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[1] We examine the question of proximity of the global

earthquake population to the critical point characterised by the

energy E and entropy S based on annual frequency data from the

Harvard CMT catalogue. The results are compared with a

theoretical model corresponding to a Boltzmann probability

density distribution of the form p(E) / E�B�1e�E/q. The data

are consistent with the model predictions for fluctuations in the

characteristic energy q at constant B value, of the form S�BhlnEi.
This approximation is valid for large q, relative to the maximum

possible event size, confirming that the Earth is perpetually in a

near-critical state, reminiscent of self-organized criticality.

However, the results also show fluctuations of ±10% in entropy

that may be more consistent with the notion of intermittent

criticality. A more precise definition of the two paradigms, and

a similar analysis of numerical models, are both needed to

distinguish between these competing models. INDEX TERMS:

3220 Mathematical Geophysics: Nonlinear dynamics; 7223

Seismology: Seismic hazard assessment and prediction;

7209 Seismology: Earthquake dynamics and mechanics;

7260 Seismology: Theory and modeling

1. Introduction

[2] It has been suggested that the Earth’s brittle crust is main-
tained in a state of self-organized criticality, implying a system
perpetually near global failure [Bak and Tang, 1989]. This implies
large stress correlations would be maintained in the system, hence
reducing the degree of predictability of individual earthquakes
[Main, 1997; Geller et al., 1997]. However, many observations
have been interpreted as implying instead a system maintained
predominantly in a sub-critical state, with fluctuations during the
largest earthquakes representing states of intermittent criticality
[Jaume and Sykes, 1999], implying a degree of predictability in the
population dynamics [Main, 1999a, Sykes et al., 1999; Sornette,
2000]. These include the spatial and temporal scaling relations of
earthquake sequences [Utsu et al., 1995]; accelerating cumulative
Benioff ‘strain’ [Bufe and Varnes, 1993]; finite correlation lengths
inferred from the tail in the frequency-moment distribution [Kagan,
1999; Leonard et al., 2001]; and anomalous stress diffusion in the
crust during earthquake triggering [Marsan et al., 2000]. However,
the methods that have been used to establish intermittent criticality
have been criticised on statistical [Gross and Rundle, 1998; Vere-
Jones et al., 2001] and physical [Main, 1999b] grounds. Of
particular concern is the inherent retrospective selection bias if
an optimisation procedure is used to tune the data to the desired
form [Mulargia, 2001]. Here we examine this problem in the most
direct way possible using the tools of statistical mechanics, using
global earthquake catalogue data to determine temporal fluctua-
tions in the seismic energy release E and entropy S. The use of
global data minimises the potential for selection bias. The form of
the entropy-energy relationship is identical to that predicted for a

system that is in a near-critical state, but with short-term fluctua-
tions in correlation length and entropy that may be significant. If
confirmed, this would imply a finite but perhaps low degree of
statistical predictability in the population dynamics.

2. Theory

[3] In classical statistical physics, macroscopic thermodynamic
variables can be calculated from a basic knowledge of the micro-
states available to the system with probability

p Eð ÞdE ¼ gE exp �E=qð Þ
Z

dE; ð1Þ

where in thermodynamics q = kT, k is Boltzmann’s constant, T the
temperature, gE is the degeneracy of states, i.e. the number of ways
a particular energy level can be filled, and the partition function Z
is the total number of micro-states — a normalising constant to
ensure unit total probability [Mandl, 1988]. The degeneracy in
earthquake populations occurs because energy is related to the
surface rupture area A by E�A3/2, so there are fewer ways of fitting
a larger earthquake of a given rupture area into the total fault
surface area of a fault population [Main and Burton, 1984; Rundle,
1993]. For earthquakes the density distribution of the degeneracy
has the power-law form

