial distribution. Forest is being cleared for agriculture, and woody savannas are 

often burnt to assist agriculture and cattle grazing (FAO 2007; Zhang et al. 2006). 

Forest and woody savannas are also undergoing degradation, especially around 

settlements, for timber (legal logging concessions and illegal extraction), wood fuel 



and charcoal (Goetze et al. 2006; Mertens and Lambin 2000). Changes in climate also 

have the potential to alter the area of forest and savanna, for example increases in dry 

season length will favor savanna, as would rising temperatures (Dai et al. 2004; Hely 

et al. 2006; Zeng and Neelin 2000). In contrast, there are also processes that could 

cause forest to expand into savanna and savannas to increase in woodiness: reduced 

anthropogenic fire, caused by reduced human activity in an area; increased CO2 

concentration, which has the potential to increase tree growth in forests and therefore 

biomass (Lewis et al. 2004, 2009) as well as favoring the growth of C3 trees over C4 

grasses1 (Lloyd and Farquhar 1996, 2008); and if rainfall increased, which would 

again favor trees over grasses (Hely et al. 2006).  

 

It has been suggested that forest is expanding into savannas in central Africa because 

of urban-migration and a consequent reduction in fire frequency (Boulvert 1990). 

Indeed, this forest encroachment has been found to be occurring in other tropical 

forest-savanna ecotones, including northern Australia (Bowman et al. 2001; Brook 

and Bowman 2006; Hopkins et al. 1996), the Western Ghats of India (Puyravaud et al. 

2003), and South America (Duarte et al. 2006; Durigan and Ratter 2006; Marimon et 

al. 2006). However, little quantitative analysis followed Boulvert’s observations in 

Africa: an extensive literature search found only three studies reporting woody 

expansion in African tropical forest-savanna transitions, though there is much 

                                                 
1 C3 photosynthesis is the photosynthetic pathway adopted by most plants including all trees. C4 
photosynthesis is an alternative used by some grasses, including the majority found in this area, that 
gives increased efficiency of photosynthesis with respect to water ‘use’ (i.e. water loss through 
transpiration), and is therefore beneficial in drier and hotter environments (Taiz and Zeiger 2006). 
However, the advantage which C4 plants have over C3 plants is reduced as the concentration of CO2 in 
the atmosphere increases (energetically costly adaptations that increase the concentration of CO2 in leaf 
cells becomes less advantageous (Lloyd and Farquhar 2008)). Thus increasing CO2 concentrations 
could be responsible for woody encroachment by reducing the competitiveness of grasses compared 
with other woody plants. However, increasing temperatures or a reduction in rainfall, that may occur 
concurrently with an increase in CO2 concentration, could negate this effect by increasing the 
competitive advantage of C4 grasses over C3 trees.  



evidence of woody encroachment in semi-arid environments in Africa (Archer et al. 

2001; Eamus and Palmer 2007). In an ecotonal region of central Cameroon, optical 

remote sensing data and field measurements were used to show that over a period of 

40 years (1950-1990), gallery forests encroached over the savanna landscape at a rate 

of 0.6 to 2 meters a year (Happi 1998). In eastern Cameroon, analysis of soil carbon 

isotopes (13C/12C, 15C) along two transects showed both significant expansion of the 

forest, and that increased woody cover of the savanna has occurred over the past 

century (Guillet et al. 2001). In the Budongo Forest Reserve, Uganda, a combination 

of field studies and vegetation index-based satellite change detection were used to 

demonstrate a 14 % increase in woody vegetation (Nangendo 2005). In combination, 

these studies provide some evidence that forest expansion is occurring, but none used 

a method that can be extrapolated to larger areas without a huge investment of 

resources: all involved extensive field studies or the manual interpretation of high-

resolution remotely sensed images. 

 

The use of space-borne radar backscatter data is becoming increasingly accepted as a 

useful method for measuring woody biomass over much larger areas in the tropics 

because of the capability of radar to penetrate through the forest canopy, and its 

capacity for all-weather acquisition (Lu 2006; Ribeiro et al. 2008; Sano et al. 2005; 

Santos et al. 2002). Radar data are likely to be particularly applicable to forest-

savanna boundary regions, as theory suggests there will be a substantial increase in 

backscatter as both the density and size of trees increase (Podest and Saatchi 2002; 

Woodhouse 2006), and biomass changes from savanna to forest are in the lower 

biomass ranges, where radar is most sensitive. As radar backscatter responds to the 

density, size, orientation, and water content of scattering elements on the surface 



(Rosenqvist et al. 2007), rather than just the color and density of leaves, it has the 

potential to be more sensitive to changes in the woodiness of savanna than spectral 

data. This is especially true because the radar signal will be much less sensitive to 

grasses than spectral data, especially when longer radar wavelengths are used. The 

spectral vegetation signal from trees can be very hard to distinguish from that of 

grasses unless hyperspatial data, capable of resolving individual trees (Lu 2006), or 

multi-temporal data which enables the phenology of different landcover types to be 

separated (Loveland et al. 2000), are used.  

 

The successful launch of the Advanced Land Observing Sattelite’s Phased Array-type 

L-band Synthetic Aperture Radar (ALOS PALSAR) in 2006 has increased the 

potential to use radar to measure biomass, as this is the first long-wavelength (L-band, 

23-cm wavelength) synthetic aperture radar (SAR) satellite sensor to have the 

capability of collecting cross-polarized (HV, horizontal-send, vertical receive) data in 

addition to horizontal-send, horizontal-receive (HH) data. This is an advantage for 

detecting  biomass because for HV only scattering elements that change the 

polarization of the incoming electromagnetic radiation will be detected, so complex 

three-dimensional structures such as trees will produce a strong response, but soil 

moisture, which does not change the polarization of the incoming radiation, will not 

be detected.  

