
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISTINGUISHING THE ROLES OF NATURAL AND
ANTHROPOGENICALLY FORCED DECADAL CLIMATE
VARIABILITY Implications for Prediction
Citation for published version:
Solomon, A, Goddard, L, Kumar, A, Carton, J, Deser, C, Fukumori, I, Greene, AM, Hegerl, G, Kirtman, B,
Kushnir, Y, Newman, M, Smith, D, Vimont, D, Delworth, T, Meehl, GA, Stockdale, T & US CLIVAR Decadal
Predictability W 2011, 'DISTINGUISHING THE ROLES OF NATURAL AND ANTHROPOGENICALLY
FORCED DECADAL CLIMATE VARIABILITY Implications for Prediction' Bulletin of the American
Meteorological Society, vol. 92, no. 2, pp. 141-+. DOI: 10.1175/2010BAMS2962.1

Digital Object Identifier (DOI):
10.1175/2010BAMS2962.1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Bulletin of the American Meteorological Society

Publisher Rights Statement:
© Copyright [2011] American Meteorological Society (AMS). Policies available at http://www.ametsoc.org/

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28962874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1175/2010BAMS2962.1
https://www.research.ed.ac.uk/portal/en/publications/distinguishing-the-roles-of-natural-and-anthropogenically-forced-decadal-climate-variability-implications-for-prediction(a176d81a-746a-4621-bbd2-961ca7d68980).html


To assess decadal forecasts it is necessary to identify to what extent regional changes  

are due to natural climate variations, and are thus transitory, and to what extent they  

are due to anthropogenic forcing, and are likely to continue. 

MOTIVATION. An ambitious effort to produce 
experimental near-term decadal forecasts has 
begun, motivated by the possibility that the 

climate models used for climate change projections 
can capture not only the impact of the changing 
atmospheric composition but also the evolution of 
slow natural variations of the climate system when 
initialized with ocean observations. In the cases 
where initialization improves the forecast, addressing 
the question of how much of that improvement is due 
to the natural versus the forced climate components 
is important to understanding the benefits of the 
initialization. Untangling the natural and forced 
components of the climate is necessary because the 
response to external forcing may project onto or com-
ingle with natural climate variability. As the science 
of decadal prediction is in its infancy, one would like 
to assess and understand the following:

1)	 the expectations for added regional climate in-
formation and skill achievable from initialized 
decadal predictions;

2)	 what physical processes or modes of variability 
are important for the decadal predictability and 
prediction problem, and whether their relevance 
may evolve and change with time;

3)	 what elements of the observing system are im-
portant for initializing and verifying decadal 
predictions; and

4)	 in terms of attribution, to what extent are regional 
changes in the current climate due to natural cli-
mate variations and thus transitory, and to what 
extent are they due to anthropogenic forcing and 
thus likely to continue.

As with the preceding decade, the climate evolu-
tion in the near term will be a combination of forced 
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climate change and natural variability. As an ex-
ample, consider the prolonged drought conditions of 
the American West since the late 1990s. Most of the 
twenty-first-century climate change projections used 
in the Intergovernmental Panel on Climate Change 
(IPCC) Fourth Assessment Report (AR4) suggest 
that this region will become drier as precipitation 
decreases and evaporative demand increases with 
future warmer temperatures (Seager et al. 2007). 
However, since dry conditions in this part of the 
world are also associated with natural interannual-
to-decadal variability in sea surface temperatures in 
both the Atlantic and the Pacific basins (e.g. McCabe 
et al. 2004; Seager et al. 2005; Schubert et al. 2009) 
and appear to have occurred before the twentieth 
century (see Jansen et al. 2007), how much of the re-
cent drought can be attributed to natural variability 
and how much can be attributed to ongoing climate 
change? An answer to this question could greatly 
aid western water resource managers in developing 
informed adaptation strategies.

The purpose of this paper is to describe existing 
methodologies to separate decadal natural variability 
from anthropogenically forced variability, the degree 
to which those efforts have succeeded, and the ways 
in which the methods are limited or challenged by 
existing data. Note that the separation of decadal 
natural variability from anthropogenically forced 
variability goes beyond what has already been ac-
complished in previous studies that focused primar-
ily on the detection of a long-term anthropogenic 
signal (Hegerl et al. 2007b) because on decadal time 
scales anthropogenic effects may be nonmonotonic, 
regionally dependent, and/or convolved with natural 
variability.

The World Climate Research Programme (WCRP) 
is coordinating a set of decadal prediction experiments 

(Taylor et al. 2008; Meehl et al. 2009a) that are being 
conducted by modeling centers around the world. It 
must be clearly emphasized that these are prelimi-
nary experiments to assess the current feasibility of 
decadal predictions. The approaches for separating 
natural and forced variability discussed in this paper, 
presented with their benefits and limitations, are in-
tended to serve as a starting point from which these 
decadal prediction experiments can be assessed and 
from which the processes and potential predictability 
of decadal variations can be better understood.