gE ¼ E�B�1
�
E�B
0 ; ð2Þ

where E0 is a scaling constant with the units of energy. Equation (2)
corresponds to the Gutenberg-Richter law for the equivalent mag-
nitude where typically the exponent B 	 2/3. For a two-
dimensional fault model, the correlation length is related directly
to q1/3, and tends to infinity precisely at the critical point [Stauffer
and Aharony, 1994; Bruce and Wallace, 1989].
[4] The expectation value of the system energy is the first

moment

hEi ¼
ZEmax

Emin

Ep Eð ÞdE; ð3Þ

and the entropy is defined by

S ¼ �
ZEmax

Emin

ln p Eð Þp Eð ÞdE: ð4Þ

The maximum energy Emax here is an imposed physical upper
bound, determined either by the size of the Earth in the most
extreme case, or more likely by characteristic lengths in the
structure of plate boundaries. The Gutenberg-Richter law is
recovered as q ! 1, preserving a finite energy through finite
Emax. From (1)–(4), it can be shown, for a system in a near-critical
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state, using conventional logarithmic increments dlogE to define
the relevant frequencies, that

S ¼ S0 þ B hln Ei; ð5Þ

where S0 is a constant (see Appendix). In a sub-critical state with
finite positive q we would expect the local slope to be greater
than B, and in a supercritical state (negative q) we would expect a
local slope less than B. Corollaries of (5) for finite, positive q are
hEi/ q1�B, and @S/@hEi = e, with e a small positive number
(see Appendix). Thus, for a system in a near-critical state, with
significant fluctuations in q at constant B-value, we would expect
(i) a strong positive correlation between S and hlnEi of slope B,
(ii) a strong positive correlation between hEi and q, and (iii) a weak
positive correlation between S and hEi.

3. Method

[5] In order to avoid problems of catalogue heterogeneity, we
used seismic moment data from the Harvard Centroid Moment
Tensor catalogue for the time period 1977–2000 inclusive, i.e. the
era of widely-available digital seismic data. For this period the
catalogue was found to be complete above moment magnitude 5.8.
The bandwidth of seismic moment in the catalogues used corre-

sponded to 4 orders of magnitude. If the smallest moment
corresponded to an elemental source area Amin, then the total
number of elemental source areas required to describe the system
is N = Amax/Amin = 102.7 	 500. We require N to be large for
statistical stability in any thermodynamic treatment, although here
N is much less that, say, Avogadro’s number. The scalar moment
for both catalogues was then converted to seismic energy using
standard relationships [Kanamori, 1977]. Data for non-overlapping
annual time windows was used to construct incremental fre-
quency-energy data using dlogE equivalent to 0.25 magnitude
units. This was the highest resolution that could be achieved while
avoiding empty bins in the determination of the frequency-energy
relation, a requirement for a stable estimate of S. We calculated hEi
from the individual summed energies, and S using a discrete
version of (4) after appropriate normalisation to ensure unit total
probability. The method is non-parametric - no curve fits were
used to smooth the data.

4. Results

[6] The temporal evolution of S, hEi, hlnEi, and E0
max is

shown on Figure 1. The annual maximum energy E0
max is a proxy

for q [Bruce and Wallace, 1989]. Note the relatively large
fluctuations in hEi (between 2 and 14 �1014 J), associated with
smaller fluctuations in S (between 1 and 1.2 in normalised units).
There is a strong positive correlation between fluctuations in
hlnEi and S, and between hEi and E0

max, but only a weak
correlation if any between hEi and S. The primary data then
qualitatively confirm criteria (i)– (iii).
[7] We test equation (5) quantitatively against the data in