 

Radar has been used only rarely to quantify biomass in forest-savanna transition 

regions, though when used it has been with considerable success (Lucas et al. 2000; 

Ribeiro et al. 2008; Sano et al. 2005; Santos et al. 2002). It has to our knowledge 

never previously been used for long-term biomass change detection in forest-savanna 



transition regions, despite the availability and obvious potential of the data. Here, we 

compare satellite L-band radar data from 1996 and 2007 over a large ecotonal region 

of central Cameroon, both to assess changes in aboveground woody biomass in this 

region, and as a proof of concept for its application for large scale monitoring of 

changes in biomass from space.   

 

2. Study area 

The study area covers a 15 000 km2 region in central Cameroon, centered around 

6°4'18" N, 12°53'18" E, encompassing the Mbam Djerem National Park and the 

surrounding area to the north and east (Figure 1). This region was chosen as it extends 

across a complete range of vegetation types, from humid forests contiguous with the 

Congo Basin tropical forest belt in the south to savanna with narrow gallery forests in 

the north. It experiences an annual rainfall of 1650 mm, with a pronounced dry season 

from December to March (Molua and Lambi 2006). The Mbam Djerem National park 

was established in the year 2000 as an expanded version of the longer-standing 

Pangare Djerém reserve with funds from Chad-Cameroon Pipeline Project, and is 

currently maintained by the Wildlife Conservation Society. It has a high species 

diversity, containing over 360 bird and 50 mammal species (Anon 2007), and is 

regarded as having critical importance for the preservation of Central African 

biodiversity (Doumenge et al. 2003). The park itself has a very low human population 

density, with almost no permanent residents.  Major anthropogenic disturbances in the 

park are fishing, bushmeat hunting in the southern forests, and grazing accompanied 

by burning in areas along the northern forest-savanna boundary. The regions 

surrounding the park are more populated, especially on the eastern side, with the two 

major towns being Tibati on the western side of Lake Mbakaou, and Ngaoundal in the 

http://world-gazetteer.com/wg.php?x=&men=gpro&lng=en&des=gamelan&geo=-53&srt=npan&col=abcdefghinoq&msz=1500&pt=c&va=&geo=347419327


northeast of the study area. The population of both towns has increased by 

approximately 85 % in the past twenty years, from 15 522 and 11 382 respectively in 

1987 to 28 981 and 21 239 in 2006 (CIESIN 2004; PNUD 1999). 

 

 

Figure 1: A section of a vegetation map of Africa taken from Mayaux et al. 2004, 

showing the location of the study area within Cameroon, with the ALOS HV 2007 

mosaic showing the Mbam Djerem National Park outlined in red, Tibati in yellow and 

Ngaoundal in blue.  
 

3. Methods 

3.1. Field data 

The study area was visited in October-December 2007 as part of the Tropical Biomes 

in Transition (TROBIT, www.geog.leeds.ac.uk/research/trobit) consortium project 

(funded by NERC, the UK Natural Environment Research Council). Vegetation was 

sampled in four regions from the top to the middle of the Mbam Djerem National 

Park. In all, data were collected from four one-hectare savanna plots, four one-hectare 

forest plots, a pair of 0.4 hectare plots (one in transitional forest, one savanna), and 



eight 20 by 200 meter transects (8 x 100 m x 100 m; 2 x 40 m x 100 m; 8 x 20 m x 

200 m). Within these 18 sampling locations data were collected for every tree with a 

diameter greater than 10 cm at breast height (1.3 m). The variables used in this study 

were the species, diameter at 1.3 m (DBH), and height (the latter measured for only a 

subset of trees). Height was estimated using vertex hypsometers (Laser Vertex 

Hypsometer/Vertex Hypsometer III, Haglöf, Sweden). The height of every tree was 

measured for the 8 transects and for the remaining 10 plots height was collected for 

only a subsample of trees, and site-specific power-law regression equations used to 

estimate height from diameter for the remaining trees (average n = 56 trees for each 

plot, average RMSE < 1.6 m, p < 0.001 in all cases). The field sites were located 

using a handheld differential GPS (Trimble GeoHX, Trimble, USA). The GPS 

positions were later corrected using data from the SOPAC N’Koltang ground station 

in Libreville, Gabon, using the H-STAR differential correction facility in the software 

GPS Pathfinder Office 3.10 (Trimble, USA), resulting in accuracies of < 0.5 m in the 

horizontal direction and < 1 m in the vertical.  

The aboveground biomass (AGB) in kilograms of each tree was estimated using the 

optimal pan-tropical allometric equations as derived by Chave et al. (2005). For the 

savanna species the dry forest equation (Equation 1) was used, for forest species the 

moist forest equation (Equation 2) was used: 

 

 

AGB =  exp -2.187 +  0.916 ln(ρD2H)[ ] (1) 

 [ ])+= 2HDρln(  2.977-exp  AGB  (2) 

where ρ is the wood mass density (oven-dry wood mass divided by green volume, 

g/cm3), D is the diameter in cm at 1.3 m, and H is the tree height in meters. Species 



were differentiated into forest and savanna species based on expert knowledge of the 

ecology of the species from BS & SLL. Wood mass density (also known as wood 

specific gravity) data were collated from the Global Wood Density Database (Chave 

et al. 2009, Zanne et al. 2009), in which wood density values measured at 12% or 

18% moisture were converted to wood mass density.  

The biomass values produced using the allometric equations and all three tree-specific 

variables were then summed and normalized by the area of the plots to produce 

estimates of woody AGB in Mg ha-1. Stems with a DBH < 10 cm were not measured 

for all plots, so the term AGB for the remainder of this paper refers to the dry biomass 

of stems with a DBH > 10 cm, which comprises > ~95% of the woody biomass in 

these ecosystems (based on the 8 transects which were measured to a 5 cm minimum 

diameter, and pan-African estimates from Lewis et al. 2009). These larger trees will 

be the component to which L-band radar responds most strongly. Seven transects ran 

from forest into savanna, and as the transition from forest to savanna was very sharp 

(typically occurring in under five meters), they were each split into a forest and a 

savanna portion, hence each giving two data points. We did not sub-divide these 

transects further (nor divide the ten larger plots), in order to remove any problems of 

autocorrelation: all data-points are sufficiently separated in space or vegetation type to 

be considered independent. One transect was solely located in forest, and for this 

AGB was averaged across its whole length. So, in total, 25 biomass plots were used in 

this study, 13 from forest and transitional forest, and 12 from savanna.  

