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[1] We test the notion of self-organized criticality (SOC) and the proximity to the critical
point in the brittle crust. If the system were strictly critical, we would expect an infinite
correlation length with minimal temporal or spatial predictability. An alternative view is
that the Earth is in a self-organized subcritical (SOSC) state with a finite and
systematically fluctuating correlation length. This would imply a system that is sufficiently
near-critical to maintain power law scaling relations over a finite scale range, but can
intermittently reach criticality in the form of a single large earthquake when the correlation
length becomes effectively infinite over the scale of the observed region. Here we address
the question of proximity to criticality from the viewpoint of statistical physics by
describing a regionalized study equivalent to the ensemble approach in thermodynamics.
Flinn-Engdahl regionalization of global seismicity is used to calculate the expectation of
the logarithm of energy (InE) and entropy S from centroid moment tensor (CMT) data for
different seismic regions. We compare a phase diagram for S and (InE) from the data
with an analytical statistical mechanical solution and find that they are in good agreement.

The analysis shows systematic spatial heterogeneity in entropy that is associated with
the tectonic deformation style. Oceanic ridges are seen to be low entropy (relatively
ordered), and subduction zones have higher entropy (less ordered) with collision-zones
scattered at the two extremes. Statistically resolvable phase variations in the system

as a whole point toward it being better described as subcritical in the spatial

ensemble.
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1. Introduction

[2] Theenergy radiated by earthquakes usually is described
by the Gutenberg-Richter (G-R) law [Gutenberg and
Richter, 1954],

log[N(m)] = a — bm, (1)

where N(m) is the number of earthquakes with magnitude
>m, a and b are constants with b ~ 1, and m is a
logarithmic measure of radiated seismic energy. This law (1)
breaks down at larger magnitudes so is more generally
expressed by a “gamma” distribution of energy which is
similar to the G-R law but with an exponential tail (see
review by Main [1996]) in the form

p(E) ~ E"" ! exp(~E/0), )

where p(E) is the probability density function for having an
earthquake of energy E, B is the earthquake scaling exponent

Copyright 2003 by the American Geophysical Union.
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(proportional to b above) found globally to be ~2/3 [Kagan,
1997, 1999; Godano and Pingue, 2000; Leonard et al.,
2001], and 6 is a measure of the maximum event size. The
power law or “fractal” component of this distribution
suggests that the Earth belongs to a dynamic class of systems
described as being in a state of self-organized criticality
(SOC) [Bak and Tang, 1989; Olami et al., 1992]. The
original model of SOC of Bak, Tang, and Wiesenfeld [Bak et
al., 1987] (referred to here as the BTW model) was
conceived from a numerical cellular automaton based on
the Burridge-Knopoff model [Burridge and Knopoff, 1967].
The model self-organizes to produce a power law in the
frequency-size distribution of clusters or avalanches similar
to the Gutenberg-Richter law, despite having very simple
rules governing neighbor-neighbor interactions between
cells, and no “tuning” parameters. Although the definitions
of SOC are general, qualitative, and often not very clear in
the literature [Sornette et al., 1990; Malamud and Turcotte,
1999], a pure state of SOC as suggested from the BTW
model would imply [Bak et al., 1987; Jensen, 1998] (1) a
slowly driven system far from equilibrium with small
fluctuations about the critical state over large timescales;
(2) sensitivity to minor perturbations that could trigger large
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events (avalanches) that can span the length scale of the
system (0 — 00); and (3) a power law nature that is global
and independent of local dynamics. In the case of the Earth,
SOC would therefore require the crust to be perpetually near
a state of global failure, rendering individual events
unpredictable both temporally and spatially.

[3] An alternative school of thought suggests that the
Earth’s crust is instead in a self-organized ““subcritical”’ state
(referred to here as SOSC). SOSC is characterized by the
system being below the critical point (with a finite correlation
length) but still maintaining power law statistics on a local
scale. Observations consistent with SOSC include a finite
correlation length inferred from the gamma distribution
observed in the earthquake frequency-magnitude relation
[Kagan, 1997, 1999; Leonard et al., 2001], anomalous stress
diffusion in the crust during earthquake triggering [Marsan et
al., 2000; Huc and Main, 2003], and accelerated seismicity
before large events [e.g., Bowman et al., 1998; Robinson,
2000; Zoller et al., 2001]. A SOSC state would also suggest a
finite degree of statistical predictability in the dynamics of the
system, contrary to pure SOC. It is therefore important to
address the “criticality question” by conceiving formal
methods of assessing or quantifying the proximity of the
Earth’s crust to criticality. The outcome will have implica-
tions for our current approach in addressing earthquake
population predictability (http://www.nature.com/nature/
debates/earthquake/equake frameset.html).