Figure 2. The fit is very good (r 2 = 0.941) with B = 0.627 ± 0.033,
confirming criterion (i) quantitatively. This value of B is indis-
tinguishable from that obtained from a maximum likelihood
analysis of CMT frequency-moment data [B = 0.636 ± 0.013,
Kagan, 1999; B = 0.625 ± 0.011, Leonard et al., 2001]. The
assumption of relatively constant value of B is validated, verify-
ing that temporal fluctuations are dominated by changes in the
correlation length via q, similar to that found for spatial fluctua-
tions [Kagan, 1999]. In ideal self-organized criticality, with only
small fluctuations about the critical state allowed [Bak and Tang,
1989], the data would plot as a small cluster of points of slope B,
around a central value of S and hlnEi. The fluctuations in the
macroscopic thermodynamic variable S (on the order of ±10%)
may be more consistent with intermittent criticality.
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Figure 1. Temporal variation in hlnEi, entropy S, mean annual
energy hEi and maximum energy E0

max from the global occurrence
of earthquakes from the CMT catalogue for the time period 1977–
2000. Energy units are Joules.
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Figure 2. Correlation between S and hlnEi from the data of
Figure 1. The straight line corresponds to the best-fit regression
line for equation (5). Error bars are shown at one standard
deviation.
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[8] Earthquake generation is neither ‘adiabatic’ (constant S )
nor ‘isothermal’’ (constant hEi), but it is more consistent with
the former. The regression coefficient between hEi and E0

max is
r2 = 0.805, quantitatively verifying criterion (ii). Similarly the
regression between S and hEi gives r2 = 0.046, consistent with
criterion (iii), but not sufficient to discriminate between models
of self-organized criticality and intermittent criticality, because
the slope is indistinguishable from zero within the errors of the
regression. We conclude that globally the brittle Earth is in a
near-critical state, where system fluctuations are dominated by
fluctuations in q rather than B. Large fluctuations in energy can
be achieved with smaller fluctuations in entropy, implying a
relatively unstable system. However, fluctuations in entropy
may be quantitatively significant.

5. Discussion

[9] So far we have considered only the radiated seismic energy,
and not the internal potential energy of the system. Although our
knowledge of strain has increased remarkably recently due to the
advent of global satellite data, our empirical knowledge of the
energetic micro-states in the Earth is hampered by difficulties in
measuring the local stress, and also by systematic spatial varia-
tions in seismic efficiency. However, numerical modelling has
shown a strong positive correlation between the form of the
distribution of radiated and internal potential energy in two-
dimensional cellular automaton models where the Hamiltonian
can be calculated explicitly [Rundle et al., 1995]. This result also
holds when the model is effectively tuned to variable seismic
efficiency by altering the local degree of energy conservation
[Main et al., 2000]. If this holds also on the Earth, then large
earthquakes would be more likely to occur within time periods
when the internal potential energy is on average high and spatially
correlated. This logical step holds for laboratory-scale fracture but
is impossible to verify independently for the real Earth, where
stresses can not be measured independently. It is also an explicit
but unproven assumption in applying time-to-failure analysis to
predicting earthquake occurrence within the framework of inter-
mittent criticality [Bufe and Varnes, 1993; Jaume and Sykes,
1999]. The numerical models also confirm that, for a heteroge-
neous strength distribution, systematic changes in the radiated
energy distribution result from variations in q rather than B [Main
et al., 2000], as seen in the data here.
[10] The results demonstrate that statistical mechanical con-

cepts from equilibrium thermodynamics can also apply in some
circumstances to far-from equilibrium threshold systems such as
earthquake populations. However, the results are unable to
discriminate between a self-organized critical point system and
one of intermittent criticality. If self-organized criticality is the
null hypothesis, then intermittent criticality has not been estab-
lished from the current analysis. The main caveat is that the
observed ±10% fluctuations in a macroscopic state variable
(entropy) may be significant. If this is so, then finite degree
of predictability (in a general sense) would be expected in the
system. However, the close proximity to the critical point
implies that large variations in E can occur with only small
changes in S, enabling large fluctuations around the phase space
to occur rapidly, even if the system is intermittently critical. This
study highlights (1) the need for calculations of S as well as E
from the Hamiltonian in numerical models, to establish the
significance of a ±10% fluctuation in S, and (2) a more precise
definition of the difference between self-organized and intermit-
tent criticality. The methods used here are based on the
statistical mechanics of an earthquake population, and could
be applied only to assessing the degree of time-dependent
hazard rather than the prediction of individual events. Finally,
there may be potential in applying the method outlined here to
other critical or near-critical systems.