3.2. Remote sensing data 

JERS-1 HH L-band SAR data were collated from the Global Rainforest Mapping 

Project (GRMP) (De Grandi et al. 2000), for the study area from the beginning and 



end of the dry season (November and March) of 1996. The scenes had been 

geometrically corrected, radiometrically calibrated, mosaicked into one image, and 

resampled from the original 12.5 m pixel spacing to 100 m pixels using wavelet 

decomposition, maintaining as much of the true signal as possible while greatly 

reducing speckle and noise (De Grandi et al. 2000). These data were converted from 

digital number (DN) to sigma0 values using the equation and calibration coefficients 

provided by the GRMP at http://southport.jpl.nasa.gov/GRFM/ (using the software 

ENVI 4.4 (ITT, USA), also used for all subsequent remote sensing data 

manipulation): 

 sigma0 [dB] = 20.log10(6.DN + 250) – 68.2 (3) 

 

Four ALOS PALSAR scenes collected in the FBD (Fine Beam Double-polarization) 

mode were acquired from the Alaska Satellite Facility, having been provided to them 

by JAXA. Two were captured on the 26th July 2007, and the other two on the 12th of 

August 2007. These are, like the JERS data, L-band, but are polarimetric, including 

HH and HV polarizations, and were provided at the original 12.5 m pixel spacing.  

 

Quickbird data (60 cm panchromatic resolution and 2.4 m multispectral resolution) 

were acquired from Eurimage for all the sites by purchasing an archive image from 

19th February 2004 for the southern sites and requesting a new acquisition, captured 

on 30th January 2008, for the northern sites. These ground-point corrected Quickbird 

data are estimated to be geo-correct to < 2 m. In order to reduce speckle noise, the 

ALOS image was resampled by averaging blocks of 2 x 2 pixels to produce an image 

at 25 m resolution. Areas of the ALOS scenes covering the field data plots were 

georeferenced by eye to the Quickbird data, by using 30 ground control points taken 



from features such as islands, small clumps of trees and branching points of gallery 

forests, with resulting RMSE < 0.4 ALOS pixels (10 m). 

 

The ALOS scenes were converted to sigma0 values using the following equation and 

data-specific calibration factors, identical for all scenes: 

 sigma0 [dB] = 10(log10 DN2) + CF (4) 

where CF is the calibration factor, set at -80.2 for the HV polarization and -83.2 for 

the HH polarization for scenes generated before 1st January 2009 (Shimada et al. 

2009). 

 

3.3. Radar sensitivity to structure and biomass 

The sigma0 values for pixels covering the plots were converted to the power domain 

before averaging, to ensure the use of the arithmetic, not geometric, means. Eighteen 

of the twenty-five biomass plots fell on the overlap between the two scenes captured 

seventeen days apart. A regression analysis between the two sets of backscatter values 

found that they were very well correlated (dBSE = 1.0074(dBSW), r2=0.88, p < 0.00001, 

where dBSE and dBSW  are the sigma0 HV backscatter values for the 18 sites found in 

both the south-east and south-west images respectively), and were not significantly 

different from each other (paired t-test of difference not equal to zero, p = 0.384), 

therefore the mean of the two raw power averages for each site were used in all 

presented analyses.  The sigma0 values for both polarizations were then regressed 

against structural features of the plots (basal area, average height, stem density and 

average DBH), and then against the AGB values for each site. Best fit empirical 

relationships were then calculated comparing backscatter with these variables, as no 

consensus has yet been reached as to what function best models these relationships. 



These comparisons with structural features are important as the majority of previous 

studies relating such data to backscatter are from temperate plantation forests (Lu 

2006; Woodhouse 2005), and as such there is little data from natural heterogeneous 

tropical savanna-forest mosaics. All regression analyses were performed with the 

software SigmaPlot 10.0 (Systat Software, USA). 

 

3.4. Biomass change detection 

To allow comparison with the JERS data, the ALOS data were mosaicked and 

subsequently resampled to 100 m pixels.  The JERS data were then georeferenced to 

the ALOS data using a network of 40 ground control points, selected by eye, which 

resulted in an RMSE of 0.48 pixels (48 m); areas in the JERS image not present in the 

ALOS mosaic were then masked.  

 

As there were no field data available for this area from 1996, and the field data 

collected in 2007 is from areas near the forest edges that are suspected to have 

increased in biomass over the preceding eleven years (Mitchard et al. 2009), it was 

necessary to back-calibrate the JERS HH data to the ALOS-derived AGB values from 

areas that were unlikely to have changed over the time period. This methodology 

relies on the fact that there are identifiable areas where AGB is relatively stable in 

forest-savanna transition regions and the impacts of environmental variables on the 

radar backscatter such as soil and canopy moisture are relatively small (Hovestadt et 

al. 1999; Jeltsch et al. 1999; Ratter 1992; Santos et al. 2002). Pixels were randomly 

selected from the image, and when they were judged to have fallen in an area that was 

unlikely to have changed (e.g. dense forest, or known grassland, confirmed by visual 

analysis of a Landsat ETM+ scene from 2000 compared with ASTER images from 



2006/7), pixel values were extracted and averaged for a homogeneous area of 5 x 5 

pixels around this pixel from both images (25 ha). These large areas were used in 

order to limit errors caused by speckle and geolocation problems, with this averaging 

across homogeneous areas greatly increasing the confidence in the relationship 

produced. A regression between the ALOS-derived AGB values and the sigma0 

values from the JERS image was then performed, using the same relationship as with 

ALOS HH to ensure that the biomass of young and regenerating forests were 

calibrated correctly, and the derived relationship used to create a biomass map for the 

JERS image. Although there is evidence for a general increase in AGB across higher 

biomass tropical African forests (Lewis et al. 2009), at most this increase would be a 

small fraction of the total biomass of these sites (< 4 %), too small to be detectable by 

the radar backscatter data, as by these higher biomass values L-band radar has lost 

nearly all sensitivity to AGB. Hence we assumed no detectable change had occurred 

in the AGB of the selected high biomass sites.  