PHYSICAL PROCESSES INVOLVED WITH 
DECADAL TIME SCALES IN THE CLIMATE 
SYSTEM. To assess naturally occurring decadal 
variability in the climate system and the ability of 
models to simulate and forecast it, one must identify 
the relevant physical processes. Most studies point to 
oceanic mechanisms as central to climate memory, 
particularly those related to reservoirs of ocean heat 
or slowly evolving circulation and their interaction 
with the atmospheric variability. For example, in 
midlatitudes sea surface temperatures (SSTs) are well 
described by the stochastic climate model paradigm 
(Frankignoul and Hasselmann 1977), where random 
atmospheric surface forcing with a “white noise” 
spectrum, or equivalent power at all frequencies, 
is integrated by the ocean mixed layer to produce a 
“red noise” spectrum, in which power is amplified 
at lower frequencies [see Deser et al. (2010a) for a 
review]. Additionally, a number of ocean processes 
(e.g., overturning and gyre circulations, the trigger-
ing of Rossby waves, and advection of temperature/
salinity anomalies by the mean currents) are potential 
candidates that may provide additional predictabil-
ity by influencing atmospheric and thus terrestrial 
variability.
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One example of poten-
tially predictable natural 
climate variability is that 
produced by wind-forced 
extratropical ocean Rossby 
waves that propagate across 
an ocean basin and create 
thermocline anomalies 
near the western boundary. 
These signals in the ocean 
are then communicated 
to the surface through 
wintertime heat fluxes and 
wind stress. Schneider and 
Miller (2001) demonstrate 
that such a process in the 
North Pacif ic can yield 
predictable wintert ime 
SST anomalies in the Kuroshio–Oyashio Extension 
at lead times of up to 3 years. Decadal timescale vari-
ability in patterns of Pacific basin SSTs associated 
with the interdecadal Pacific oscillation (IPO; Power 
et al. 1999) has been connected to wind-forced ocean 
Rossby waves near 25°N and 25°S that are central 
to a mechanism that produces the IPO (White et al. 
2003; Meehl and Hu 2006; McGregor et al. 2007, 
2008). The IPO has subsequently been used as the 
basis for decadal predictions of Pacific SSTs and 
associated precipitation over North America and 
Australia in a perfect model study using a large 
ensemble of climate model simulations (Meehl et al. 
2010). Another example of a source of predictability 
may come from the shallow wind-driven meridional 
overturning ocean circulations called subtropical 
cells (STCs), which connect the subtropical atmo-
sphere to the equatorial region through the ocean in 
both the Atlantic and Pacific basins [see Schott et al. 
(2004) for a review]. STCs have been hypothesized 
to play a role in decadal climate variability by the 
advection of salinity/temperature anomalies along 
STC pathways to the equator (Gu and Philander 
1997; Yeager and Large 2004) or by changes in STC 
strength, which controls the amount of cold water 
that upwells at the equator, both in models (Kleeman 
et al. 1999; Solomon et al. 2003) and observations 
(McPhaden and Zhang 2002).

A potentially large source of predictability of 
natural climate variability on decadal time scales 
may also come from f luctuations in the Atlantic 
meridional overturning circulation (AMOC) (e.g., 
see Delworth and Mann 2000; Knight et al. 2005; 
Dijkstra et al. 2006; Zhang and Delworth 2006). This 
circulation plays a key role in climate by transporting 

warm upper-ocean water northward in the Atlantic 
and releasing that heat to the atmosphere; the cooled 
water sinks and returns southward at depths below 
1000 m. The Atlantic shows evidence of multidecadal 
climate variations generally referred to as the Atlantic 
multidecadal oscillation (AMO; Enfield et al. 2001), 
with a basin-scale signature in SST. It has been hy-
pothesized that the multidecadal fluctuations in SST 
may be related to AMOC fluctuations. AMO-like SST 
fluctuations are found in many coupled models (e.g., 
Latif et al. 2006), and while different models seem to 
produce fluctuations for different reasons and with 
different time scales (see Fig. 1), all seem to involve a 
link to the AMOC. The presence of feedbacks linking 
AMOC, SST, and the atmospheric circulation opens 
up potential for predictability of decadal climate 
variability over land associated with predictability of 
AMOC variations (see Knight et al. 2006).

A principal assertion behind the decadal predic-
tion experiments is that initialization of decadal-
scale ocean processes, such as those mentioned 
above, will provide additional predictability beyond 
that due to the radiative forcing from increasing 
greenhouse gases. The extent to which this is true 
using the current generation of GCMs and data 
assimilation systems has yet to be determined, al-
though hindcast experiments appear promising (e.g., 
Smith et al. 2007). As described in the next section, 
several approaches have been proposed to separate 
natural from externally forced variability in order 
to highlight the added value of ocean initialization 
on predictions of the future or to help better un-
derstand or describe past trends and variability. To 
date, no superior approach exists; all have benefits 
and limitations.