[4] To address the criticality question, Main and
Al-Kindy [2002] revert to using the fundamental tools of
statistical physics to examine proximity to criticality in the
crust by measuring the change in entropy S, with seismic
energy release £ in annual global data from the Harvard
centroid moment tensor (CMT) catalogue. With reference
to an analytical model, the temporal ensemble in the crust
was found to be very near a critical state on a global scale,
with fluctuations of entropy of the order of £10%. It was
not established, however, if fluctuations of 10% would be
sufficient to conclude a SOC state in the temporal ensem-
ble. Also, any regional variations in the spatial ensemble
would be smoothed out as data were binned in time rather
than in space. The use of established theories of statistical
physics, and the fundamentals of thermodynamics, none-
theless is a physical, well-founded, and reproducible
approach to quantifying the proximity to criticality in the
crust. Although other studies have also used entropy to
understand earthquake properties [e.g., Goltz, 1997; Goltz
and Bose, 2002; Nicholson et al., 2000; Posadas et al.,
2002], they are based on a configurational entropy that
concentrates on the spatial properties of organization and
clustering with scale rather than the dynamical aspects of
energy fluctuations investigated here.

[5] In this paper we extend the global temporal analysis of
Main and Al-Kindy [2002] to a spatial ensemble approach by
analyzing data from the CMT catalogue using Flinn-Engdahl
(FE) regionalization. Such an approach is common in
physics in the analysis of ergodic systems where an individ-
ual system can exchange energy with an external sink (i.e., a
“canonical ensemble””). The main purpose of this study is to
establish if statistically significant regional variations in the
entropy-energy relation exist and, if so, to assess if the
variations are more indicative of a SOC or SOSC system.
If statistically significant regional variations are found, these
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would contradict strict SOC and indicate a subcritical state
(SOSC).

2. Theory
2.1. Analytical Solution

[6] The basic principle of statistical physics is that
macroscopic properties of a system can be predicted when
the probability distribution of the energetic microstates of
the system are known. The probability distribution is
determined by the maximum entropy configuration, given
constraints based on what is known about the system. If the
microscopic probability of the microstates in an increment
dE is p(E)dE, the information entropy S [Shannon, 1948;
Jaynes, 1957] is defined by

* Emax
S=— / p(E)In p(E)E, 3)
Emin

where E.;, and E,,, are the minimum and maximum
possible energy states. Jaynes [1957] showed that this
definition is identical to the thermodynamic entropy when
the variable is energy. This definition of the entropy follows
from the requirement in statistical inference to have
a function that is positive, increases with increasing
uncertainty, and is additive for independent sources of
uncertainty (see the appendix to Jaynes [1957]). We solve
for p(E) by maximizing the entropy subject to the
fundamental probabilistic constraint

Enax
| ppae=1 @)
and N constraints
Eax

FEp(E)dE; i=1,...,N (5)

Ein

(Si(E) =

where f; are functions of the energy. The maximum entropy
distribution is the most likely, subject to what is known
[Jaynes, 1957]. We therefore look for 6S = 0, using the
method of Lagrangian undetermined multipliers, subject to
equations (4) and (5), whence

p(E)dE = e N NAE)Nf (E)=. =MV (E) gF. (6)
The constants \; are Lagrangian undetermined multipliers,

to be determined by substituting equation (6) into (4) and
(5). If we define

N =z, (7)
then
Emax
Z= [ eMENBE B g )
Enmin
(fi(E)) = —0InZ/ON,. 9)

The function Z is a normalizing constant for unit total
probability and is known as the partition function. Once its
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form is known, all of the other macroscopic variables f; can
be calculated from its partial derivative using equation (9).

[7] For example, let us take the constraint of finite total
system energy fi(E) = E, and finite natural log energy
f2(E) = In(axE) (the constant a, will be defined below),
whence

e NME-NIn(aF)
p(E)dE:ﬁdE. (10)

Let us define 0 = X\;', B+ 1 =X\, and a, = E; %, so that

- EgEfolefE/e

p(E)dE 7

dE. (11)

This form of the distribution (the exact form of equation (2))
was derived using the above method by Shen and Mansinha
[1983] and Main and Burton [1984] and has been more
recently applied to earthquake frequency-moment data
extensively by Kagan [1997, 1999] and Leonard et al.
[2001]. It is a mixture of a power law part at small energies
and a Boltzmann exponential with a “temperature term” 0
at large energies. In the case of earthquakes, the exponent B
of the power law part is proportional to the b value of the
Gutenberg-Richter frequency-magnitude relationship, and
the “tectonic temperature” 0 is a measure of the maximum
event size. For instruments acting as velocity transducers,
B = 2/3b [e.g., Turcotte, 1997], if b is the slope of the
frequency-magnitude relation (equation (1)). The power law
term can be regarded as due to the increasing degeneracy
E~%7" of the potential energy transitions as we go to smaller
energies. A smaller energy release requires a smaller source
area, and hence more numerous potential sites in a given
strained volume [Kanamori and Anderson, 1975; Main and
Burton, 1984]. Hence f, here is equivalent to a geometric
constraint on the mean source area: Small events are more
likely since there are more ways they can fit into a given
volume [Rundle, 1993].