 

The accuracy of the derived relationship between JERS HH and AGB was evaluated 

by examining the relationship between ALOS HH and AGB, as both sensors have 

similar characteristics and incidence angles.   We did not use the HH channel from 

both sensors to perform the change detection directly (using differences in dB value 

after a cross-calibration procedure) because the ALOS HH data were acquired in the 

wet season and as such were not comparable, as the HH channel responds strongly to 

soil moisture as well as to AGB. 

 

The biomass class widths were chosen to be approximately equal to the RMSE of the 

biomass estimation at that level, and thus the classes increase in width as biomass 



increases, with the highest class taking as its lowest value the point where there is no 

evidence of a significant positive relationship between biomass and backscatter above 

that point. The area covered by the different classes at the two time points were 

compared, and a change map was produced showing the changes in average biomass 

at a 500 m (5 x 5 pixels) resolution. Subsequently, an assessment of the sources and 

likely magnitude of uncertainties was performed.  

 

4. Results 

4.1. Field data 

In total 4368 trees were measured, representing 205 species from 142 genera and 58 

families. AGB measurements for the 25 data points ranged from 6 to 424 Mg ha-1. 

Table 1 gives the full plot data combined with the ALOS HH and HV backscatter 

data. As would be expected given the allometric equations that were used (Equations 

1 & 2; Chave et al. 2005), biomass values were strongly related to basal area, with a 

fitted linear relationship giving an r2 of 0.92 (Figure 2). However the influence of 

height and wood density values on the biomass estimates using these equations can be 

seen here, as if an allometric equation that used only DBH values had been used this 

relationship would have an r2 of 1. Biomass was also significantly related to average 

height (r2 = 0.70) and to stem density (r2 = 0.45), though in both cases the quadratic 

terms were significant in the regression, suggesting a reduction in the strength of the 

relationship at higher biomass values. There was a weaker but still significant 

correlation between biomass and the average DBH for each plot when a quadratic 

relationship was fitted (r2 = 0.30, p < 0.01).  

 



Biomass Stem 
density 

Average 
height 

Average 
DBH Basal area ALOS HH 

sigma0 
ALOS HV 

sigma0 
Mg ha-1 stems ha-1 m cm m2 ha-1 dB dB 

6.1 42 6.6 11.7 1.4 -9.42 -15.72 
17.4 136 6.5 17.7 4.3 -10.26 -16.37 
24.9 213 6.2 16.4 5.9 -9.35 -15.54 
26.3 108 8.1 20.3 4.5 -9.01 -14.69 
26.4 201 5.7 12.3 6.7 -10.33 -15.19 
34.5 241 8.0 18.5 8.1 -7.93 -14.28 
38.4 315 6.9 18.1 14.0 -7.58 -13.8 
43.2 278 6.2 11.6 10.7 -8.27 -14.22 
46.3 455 5.3 11.4 11.1 -7.98 -14.77 
51.4 249 6.3 15.2 9.3 -9.28 -15.6 
75.1 390 6.7 15.5 15.4 -7.92 -13.78 
87.2 281 7.3 17.7 17.3 -7.1 -14.15 

102.9 575 12.8 11.9 13.9 -7.48 -12.59 
103.1 277 8.9 14.5 15.1 -6.86 -12.34 
107.8 460 15.4 19.1 16.2 -7.16 -12.35 
114.7 797 9.1 11.9 24.1 -7.67 -12.73 
119.7 510 11.8 14.7 18.7 -7.02 -13.2 
141.2 473 12.0 12.4 22.6 -7.29 -12.65 
204.4 642 13.6 13.9 27.7 -6.45 -11.99 
212.3 465 13.6 20.3 25.6 -7.34 -12.26 
240.5 467 16.8 20.8 25.6 -7.94 -11.98 
247.1 641 12.5 13.4 29.7 -7.34 -12.33 

306.97 611 17.4 23.1 35.6 -8.36 -13.22 
456.13 516 14.6 24.6 50.5 -6.25 -12.02 

 

Table 1: Biomass (Mg ha-1), stem density (stems ha-1), average height (m), basal area 

(m2 ha-1) and ALOS 2007 HH and HV sigma0 (dB) are given for all the field plots. The 

plot in italics was not used in the biomass regression analysis because it was on a 

steep slope facing away from the sensor, and thus in radar shadow, whereas the other 

plots were all from relatively flat ground. 

 

4.2. ALOS backscatter sensitivity to vegetation structure 

Significant log relationships were found between ALOS HV and HH sigma0 

backscatter and basal area, average height, and stem density (Figure 3). No significant 

relationship was found between average DBH for the plot and either polarization. As 

expected, both polarizations responded most strongly to basal area (HV: r2 = 0.76, 



HH: r2 = 0.55), with HV having the smaller residuals. HV backscatter responded 

almost as strongly to average height (r2 = 0.73), though HH responded less strongly to 

this variable (r2 = 0.48). A loss of sensitivity appeared to occur quite early in both 

cases, with a strong relationship with height up to about 9 meters and little evidence 

of a predictive relationship above this point. There was a significant response to stem 

density in both polarizations (HV r2 = 0.47, p < 0.0005, HH r2 = 0.48, p < 0.0001); 

interestingly in this case, HH is more strongly correlated than HV, even if only 

marginally and insignificantly so. This is possibly due to the influence of ground-

trunk scattering, which should increase with stem density, and is a more influential 

component of the HH than HV backscatter (Woodhouse 2005).  