Fig. 1. Strength of the AMOC at 30°N in a variety of 19 AR4 coupled models 
forced with observed greenhouse gas and aerosol forcing until 1999 and the 
Special Report on Emissions Scenarios (SRES) A1B scenario of greenhouse 
gas forcing after 1999. Bars on the left show various observational estimates. 
From Meehl et al. (2007).
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APPROACHES TO SEPARATE NATU-
RAL INTERNAL VARIABILITY FROM AN-
THROPOGENICALLY FORCED DECADAL 
VARIATIONS. Analysis of initialized decadal predic-
tion studies. Natural and forced variability may be 
separated to a certain extent by comparing parallel sets 
of initialized and uninitialized hindcast experiments 
made with the same climate model (Smith et al. 2007; 
Keenlyside et al. 2008; Pohlmann et al. 2009). If all 
external forcing (i.e., from anthropogenic greenhouse 
gases and aerosols, solar irradiance, and volcanic 
eruptions) is identical, then differences between the 
two sets of hindcasts arise purely from initialization. 
Since natural internal variability can only be pre-
dicted by starting from its correct phase, improved 
skill in initialized over uninitialized hindcasts may 
indicate skillful prediction of some aspects of natu-
ral variability. However, improved skill in initialized 
hindcasts may also arise from removing biases that ex-
ist in uninitialized climate models forced by observed 
changes in external forcing and that may be smaller 
at the start of initialized decadal predictions. This 
source of additional skill is potentially important for 
improving predictions of climate change commitment 
or short-term response to volcanic eruptions, but it 
would need to be taken into account in any attempt 
to separate natural and forced variability.

There are also other issues to be considered when 
analyzing decadal hindcasts. Climate models cannot be 
initialized perfectly with incomplete observations. This 
usually leads to an initialization shock, during which 
the model rapidly adjusts to imbalances introduced 
by imperfect initialization, causing a degradation of 
forecast skill that could mask any signals from natural 
variability. It is also possible that unrealistic model 
responses to imperfectly estimated initial conditions 
(Acero-Schertzer et al. 1997; Ji et al. 2000; Masina 
et al. 2001) could lead to apparent hindcast skill that 
could be incorrectly attributed to natural variability. 
For example, in initialized hindcasts of the mid-1990s 
warming of the North Atlantic subpolar gyre, J. Robson 
et al. (2009, unpublished manuscript) found that skill 
was due to errors in assimilated density anomalies. 
Furthermore, initializing and assessing decadal 
hindcasts is severely hampered by the sparseness of 
historical subsurface ocean observations. For example, 
natural variations of the Atlantic AMOC are predict-
able in idealized model experiments (Collins et al. 
2006), but our ability to confirm such predictability in 
reality is compromised by the lack of historical ocean 
observations. Ultimately these issues must be overcome 
in order to capitalize on the predictability from the 
natural variability to improve decadal forecasts.

Analysis of model ensemble means and variance. A 
large ensemble of climate simulations can be used 
to separate the model response to external forcing 
from the variations that are internal to the system. 
The former is referred to as external variability, while 
the latter is referred to as internal or the natural 
climate variability. The approach described closely 
follows a similar approach used in seasonal climate 
predictions, where seasonal atmospheric variability 
is decomposed into external variability because of 
SST and internal variability due to atmospheric pro-
cesses alone (e.g. Kumar and Hoerling 1995; Rowell 
et al. 1995).

For coupled general circulation models (CGCMs) 
used in climate change projections, in which the 
ocean has not been initialized, the mean over an 
ensemble of CGCM simulations is the least biased 
estimate of the response of the model to the specified 
time evolution of external forcings (e.g., CO2, solar 
variability, volcanic aerosols). The departure in each 
climate simulation from the ensemble mean then pro-
vides an estimate of the model’s internal variability 
due to natural fluctuations. This approach can be ap-
plied to any time average extending from seasonal to 
annual to decadal. However, for longer time averages, 
the removal of weather or climate noise by ensemble 
averaging is more effective.

For large enough ensembles with specified ex-
ternal forcing, this approach also allows for the 
investigation of how external forcing may project 
onto dominant modes of internal variability. In one 
example, a 40-member ensemble of CGCM integra-
tions with changing atmospheric composition and 
ozone recovery for the period 2005–60 was compared 
to a long (10,000 yr) unforced control run of the atmo-
spheric model component with a specified repeating 
annual cycle of sea surface temperatures and sea ice 
conditions (Deser et al. 2011). The ensemble mean at-
mospheric circulation trend, interpreted as the forced 
response, exhibits a statistically significant weaken-
ing of the Southern Hemisphere polar vortex during 
austral summer (positive sea level pressure trends at 
high latitudes and negative ones at middle latitudes; 
Fig. 2, left panel). The spread of the response among 
the individual ensemble members, or intraensemble 
noise, is also characterized by an annular pattern 
reminiscent of the forced response (Fig. 2, middle 
panel). Further, the pattern of the noise closely resem-
bles the leading EOF from the unforced atmospheric 
model control run (Fig. 2, right panel). This study 
illustrates that the pattern of the forced response may 
have similar structure to the natural variability in the 
model, as also noted by Meehl et al. (2009b) for the 
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climate shift that occurred 
in the Pacific in the mid-
1970s. These results further 
demonstrate that externally 
forced multidecadal trends 
of some variables can be 
subject to large uncertain-
ties owing to noise, thus 
requiring analysis of very 
large ensembles.