6. Conclusion

[11] We have examined the relationship between the macro-
scopic state variables of energy and entropy for global earthquakes
as a function of changes in the energy distribution of energetic
micro-states. The results confirm that global seismicity is in a near-
critical state, with large fluctuations in mean energy occurring a for
small changes in entropy. The results are consistent with tempo-
rally fluctuating correlation length at constant B-value. The
inferred B-value from the entropy-energy relationship of 0.627 ±
0.033 agrees well with independent maximum likelihood determi-
nations from the same catalogue. The fluctuations in entropy are on
the order of ±10%. Whether or not this is large enough to
discriminate between competing models of self-organized critical-
ity and intermittent criticality depends on a more precise definition
of the two than available at present, specifically the magnitude of
entropy fluctuations that are allowed in a self-organized critical
point system. The proximity to the critical point indicates that the
predictability of the system may be finite, but low.

Appendix

[12] From (1) and (2) of the main text we have the incremental
probability

p Eð ÞdE ¼ aE�B�1 exp �E=qð ÞdE; ðA1Þ

where a = E0
BZ�1 is a scaling constant. If we use logarithmic

increments of energy p(E)dlnE

dlnE

dE
¼ 1

E
or dE ¼ EdlnE; ðA2Þ

then the partition function is

Z ¼
ZEmax

Emin

E

E0

� ��B

exp �E

q

� �
dlnE; ðA3Þ

the energy is

hEi ¼ Z�1

ZEmax

Emin

E
E

E0

� ��B

exp �E

q

� �
dlnE; ðA4Þ

and the entropy is

S ¼ �Z�1

ZEmax

Emin

E

E0

� ��B

exp �E

q

� �
ln

E=E0ð Þ�B
exp �E=qð Þ
Z

" #
dlnE:

ðA5Þ

[13] If we expand the logarithmic term in the kernel of (A5), we
find exactly that

S ¼ lnZ � BlnE0 þ Bhln Ei þ hEi=q: ðA6Þ

For a system of finite mean energy near the critical point q!1,
hEi/q tends to zero, and can be neglected. Near the critical point,
we find

@lnZ

@q
¼ 1

Z

@Z

@q
¼ hEi

q2
: ðA7Þ
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Again as q ! 1 we find @lnZ/@q�0, and hence Z�constant. Thus
from (A6) a cross-plot of S and hlnEi should approximate to
a straight line with slope B and intercept S0 	 lnZ � BlnE0

[equation (5) and criterion (i) of the main text].
[14] From (A2) and (A4) we have after a change of variables to

x = E/Emax, with Emax � Emin,

hEi ¼ q1�BEB
minB

Zxmax

0

x�Be�xdx: ðA8Þ

The integral is the incomplete gamma function. For B = 2/3, it is
near but less than the value of the complete gamma function of
1.786 [Kagan, 1993]. Thus hEi 	 q1�BEmin

B , implying a positive
correlation between hEi and q [criterion ii].
[15] From (A6) it follows that

@S

@hEi ¼
@lnZ

@hEi þ B
@hlnEi
@hEi þ 1

q
: ðA9Þ

For Z�constant, it can be shown from the definitions of hEi and
hlnEi that

@hlnEi
@hEi ¼ @hlnEi

@q
@hEi
@q

	 hlnEi
hEi :

�
ðA10Þ

For the values reported here 1/q 	 10�17 J�1, and hlnEi/hEi 	
31.85/(8 � 1014) = 4 � 10�14ln(J)/J. Hence, @S/@hEi 	 e where
e � 1 but e > 1/q [criterion iii].
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