 

 

Figure 2: Biomass values for the field plots against a) basal area, b), average height, 

c) stem density, and d) average DBH. The fit for a is linear, for b, c and d quadratic. 



 

Figure 3: ALOS 2007 HV and HH sigma0 plotted against basal area, average height, 

stem density and average DBH (stem diameter at 1.3 m). Best fit log relationships 

were fitted for a – f; no significant relationships were found for g and h. 



4.3. ALOS to biomass regression 

One biomass plot was on a significant slope (c. 25°), in radar shadow, and 

consequently had an anomalously low radar return (Woodhouse 2005). It was 

therefore thought most appropriate to remove this point from subsequent analyses, as 

all other plots were located on comparatively flat ground (0°–7° slope), and therefore 

the data were unsuitable for developing and testing a slope-correction procedure. 

Attempts were made to fit a relationship between AGB and a combination of HH and 

HV polarizations, however the strongest relationship was found between ALOS HV 

sigma0 alone and AGB, using an exponential rise-to-maximum model, as this best 

fitted the backscatter data, accurately representing the loss of sensitivity at 

approximately 150 - 200 Mg ha-1 (see Figure 4a). This fitted model happens to be 

equivalent to the simple Water Cloud Model (Attema and Ulaby 1978), but the 

equation was chosen because it it had a higher r2 than any other relationship that was 

tested, rather than for theoretical reasons. For this analysis, data points were weighted 

according to the square root of their area (Zar 2007), to correct for the differences 

between the sizes of the sample plots. The fitted relationship was: 
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where a = -16.59 ±0.46, b = 4.63 ±0.44, and c = 0.014 ±0.004 (uncertainties in 

parameter estimation are standard errors). The r2 for the fitted regression was 0.86, an 

F-test for the regression found it to be highly significant (F2,22 = 63.23, p < 0.0001), 

and the data passed a Shapiro-Wilk normality test (p = 0.47). 

 



To create a biomass map from the ALOS HV backscatter data Equation 5 was 

rearranged to: 
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There was also a good, but weaker, relationship with the ALOS HH polarization 

alone, which gives as estimate of the accuracy of the relationship between JERS HH 

data from 1996 and AGB (r2 = 0.64, F2,22 = 17.96, p < 0.0001, Figure 4b). 

 

 

Figure 4: a) ALOS HV sigma0 (dB) and b) ALOS HH sigma0 (dB) plotted against 

field-measured AGB (Mg ha-1), with area-weighted negative exponential relationships 

fitted. The point in white is from a steep slope and for this reason was excluded from 

the regression calculations. 

 

4.5. Accuracy of ALOS-biomass regression 

The accuracy of the ALOS HV AGB predictions decrease as biomass increases 

(Figure 5). The overall root mean square error (RMSE) for these data is 49 Mg ha-1; 



however this decreases to 29 Mg ha-1 if only values below 150 Mg ha-1 are considered, 

and to 24 Mg ha-1 using only data points < 100 Mg ha-1. These results led us to map 

AGB in classes chosen to be similar in size to the RMSE at each level: 0-25, 25-50, 

50-75, 75-100, 100-150, 150-200, and > 200 Mg ha-1. The large degree of scatter and 

possible bias observable in Figure 5 for values > 200 Mg ha-1 suggests that no 

subdivision of biomass classes above this point is appropriate. 

 

 

Figure 5: Errors in predicting biomass from the ALOS HV relationship are shown by 

a) ALOS HV-predicted AGB plotted against field-measured AGB (Mg ha-1), with an x 

= y line shown, and b) the error in ALOS HV biomass prediction plotted against field-

measured biomass.  

 

The relationship between ALOS HH and biomass is clearly noisier, with a loss of 

sensitivity occurring earlier than for the HV data, at around 100-150 Mg ha-1 (Figure 

4b). The RMSE values are consequently higher: 65 Mg ha-1 for the whole dataset, 52 

Mg ha-1 for points < 150 Mg ha-1, and 39 Mg ha-1 for values < 100 Mg ha-1. Note the 

acquisition of these ALOS data was in the wet season, where the HH polarization 



would be expected to be responding to soil moisture as well as to biomass, and this 

perhaps explains the poorer than expected performance at lower biomass values. The 

JERS HH data were captured in the dry season and would therefore be expected to 

considerably outperform the ALOS HH backscatter. However, to be conservative, it 

was assumed that the dry season JERS HH is only as accurate as the wet season 

ALOS HH. Thus much broader biomass classes were used for the JERS data (and thus 

also the change detection): 0 – 50, 50 – 100, 100 – 150, and > 150.  

 

 

Figure 6: a) Location of 40 x 500 m x 500 m suspected unchanged areas used to 

back-calibrate JERS HH data to ALOS HV-derived AGB, and b) JERS HH sigma0 

from 1996 (dB) plotted against ALOS HV-derived AGB (Mg ha-1) from 2007 for these 

40 suspected unchanged 25 ha areas. 