This approach to sep-
arating the natural and 
externally forced variabil-
ity, based on ensembles of 
climate simulations, is a 
conceptually simple meth-
odology in its formulation. 
The approach, however, 
also has some limitations, 
including the fact that es-
timates of internal and ex-
ternally forced variability 
are model dependent. On 
the other hand, based on 
an analysis of simulations 
from multiple CGCMs and 
a comparison of total vari-
ability against the observed estimates, some confi-
dence in the model-based estimates can be gained. 
However, the approach, by construction, requires a 
large ensemble of simulations and can be computa-
tionally taxing. For example, existing model archives 
used in the third phase of the Coupled Model Inter-
comparison Project (CMIP3) generally do not have 
large enough ensembles from individual models for 
this approach to be viable.

Signal-to-noise maximizing EOFs. The signal-to-noise 
(S/N) maximizing EOF analysis is an effective meth-
od to distinguish between externally forced climate 
responses, which are common to all ensemble mem-
bers, and natural internal climate variability. This 
approach can be used with small ensembles and can 
be used when the signal due to external forcing is on 
the order of, or weaker than, the internal variability 
in the model.

In signal-to-noise maximizing EOFs, the predict-
able patterns in ensemble prediction experiments are 
sought by calculating the dominant patterns (EOFs) 
of the covariance matrix of the ensemble-average 
output (e.g., Seager at al. 2008). In large ensembles, 
internal variability of each ensemble member 
largely cancels out in the ensemble mean, leaving the 

externally forced signal. In a small ensemble, say, of 
the size envisioned in the Fifth Assessment Report 
(AR5) decadal prediction experiments, the intra-
ensemble noise due to energetic internal variability 
with coherent spatial structure will impact the EOFs 
of the ensemble mean and may make it difficult to 
distinguish between the patterns of signal and noise. 
To overcome this problem, a spatial prewhitening 
transformation is applied to the ensemble mean data 
to remove the spatial correlations from the noise 
structures and thus remove the impact of the climate 
noise on the ensemble mean (see Allen and Smith 
1997; Venzke et al. 1999; Chang et al. 2000). This 
analysis is equivalent to identifying the predictable 
components that maximize the average signal-to-
noise ratio (see DelSole and Tippett 2008).

Ting et al. (2009) applied S/N maximizing EOFs 
to twentieth-century SST variability over the North 
Atlantic basin to distinguish natural variability [in 
particular, Atlantic multidecadal variability (AMV)] 
from the externally forced signal in six small CMIP3 
ensembles performed with several different CGCMs. 
The results exhibited a cleaner and better between-
model agreement of the global forced signal than 
using a simple ensemble mean temperature. The 
estimate of the forced signal can then be subtracted 

Fig. 2. Projected November–February sea level pressure trends during 
2005–60 over the Southern Hemisphere. (top left) Forced 40-member 
coupled model ensemble mean. (top middle) Leading EOF of the deviation 
of each coupled model ensemble member’s trend from the coupled model 
ensemble mean trend. (top right) Leading EOF of a 178-member ensemble of 
56-yr trends from a 10,000-yr atmospheric model control integration. (bottom 
left) PDF of the trends in the index of the southern annular mode from each 
coupled model ensemble member (red bars) and from each atmospheric 
control member (gray). (bottom right) As at bottom left, but the coupled 
model ensemble mean trend has been removed from each individual coupled 
model ensemble member. From Deser et al. (2011).
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to determine the pattern of internal interdecadal 
variability in the observed (and modeled) North 
Atlantic SST (see Fig. 3). This yields a much different 
impression of the magnitude of the AMV in the early 
twenty-first century than more subjective estimates 
of AMV [e.g., the departure from a linear trend, or 
from the global mean; see Enfield and Cid-Serrano 
(2010) or Ting et al. (2009) for a discussion].

While S/N EOF analysis can be useful for iden-
tifying a common signal in small ensembles of 
forced CGCM integrations, even in the presence of 
significant levels of climate noise, the method does 
have limitations in the context of decadal predictions. 
In particular, S/N maximizing EOFs would need an 

additional set of model simulations to separate infor-
mation on the patterns of externally forced variability 
from any predictable or persistent patterns related to 
the initial conditions, as the initialized signal would 
also be part of the output common to all ensemble 
members.

Linear inverse models. Linear inverse modeling (LIM) 
is an empirical technique to fit a multivariate red-
noise model to observations or model output. These 
models have been very successful in simulating ENSO 
variability and can reproduce the observed power 
spectrum on seasonal-to-interannual time scales 
of the dominant pattern of tropical SST variability 