 

4.6. JERS to ALOS-derived biomass regression 

A strong relationship was found between the 40 suspected unchanged areas in the 

JERS HH sigma0 data from March 1996 (dry season) with the ALOS HV biomass 

data (r2 = 0.95, F2,48 = 341.1, p < 0.0001; Figure 6). The equation used was identical 



to Equation 5, but with coefficients: a = -10.98 ±0.12, b = 4.03 ±0.16, and c = 0.014 

±0.002. The relationship with the JERS HH sigma0 data from November 1996 (wet 

season) was less strong (r2 = 0.72, data not shown), confirming that radar data are 

more sensitive to biomass in the dry season. The reason the r2 is higher here than with 

the ALOS HV data is because of the large areas used to calibrate the relationship (25 

ha each), greatly reducing the geolocation errors and noise apparent when a 

relationship is derived from comparatively small field plots, as in the ALOS to 

biomass regression. This higher r2 value should not be taken to show that JERS HH is 

more sensitive to biomass than ALOS HV, as in general its accuracy is likely to be 

similar to that for ALOS HH (though in all likelihood better as the drier conditions 

should result in less soil moisture influence). The relationship was used to estimate 

AGB from JERS HH imagery and a map was produced by classifying AGB into 4 

classes with 50 Mg ha-1 intervals, chosen to capture the estimation uncertainties 

predicted using the ALOS HH data (Figure 7a), the training data is put in the correct 

class with a 94% accuracy using these classes. For comparison the ALOS HV map 

with its seven classes is included as Figure 7b. 

 

4.7. Change detection 

The biomass change map was produced by tracing the number of biomass classes 

each 500 m pixel changed between the two periods (Figure 7c).  Although the ALOS 

biomass map has smaller intervals and a larger biomass range, we produced the 

change map by using 50 Mg ha-1 as the class interval and 150 Mg ha-1 as the upper 

limit, as these are the best that can be confidently predicted using the JERS data. 

 



 

Figure 7: Biomass class images produced using a) JERS HH 1996 data and b) ALOS 

HV 2007 data, using scales with the size of biomass classes based on RMSE error 

values, with broader classes for the JERS HH 1996 data than the ALOS HV 2007 

data; and c) change in 500 m average class (JERS class image subtracted from ALOS 

class image) for the two images (using the broader JERS classes). 

 

 

Figure 8: The total area in km2 against biomass class (Mg ha-1) for the two biomass 

maps from 1996 and 2007 for: a) the whole data set; b) the less-populated western 

half of the study region; and c) the more-populated right hand half. 

 



The resulting map shows biomass losses and gains dominating in different parts of the 

study area, with losses of higher biomass classes in the eastern side, and gains on the 

western side. Changes in the absolute area covered by each biomass class are also 

shown in Figure 8, both for the whole study area, and for the eastern and western 

sides individually. A loss of the high biomass classes dominates the east of the study 

area, which appears to be concentrated around the major population centers and along 

the railway line (Figure 9; the major towns are the yellow and blue dots, and the 

railway line is in yellow). Here the area covered by forest > 150 Mg ha-1 has declined 

almost by half, from 2700 km2 in 1996 to 1400 km2 in 2007. However, there are also 

areas of positive change (i.e. biomass gain), concentrated in the western side of the 

study area, particularly in the savanna areas of the Mbam Djerem National Park and 

the area north of it. Increases in biomass appear to occur in all the woodland-savanna 

areas without a high human population density. These increases are shown by a 

reduction in the area of biomass classes < 100 Mg ha-1, and an increase in area for 

both cover classes > 100 Mg ha-1.  

 

4.8. Uncertainty analysis 

There are two major sources of uncertainty in this analysis: uncertainties in 

calculating biomass values from field data using allometric equations, and 

uncertainties in using radar remote sensing data to estimate biomass. Uncertainties in 

the first case seem unlikely to affect the results of the change detection, so increases 

and decreases should be correctly located, but the magnitude of the biomass classes 

could be incorrect. Uncertainties inherent in using radar remote sensing data to 

estimate biomass across an area may, however, affect the results of the change 



 

Figure 9: Change in class image using the same method as for Figure 6 c. The major 

towns of Tibati and Ngaundal are shown as yellow and blue circles respectively, 

Mbam Djerem National Park is outlined in blue, roads are shown in white, and the 

railway line in yellow. Optical close-up images are Landsat ETM+ from 2000 (bands 

5-4-3) and ASTER from 2006 (bands 3n, 2, 1), showing the widening of gallery forests 

and increased woody vegetation on the left-hand pair, and the rapid clearing of 

woody vegetation around the town of Ngaundal on the right-hand pair. Note that the 

differences in color are caused by the different bands available from two sensors, 

however in both the green channel is an infra-red band that responds strongly to 

vegetation cover, which will mostly be woody in these dry season images. 

 

detection, and these errors are particularly uncertain for the JERS data from 1996 as 

there are no field data, making an assessment of the accuracy of that classification 

difficult. Here we will subdivide these uncertainties into their major sources, and 

estimate the likely contribution from each. 

 



4.8.1. Errors in field data to AGB estimation 

 

1. Uncertainties in diameter, height and species measurements. Diameter 

measurements are considered very accurate (Alder and Synnott 1992), and though 

height measurements are less precise, an in-field assessment, involving re-measuring 

10 trees across the full height range at least 8 times from different angles and on 

different days, suggested our methods were accurate to greater than ±10 %. All 

species were identified in the field by expert local botanists, and as such mis-

identifications are likely to be few, and given the similarities of wood density within a 

genus unlikely to have a major effect on the biomass estimation (Chave et al. 2006, 

2009). 

 

2. Uncertainties in the allometric equation. It is not possible to use species-specific, or 

even region-specific, allometric equations for most tropical ecosystems, as the species 

diversity is too large and the relevant data have not been collected. However using a 

pan-tropical equation including height, diameter and species-specific wood density 

minimizes overall uncertainty in biomass estimates to an estimated ±10 % (though 

Chave et al. (2005) optimistically estimate ±5 % for the equation we used). This error 

could be considerably higher for larger trees, where accurate biomass data are very 

scarce.  

 

We therefore estimate that the biomass classes used could be inaccurate by at worst 

±20 %, assuming a consistent 10 % error in height estimation combined with the 

allometric equation used that poorly predicts tree biomass and consistently over- or 

under- estimating by a further 10 %. The consequence of this is that, for example, the 



100 – 150 Mg ha-1 biomass class could in fact at worst be 80 – 120 Mg ha-1 or 120 - 

180 Mg ha-1. 

 

4.8.2. Uncertainties in radar to biomass estimation 

We now consider the errors involved in putting a pixel into the correct biomass class. 

This was estimated using the RMSE values from the original biomass estimation, as 

discussed in Section 4.5, though these RMSE values are likely to overestimate the true 

error value because of their small plot size. The biomass class sizes were chosen to be 

approximately equal to the RMSE values at the respective biomass level. Assuming 

errors are normally distributed, this should result in approximately 68 % of data points 

being placed in the correct class, and approximately 95 % in the correct class or a 

neighboring class (Zar 2007). These are indeed approximated in the field data, with 65 

% of the data points being correctly classified for the ALOS HV data, and 96 % being 

placed in the correct or neighboring class; for ALOS HH (with the wider biomass 

classes) these values are 57 % and 96 % respectively.  

 

These errors in classifying pixels should, unlike those for the biomass estimation, be 

randomly distributed, with no bias (i.e. there is assumed to be an equal chance of 

over- and under- estimation for every point). Thus while the chances of a randomly 

chosen pixel being correctly classified is just 66 %, the large number of pixels 

considered in all the classes suggests the overall accuracy in estimating the total area 

of this class is much higher. This assumption would not be valid if the number of 

pixels varied considerably between classes, as rare classes would be overestimated 

due to mis-estimation from neighboring classes; however as all the classes are of a 

similar magnitude this is unlikely to be a serious problem. Equally, 25 pixels are 



averaged to produce each average class at a 500 m resolution before the change 

detection routine is performed. Therefore the total area covered by each class in 

Figure 8, and the changes in average biomass class at a 500 m resolution in Figure 7, 

are thought accurate to at least a 95 % (based on a simple statistical simulation 

model), and possibly higher, suggesting that the changes observed are robust. 

However, using this methodology to track changes in individual 100 m pixels is likely 

to give poor estimates, so we produced a biomass change map at a 500 m resolution, 

as the averaging of the class of 25 pixels gives a level of confidence in the results (> 

95 %) which could not be achieved with a higher resolution (Figure 7c). 

 

5. Discussion 

5.1. Using radar data to detect changes in forest-savanna ecotones 

We detected forest expansion over a large, less-populated western part of our study 

area, and rapid forest loss in the eastern side. This strongly suggests that satellite L-

band SAR data can be used to detect biomass changes in forest-savanna transition 

regions. While a reduction in signal sensitivity at higher biomasses makes the accurate 

estimation of forest biomass difficult, detecting changes in the woodiness of savannas, 

and detecting deforestation and degradation, is possible using a combination of JERS 

and ALOS PALSAR, and in future with two PALSAR images. The errors in the 

analysis have been assessed, and shown to be small compared to the signal in the data, 

increasing our confidence in results derived from L-band SAR data combined with 

on-the-ground field measurements.  

 



The lack of field data corresponding to the 1996 satellite data increases the error in the 

results, but apparently not dramatically so; although this error is impossible to 

quantify precisely, we can be confident in the accuracy of the results given the 

conservative methodology and broad biomass classes used. These broad classes mean 

that only pixels that have undergone rapid biomass change will be detected, thus 

providing confidence that any observed changes are genuine and not caused by noise 

or mis-calibration of the datasets.  

 

The ALOS data were captured in the wet season, and the HH signal is therefore likely 

to be less sensitive to differences in biomass than if the imagery had been obtained 

during the dry season with lower soil moisture influences. Consequently, the HH data 

from JERS captured in the dry season is likely to have considerably smaller errors 

than suggested by the ALOS HH data. The benefits of using HV over HH can be seen 

clearly, with a relationship found with r2 = 0.84 for the ALOS HV data, despite the 

wet season image capture.  This is due to the minimal impact of soil moisture on L-

band HV, which has been shown elsewhere (Dubois et al. 1995; Oh et al. 1992).  

 

5.2. Forest expansion 

Small-scale (40 – 300 km2) studies of Boulvert (1990), Happi (1998) and Guillet et al. 

(2001) showing woody expansion in Cameroon are consistent with our larger scale 

(15 000 km2) study: woody expansion is indeed occurring in some forest-savanna 

transition regions distant from human disturbance, and it is occurring rapidly, with 

many pixels increasing by two biomass classes over the eleven year study period, 

equivalent to at least a doubling in biomass. While this increase is rapid, it is not 

necessarily unrealistic: increases of 1.4-2.0 Mg ha-1 yr-1 have been observed in the 



drier Miombo woodlands (Chidumayo 1997, Williams et al. 2008), and increases > 10 

Mg ha-1 yr-1 have been found for secondary forest growth in Amazonia (Gehring et al. 

2005, Feldpausch et al. 2004, Houghton et al. 2000), in wetter, less seasonal 

conditions. We therefore estimate that increases in the order of 5 Mg ha-1 yr-1 would 

be possible in this area, which is sufficient to produce the observed increases over the 

eleven years.  

 

This also corroborates a recent study using high resolution spectral vegetation index 

data over a 5000 km2 region equivalent to the central-west section of this study area 

from 1986 – 2006, which found significant increases in the woody cover of the 

savanna regions (Mitchard et al. 2009). Equally, this finding agrees with informal 

independent field observations in the Mbam Djerem National Park: the first 30 meters 

or so of most gallery forests were dominated by young pioneer trees, with a scattering 

of older dead and dying savanna trees being shaded by the pioneer species (Mitchard 

et al. 2009 & personal observation by ETAM, TRF, SLL & BS).  