(see Newman et al. 2009). Since LIM 
determines empirical, potentially 
nonorthogonal, dynamical modes, 
it is useful for identifying how these 
modes contribute to a physical phe-
nomenon. For example, LIM has been 
used to show that the Pacific decadal 
oscillation (PDO; Mantua et al. 1997) 
may not be a single physical mode but 
a superposition of a number of pro-
cesses with different dynamical ori-
gins (Newman et al. 2003; Schneider 
and Cornuelle 2005; Newman 2007). 
For example, LIM of Pacific basin 
SSTs finds that the “decadal ENSO” 
pattern with PDO signature in the 
North Pacific (Fig. 4c; e.g., Zhang 
et al. 1997; Deser et al. 2004) has a 
decay time that is far shorter than its 
period. As a result, little long-range 
forecast skill is associated with this 
eigenmode. Instead, predictability in 
this system on greater than interan-
nual time scales comes from the two 
leading stationary eigenmodes: a 
leading eigenmode with a 100-yr trend 
(Fig. 4a) and a second eigenmode 
(Fig. 4b) that has a pattern somewhat 
similar to the multidecadal signal 
found by Deser et al. (2004) (see also 
D’Arrigo et al. 2005). The combined 
effects of these two eigenmodes alone 
dominate the patterns of Pacific SST 
trend in this dataset over both the 
entire century and the last 50 years. In 
addition, LIM is useful for identifying 
optimal initial conditions that pro-
duce the largest variability in a linearly 
stable stochastically forced system. 

Fig. 3. (a) Projection of SST averaged in the North Atlantic basin 
onto the leading S/N maximizing principal component (PC) in each 
of the participating models [see list in figure and information in Ting 
et al. (2009)]. Each model PC is depicted by a different color, and the 
dashed line is the ensemble average. The observed SST average, sug-
gesting a superposition of a forced trend and internal, multidecadal 
variability, is shown with the solid black line. (b) The observed AMO 
index constructed by subtracting from the observed North Atlantic 
SST average the model estimates of the forced North Atlantic SST 
shown in (a). The black dashed line shows the forced response average 
across all six participating models. From Ting et al. (2009).
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Such initial conditions that 
would portend potential 
predictability have been 
identified for the North 
Atlantic (see Tziperman 
et al. 2008; Hawkins and 
Sutton 2009) and the tropi-
cal Pacific (see Penland and 
Sardeshmukh 1995).

As a consequence, the es-
timates of observed empiri-
cal modes from LIM can be 
used to assess the proper-
ties of empirical modes cal-
culated from model output. 
Also, by comparing LIM 
simulations with exter-
nal forcing to their corre-
sponding control runs, one 
can gain some insight into 
how dynamical modes may 
be impacted by external 
forcing. For example, com-
paring empirical modes 
estimated from the out-
put of twentieth-century 
simulations to empirical 
modes determined from 
both the corresponding 
control simulations and 
from observations indi-
cates that external forc-
ing substantially impacts 
the leading eigenmode 
(Fig. 5a). Moreover, the 
climate models might be underestimating the po-
tential predictability of natural variability since in 
virtually all of the twentieth-century simulations, the 
second eigenmode is not only poorly captured but is 
also much less persistent than in the observed LIM, 
for reasons that are presently not understood (e.g., 
Newman 2007) (Fig. 5b).

Application of detection/attribution studies. Climate 
change detection and attribution studies aim to 
isolate the anthropogenically forced component 
of the evolving climate. They generally use infor-
mation about the shape of the expected climate 
response to forcing (the “fingerprint”) and are 
targeted to isolating the role of these fingerprints 
in observed climate change as clearly as possible 
from internal climate variability. Often, this is done 
using signal separation techniques, such as “optimal 

fingerprints” or best linear unbiased estimators (see 
review in Hegerl et al. 2007b). For detection and at-
tribution, all relevant external influences on climate 
must be considered. The attribution methods then 
attempt, with uncertainty estimates, to identify the 
contribution of each external forcing factor to the 
observed change. The shape of the fingerprints is 
assumed known, and their magnitude is estimated, 
allowing the results to account for uncertainties, 
such as errors in a model’s sensitivity to a particular 
forcing or in the magnitude of external forcings in 
general.

The results from detection and attribution 
methods, however, go further. The best-guess and 
uncertainty ranges of the greenhouse gas contribu-
tion in the observed temperature changes can be 
used directly to predict future changes (Stott and 
Kettleborough 2002) and have been used, among 

Fig. 4. (left) Leading empirical eigenmodes and (right) their corresponding 
time series from the LIM of annual-mean HadISST SST anomalies. The LIM 
is constructed as in Newman (2007), except that the EOF basis is determined 
over the entire Pacific domain (20°S–60°N); the leading 12 PCs are retained, 
explaining 92% of the variance in both the tropics and in the North Pacific, 
unlike in Newman (2007), where less than two-thirds of the North Pacific 
variance was retained. Contour interval is the same in all panels but is arbi-
trary. Red (blue) shading indicates positive (negative) values; zero contour 
is removed for clarity. (a) Leading eigenmode, stationary with decay time of 
13 yr. (b) Second eigenmode, stationary with decay time of 6.4 yr. (c) Most 
energetic phase of third (“decadal ENSO”) eigenmode, propagating with a 
period of 16 yr and decay time of 2.1 yr.
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other methods, to provide uncertainty ranges for 
future climate change in the IPCC assessment (Knutti 
et al. 2008). Lee et al. (2006) demonstrated that over 
a large part of the twentieth century, the forced 
component, determined by optimal fingerprints, can 
produce skillful hindcasts of decadal global tempera-
ture variability.

The success of fingerprint methods in separating 
different factors influencing climate suggests that 
they may also be useful in separating the influence 
of initial conditions from those of external forcing, 
thus allowing us to trace where the initial conditions 
have made significant differences in hindcasts and 
how long this influence has lasted. The fifth phase of 

the CMIP (CMIP5) simulations will provide a useful 
test bed for such an extension of the detection and 
attribution method.

However, when it comes to applying such ap-
proaches on regional scales and to variables other 
than temperature, a number of difficulties loom. 
One important shortcoming is that on smaller than 
continental scales, the uncertainty in forcings other 
than greenhouse gases is large; the exact time–space 
pattern of aerosols, land use change, and other forc-
ings is often poorly known and poorly represented 
in models. This would hamper the ability to reliably 
attribute successes and failures in regional hindcasts 
to particular causes. When applying this approach 
to variables other than temperature, the difficulties 
increase. Only recently, for example, has the effect 
of anthropogenic forcing on precipitation been 
formally detected (Zhang et al. 2007). However, the 
multimodel fingerprint produces smaller changes 
in zonally averaged precipitation than observed, 
indicating that the understanding and simulation of 
precipitation variability is still limited.

CHALLENGES. Interaction between natural and 
externally forced variability. As discussed earlier, the 
response to external forcing may resemble the natu-
ral modes of variability on regional and hemispheric 
scales. This was seen to be the case in the modeling 
study of Meehl et al. (2009b), where natural and 
externally forced patterns of variability with similar 
structure contributed to the mid-1970s climate shift 
over the Pacific basin, from relatively cool to relatively 
warm conditions along the equator. Indeed, they 
argued that an anthropogenically forced shift would 
have occurred in the 1960s if it were not for the 
presence of large-amplitude natural variations that 
delayed the shift into the 1970s.

Just how external forcing interacts with natural 
modes of variability remains an important but un-
resolved issue. The process may be fundamentally 
linear with external forcing selecting certain natural 
internal modes because of their inherent time scales 
and spatial structures, or nonlinear where the impact 
of the external forcing on the modes of variability 
has a net effect on the long-term trend signal (e.g., 
see Branstator and Selten 2009). In the linear case, 
the forcing and the response may not have similar 
patterns because of the nonnormal growth of natural 
modes. In the nonlinear case, the external forcing 
may cause changes in the frequency of occurrence of 
climate modes with or without changing the spatial 
structure of the leading modes of variability (see 
Corti et al. 1999; Hsu and Zwiers 2001; Brandefelt 

Fig. 5. Comparison of the (a) leading and (b) second 
observed eigenmodes with the corresponding eigen-
modes based on each 100-yr ensemble member from 
the twentieth-century AR4 coupled GCMs (blue) and 
the associated control runs (green). Both plots show 
the decay time scale of each modeled eigenmode vs. its 
pattern correlation with the corresponding observed 
eigenmode. The red circle in each panel indicates the 
observed eigenmode.
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2006; Branstator and Selten 
2009).

Observational uncertainties. 
Verification of the forced 
component of twentieth-
century cl imate trends 
simulated in model ex-
periments depends on the 
existence of accurate es-
timates of these trends in 
observations. Given the 
limited sampling in both 
space and time of the ob-
servations and proxy re-
cords, these verifications 
must be handled carefully. 
In particular, knowledge 
of the spatial patterns and 
magnitudes of cl imate 
trends over the oceans is 
hampered by the uneven 
and changing distribution 
of commercial shipping 
routes (Fig. 6) and other 
observational inputs as well 
as different approaches to 
merging analyses of the 
observations (Rayner et al. 
2011).

An example of the im-
pact of observational un-
certainties on the interpre-
tation of twentieth-century 
SST trends is shown in Fig. 7 based on an uninter-
polated dataset [version 2 of the Hadley Centre SST 
dataset (HadSST2); Rayner et al. 2006] and two 
optimally interpolated reconstructions [the Hadley 
Centre Sea Ice and SST dataset (HadISST; Rayner 
et al. 2003) and version three of the National Oce-
anic and Atmospheric Administration’s (NOAA’s) 
extended reconstructed SST (ERSSTv3; Smith et al. 
2008)]. Although trends from the three datasets share 
many features in common, such as a strengthening 
of the equatorial Pacific zonal temperature gradient 
(Karnauskas et al. 2009), there are also differences. 
Most notably, the eastern equatorial Pacific shows 
cooling in HadISST and warming in HadSST2 and 
ERSSTv3 (see also Vecchi et al. 2008). However, in-
dependently measured but related variables, such as 
nighttime marine air temperatures, provide some 
evidence that the eastern Pacific trends represented in 
the HadSST2 and ERSSTv3 datasets may be the more 

realistic ones (Deser et al. 2010b). These observational 
sampling issues underscore the challenge of providing 
a robust target for model validation of twentieth-cen-
tury surface marine climate trends and perhaps the 
need to consider a suite of complementary measures 
for poorly sampled variables and/or regions.