 

It is likely that the expansion of forest is caused by a reduction in human disturbance, 

especially fire, which may have resulted from a combination of urban migration, 

changes in lifestyle away from cattle herding, and the formation of the Mbam Djerem 

National Park. These factors have previously been shown to be the cause of woody 

encroachment in a number of semi-arid environments in Africa (Dalle et al. 2006; 

Ward 2005). Although it is difficult to quantify the total positive effect of the 

designation of the area as a National Park on biomass gain, the study does show the 

potential for national parks in forest-savanna ecotone regions to be managed to 

sequester carbon . It is possible that adopting a policy of limiting savanna burning and 



exploitation might enable such parks to earn valuable funds, either in the voluntary 

carbon market or the proposed Reduced Emissions from Deforestation and 

Degradation (REDD) scheme. Equally however it demonstrates that a policy of 

savanna burning may need to be implemented in Mbam Djerem National Park in 

order to maintain the unique diversity of ecosystem types present. 

 

This study also demonstrates that a combination of satellite radar data with field 

studies can provide sufficiently robust evidence to claim and validate carbon stocks 

(though robust baseline data will also be needed to enable calculations of carbon 

credits). Ideally however a still-more robust analysis would be performed, using L- or 

P-band data from the same sensor in the same season under similar ground moisture 

conditions, in combination with field data collected in the same year as each radar 

scene. This would increase the accuracy and confidence in the results, removing any 

need for back calibration, and allowing direct estimation of biomass changes per 

pixel, without the need for broad biomass classes. It would also reduce the influence 

of soil moisture. The impact of soil moisture in this study cannot be ruled out entirely, 

although we believe it could not explain the biomass increases observed in this study, 

because (a) forest-savanna boundaries and gallery forests in the ALOS HV image are 

clearly visible, (b)  these boundaries correspond well with the Quickbird data, and (c) 

we used a large number of biomass plots and calibration points around the area which 

showed the biggest biomass increase.  

 

5.3. Forest loss 

Despite the significant gains shown in the west, the overall biomass trend for the 

study area is negative, with a net loss of 20 % (1090 km2) of high biomass forest (> 



150 Mg ha-1) over the 11 year study period. The losses along the railway line and 

paved road on the eastern side of the study area are very obvious, and similarly 

around the town of Ngaoundal in the north-east (Figure 9). We suspect strongly that 

this change is due to human-driven deforestation and degradation (SLL personal 

observation), but cannot rule out the possibility that it is due to forest die-back 

following a localized drought (Dai et al. 2004). The population density there is higher, 

and as well as farming and timber extraction for fuel (both woodfuel for local use and 

charcoal for transport to towns and cities), there are logging operations in the forest 

areas outside the park. Clearly, the fate of woody vegetation in this region is currently 

largely in the hands of humans, and without intervention it seems likely that rapid 

forest losses will continue; biomass gains in protected areas will be unable to replace 

losses of forest and biomass elsewhere. Recent population trends leave some room for 

optimism: although the urban population of Cameroon grew by 3.61% per year from 

2002 till 2006, the rural population actually fell slightly, at an average rate of -0.023% 

per year (World Bank 2007). However, the growing urban population will continue to 

lead to ever-increasing demands for fuel, food and timber, so while remote or 

protected areas may have the potential for an increase in biomass, areas of forest and 

woody savanna near settlements and access routes are likely to continue to decrease in 

biomass. The Mbam Djerem National Park is relatively well protected and the 

savannas are not systematically burned, and as such the land in the park may continue 

sequestering carbon into the future. However given the rate of loss outside the park, 

community projects in this area attempting to reduce deforestation and promote the 

planting of trees may be more successful at carbon sequestration (Williams et al. 

2008). However, as Geist and Lambin (2002) showed in a meta-analysis of 152 sub-

regional deforestation studies, the principal causes of deforestation is demand from 

http://world-gazetteer.com/wg.php?x=&men=gpro&lng=en&des=gamelan&geo=-53&srt=npan&col=abcdefghinoq&msz=1500&pt=c&va=&geo=347419327


remote foreign markets, so local intervention may not alone provide a solution. 

Instead large-scale, concerted international solutions such as REDD, involving 

making performance-based payments to reduce deforestation and degradation rates 

alongside demand management for wood products, may be necessary. 

 

5.4. Implications for future radar satellites 

While the methods used in this study are sufficient to accurately find areas of large-

magnitude biomass change, using these data we cannot be very exact in assessing the 

precise magnitude of such changes, nor of absolute carbon stocks. However, in the 

future it is likely to be possible to produce quantitative estimates of biomass change 

using radar backscatter images captured during the same season over different years 

from identical or similar L- or P-band polarimetric sensors. The similar geometric 

configuration and radiometric accuracy of the sensors will allow the use of established 

radar change detection algorithms which directly compare backscatter values 

(Carincotte et al. 2006; Rignot and Vanzyl 1993; Touzi et al. 1999). This will be 

possible using ALOS PALSAR data (which will be continued by ALOS-2), but also 

with more informative data including information about tree heights from new 

satellites such as NASA’s interferometric L-band SAR and lidar DESDynI, and 

ESA’s planned interferometric P-band  BIOMASS. Such data should allow for 

accurate large-scale, high resolution and long-term monitoring of forest degradation 

and regeneration. 

 

It is also possible that the accuracy of the biomass maps produced at each time point 

could be improved by the addition of optical data and digital elevation models 

(DEMs) to the radar data, using multivariate analysis techniques. Optical data, such as 



vegetation indices, provide a different suite of information about forest structure in 

these ecosystems (for example canopy cover; Mitchard et al. 2009) that might be 

beneficial in producing more robust biomass maps, and DEMs could be used to 

correct for the influence of slope on radar backscatter. This technique of incorporating 

many different layers to produce biomass maps has been conducted at a coarse 

resolution in Amazonia (e.g. Saatchi et al. 2007), but would suffer from the 

difficulties of acquiring comparable, high resolution and cloud-free images captured 

at a similar time to the radar images for each year for this kind of high resolution 

change detection. In general, however, more information should improve accuracy, so 

this type of approach should be investigated. 
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