A limitation of the instrumental record is that it 
spans at most a few realizations of decadal variability. 
Paleoclimate records—derived from tree rings, cor-
als, lake sediments, or other “proxies”—have been 
used to extend this record to hundreds of years or 
more and are generally believed to be free of anthro-
pogenic influence prior to the industrial age (Brook 
2009; Jansen et al. 2007), thus constituting a poten-
tial means of model verification. Particular proxy 
types are generally restricted to specific ecological 
domains and spatial coverage can be patchy, but there 
has been a recent emphasis on the reconstruction of 
complete climate fields (Luterbacher et al. 2001; Cook 

Fig. 6. Distribution of surface marine observations from the International 
Comprehensive Ocean–Atmosphere Data Set (ICOADS), shown as the 
percent of months with at least one observation per 2° lat × 2° lon grid box 
during the 20-yr period indicated. Adapted from Deser et al. (2010a).
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and Krusic 2004; Mann et al. 2007; Riedwyl et al. 
2009; Cook et al. 2010; Neukom et al. 2011). Because 
paleodata constitute the sole records of Earth’s pre-
instrumental climate, such reconstructions merit 
attention as a potential means of model verification 
with respect to both unforced and naturally forced 
climate fluctuations (Jansen et al. 2007; Hegerl et al. 
2007b).

Additional challenges are faced in the assessment 
of ocean processes below the surface, even for the 
recent past. The available analyses of ocean observa-
tions span a wide range of products aimed at climate 
studies as well as ocean “nowcasting” and short-term 
forecasting applications. The ocean analysis prod-
ucts differ in the underlying models and estimation 

methods, as well as the suite of observations that 
are assimilated. Many of the analysis products span 
multiple decades from the 1980s to the present, with 
some also reaching back to the 1950s, and provide a 
convenient means for retrospective studies of climate 
variability; however, the relative accuracy and fidelity 
of the analyses depend in part on the specific vari-
ables used and are active areas of study. While many 
of the ocean syntheses employ estimation methods 
based on those first developed in weather forecasting, 
some employ so-called smoothing methods that esti-
mate the source of the model inaccuracies corrected 
by combining with data [see review by Balmaseda 
et al. (2010)]. The assimilation of Argo data in these 
analyses may remove biases in the upper ocean and 
allow for the initialization of ocean circulations and 
transports (e.g., see Forget et al. 2007); however, such 
records are limited to after 2000.

Modeling uncertainties. The spatial structure and 
dominant time scales of natural variations differ 
across models (see discussion of Fig. 5). Additionally, 
coupled climate models produce a range of responses, 
in space and time, to anthropogenic radiative forcing 
(Fig. 8). Such differences in model estimates of inter-
nal variability and response to external forcing limit 
our understanding for the potential of the decadal 
climate predictions.

As an example, the historical changes and future 
response of the tropical Pacific mean state have been 
subjects of debate. Different proposed mechanisms 
disagree on the expected sign of change in the zonal 
SST gradient in the tropical Pacific (Knutson and 
Manabe 1995; Meehl and Washington 1996; Cane 
et al. 1997; Clement and Seager 1999) in response to 
anthropogenic forcing. The observational record does 
little to clarify the situation, as trends in different 
observed SST records differ in even their sign (see 
Fig. 7). Models that simulate the largest El Niño–like 
response have the least realistic simulations of ENSO 
variability, while models with the most realistic simu-
lations of ENSO project little change in the Pacific 
zonal SST gradient (Collins 2005). These differences 
in tropical Pacific interannual variability and change 
have implications for Pacific decadal variability 
through their impact on large-scale changes in the 
atmospheric circulation (e.g., Alexander et al. 2002; 
Vimont 2005).

Different climate model responses to radiative 
forcing may lead to differences in the slowly varying 
base state of the oceans. Differences in the ocean 
base state, in turn, may alter the character of natural 
variability by changing the advective time scale of 

Fig. 7. Twentieth-century SST trends [°C (100 yr) –1] 
from the (top) uninterpolated HadSST2, (middle) 
reconstructed HadISST, and (bottom) reconstructed 
ERSSTv3 datasets, based on monthly anomalies during 
1900–2008. A minimum of 3 months per decade in 
each decade was required to compute a trend from 
the HadSST2 dataset. Adapted from Deser et al. 
(2010b).

150 february 2011|



density/salinity anomalies and pathways between the 
extratropics and tropics. Thus, the ability of models 
to reproduce the observed spatial patterns of forced 
variability is important to realizing the full benefits 
of ocean initialization of natural variability; however, 
validation of the forced patterns of variability is not 
straightforward, given the observational uncertainty 
present in identifying even the natural, internal pat-
terns of low-frequency variability.

DEVELOPING A FRAMEWORK TO ASSESS 
DECADAL PREDICTIONS. Given that over 
the course of the next 10–30 years the magnitude of 
natural decadal variations may rival that of anthro-
pogenically forced climate change on regional scales, 
initialized decadal predictions have the potential to 
provide important information for climate-related 
management and adaptation decisions. Such predic-

tions are presently one of the grand challenges for 
the climate community. Long experience in weather 
and climate forecasting has shown that forecasts are 
of little utility without a priori assessment of forecast 
skill and reliability. This will be no less true for dec-
adal forecasts if they are to be useful. However, even 
crudely estimating skill for a forecast system requires 
some understanding of the sources for potential 
skill, especially when expected skill depends upon 
the initial conditions themselves, and the expected 
evolution of forecast spread, which is one measure 
of uncertainty.

For decadal predictions, understanding of the 
sources for potential skill requires identifying those 
physical phenomena—and their model equiva-
lents or lack thereof—that may provide additional 
predictability on decadal time scales. This includes an 
assessment of the physical processes through which 

Fig. 8. First EOF and 
associated pr incipa l 
component ( PC ) o f 
annual-mean sea sur-
face temperature from 
observations and three 
twentieth-century simu-
lations for years 1890–
1999: (a),(b) HadISST 
dataset (Rayner et al. 
2003); (c),(d) National 
Center for Atmospheric 
Research (NCAR)– U.S. 
Department of Energy 
Parallel Climate Model, 
version 1 (PCM1; www.
cgd.ucar.edu /pcm / ) ; 
(e),(f) The Geophysical 
Fluid Dynamics Labo-
ratory (GFDL) climate 
m o d e l ,  ve r s i o n  2 .1 
(CM2.1; Delworth et al. 
2006); (g),(h) The NCAR 
Community Climate 
System Model, version 
3.0 (CCSM3.0 ; www.
ccsm.ucar.edu/models/
ccsm3.0). All data have 
been smoothed with a 
10-yr low-pass Lanczos 
filter using 21 weights. 
EOF patterns are nor-
malized. PCs are in units 
of degrees Celsius. The 
percent in the upper right 
of each figure indicates 
the amount of variance explained by each pattern. Note that the PC time series from the climate model simula-
tions show fluctuations with larger amplitude than observations, all of which fluctuate on different time scales.
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anthropogenic forcing interacts with or projects 
upon natural variability. However, it is important to 
note that the rate at which forecast experience will 
accumulate on the decadal time scale is necessarily 
much slower than the rate at which it accumulates for 
weather forecasting. Given this, a physical framework 
is necessary to provide a consistent assessment of the 
different decadal prediction experiments planned 
for the AR5.

The main conclusion drawn from the body of 
work reviewed in this paper is that distinguishing 
between natural and externally forced variations is 
a difficult problem that is nevertheless key to any 
assessment of decadal predictability and decadal 
prediction skill. Note that all the techniques are lim-
ited by some assumption intrinsic to their analysis, 
such as the spatial characteristics of the anthropo-
genic signal, independence of noise from signal, 
or statistical stationarity. Benefits and limitations 
of techniques described in this paper are listed in 
Table 1. Also, all the techniques utilize either short 
and potentially inaccurate observational datasets 
and/or potentially biased but lengthier CGCM 
datasets. The analysis techniques discussed in the 
paper should be applied to the long control CGCM 
runs and both the twentieth-century simulations and 
twenty-first-century projections, which will serve as 
a critical test bed for analysis of the relationship be-
tween natural and anthropogenic variability. These 
strategies can also be applied to existing decadal 

prediction experiments and climate change projec-
tions in order to develop a series of metrics that can 
be used to assess the predictions to be done for the 
AR5. These metrics could help identify, to the extent 
possible with limited ensemble sizes, the impact of 
different initialization strategies, model biases, and 
errors in model physics on the response to external 
forcing and the predictable and unpredictable natu-
ral variations.

A reasonable starting point for these metrics is to 
focus on decadal variability due to ocean processes, 
as discussed earlier. This requires analyses that as-
sess the spatial patterns and associated time scales 
of natural variations, and their potential change in 
structure and frequency due to external forcing. A 
starting point for such analyses could be to compare 
the existing climate change projections against their 
companion control runs. In addition, since externally 
forced SSTs play an important role in climate varia-
tions over land through atmospheric teleconnections, 
it is necessary to develop metrics that assess the spa-
tial pattern of externally forced SST variability, as well 
as upper-ocean structure and variability. To quantify 
signal-to-noise ratios, it is necessary to develop met-
rics that can properly validate ensemble simulations 
and predictions. The development of these metrics 
will help guide the assessment of decadal forecasts 
and will provide a framework for identifying poten-
tial directions to improve our ability to make decadal 
predictions.

Table 1. Comparison of methods to separate natural and forced decadal variability described in the paper. 
Note that all methods are still subject to conflation of natural and forced patterns.

Property method
Requires large 

ensembles

Distinguishes natural 
and externally forced 

trends

Isolates dynamical 
modes of natural 

variability
Identifies skill due 

to initialization

Analysis of ensemble 
means and variance 

(ANOVA)
Yes

Identifies change in statistics 
due to external forcing 

by comparing forced and 
unforced runs 

No
Can identify skill due 
to initialization and 

external forcing

Optimal fingerprinting
Yes, to identify fingerprints 

of response to external 
forcing

No No Potentially 

S/N maximizing

EOF

Less sensitive to number 
of ensemble members than 

ANOVA 

Identifies change in statistics 
due to external forcing 

by comparing forced and 
unforced runs

No No

Linear inverse models No

Identifies change in statistics 
due to external forcing 

by comparing forced and 
unforced runs

Identifies empirical 
modes 

Yes

Initialized hindcasts Potentially Potentially Yes
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