[8] In a system with infinite E,.., 0 is constrained to
be positive to preserve finite (E). However, if Ejax is
finite, then 6" = 0 or 67" < 0 can occur. Dahmen et al.
[1998] and Main et al. [2000] showed that the sign of 0
could be used to indicate two separate phases on either
side of a critical point. A subcritical state is defined by
positive 0 (energy states with high energy levels are less
likely to be occupied, the normal case in thermodynam-
ics), a critical state by 6~' = 0 (energy states have an
equiprobable distribution) and a supercritical configuration
(with a population inversion at high energy states) with
negative 0. The supercritical state can be identified with
the ““characteristic earthquake” model of Schwartz and
Coppersmith [1984]. It should be noted, though, that “no
system is likely to survive long in a supercritical state”
[Vere-Jones, 1976, 716].

[9] From equations (3) and (11) using logarithmic bins
to define S, the entropy is [Main and Al-Kindy, 2002]

S =InZ + B(In(E/Ey)) + (E) /6. (12)

The logarithmic bins are necessary when examining real
data to obtain stable estimates of S. For linear bin intervals
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in energy, we would obtain the same relation with B in
equation (12) replaced with B + 1. Note that since the
Shannon entropy contains no Boltzmann prefactor £, the
entropy here is dimensionless (in the Boltzmann distribution
0 = kT, where T is the thermodynamic temperature). Another
implicit assumption in using expectation values as con-
straints is that within the time period of the data being used
to calculate an individual value of Z, (E), (InE/E,), or S, the
probability distributions are stationary, i.e., they are
characterized by statistical properties that do not change
over large periods of time. Recently it has been shown that
entropy in far-from-equilibrium steady state systems such as
SOC can be treated in the same way as equilibrium
thermodynamic systems [Dewar, 2003], further justifying
the theoretical approach above.

[10] From equation (12), if we are near the critical point,
where 8 — oo, we would expect a relation of the form

S = A+ B(InE), (13)

where

A=1InZ - BhnE,. (14)
There are then three ways of distinguishing a system from
the critical point: (1) systematic, statistically significant
fluctuations in S, (2) a linear slope 6S/6(InE) # B, and
(3) any statistically significant curvature (nonlinearity) in
the relation between S and (InE). These are simple and
verifiable criteria for distinguishing between a state of SOC
and intermittent criticality or SOSC.

[11] At this point we should note that we have implicitly
assumed that (InE) and (E) are independent, because the
constraint (InE) is geometric, whereas the constraint (E) is
energetic. Although it might be regarded as counterintuitive,
this assumption has been validated independently by the
negligible correlation observed between temporal variations
in (InE) and (E) using global earthquake data [Main and
Al-Kindy, 2002]. This is consistent with the general formal-
ism introduced by Jaynes [1957] in equations (3)—(9) above.
Other thermodynamic parameters can be obtained once the
entropy is known. For example, from equation (12)

0" ~ 9S/0(E). (15)
This relation demonstrates formally that 6 is an equivalent
temperature term for the system.

[12] There is an important caveat to the application of
thermodynamics to earthquake statistics. The thermody-
namic formulation is strictly based on an internal energy
U = (E), but it is not possible to determine U for the
earthquake problem, since we do not have independent
information on the strain energy distribution in the Earth
because we cannot independently measure the stress. There-
fore applications of thermodynamics to earthquake systems
have assumed, explicitly or implicitly, that the distribution
of radiated energy is related to that of the internal energy
[e.g., Rundle, 1993; Dahmen et al., 1998; Main and
Al-Kindy, 2002]. This implies that large earthquakes are
more likely to occur in time periods when the internal strain
energy is also high. This assumption cannot be validated for
the Earth, but has been shown to be consistent with
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Figure 1. Theoretical curves of S against (In(E)) and (E) with B = —2/3, 0, and 2/3 for subcritical (solid
line), critical (arrow), and supercritical (dashed line) regimes created using equations (3) and (5).

numerical models for earthquakes as complex interacting
systems [Rundle et al., 1995; Main et al., 2000].

2.2. Analytical Predictions

[13] In order to illustrate predictions of the analytical
theory outlined above, synthetic curves are created to show
the energy-entropy phase space for different values of B for
subcritical (0 > 0), critical (6 = c0), and supercritical (0 < 0)
regimes (Figure 1). The curves were constructed using
equations (3)—(11) substituting the parameters with numer-
ical values similar to those found from CMT data analyzed
below. Using the relations [Kanamori and Anderson, 1975]

(16)
(17)

the energy E corresponding to theoretical magnitudes m in
the range 5.5 < m < 8.5 was calculated in accordance with

E — 101.5m+4,8

0= 101 Smy+4.8

available data. The “temperature” term 6 was also
calculated for magnitudes my in the range 7 < my < oo
for both positive (subcritical) and negative (supercritical)
values of 6. Using these values, p(E) was then calculated
using equation (11) for B = —2/3, 0, 2/3 as well as the
corresponding values of energies (E) and (InE), and S
using equations (5) and (3), respectively. Figure 1 shows
the theoretical values of (E) and (InE) and corresponding
S for B = -2/3, 0, and 2/3 with the critical point indicated
by the arrow, subcritical (solid line), and supercritical
(dashed line) regions in the energy-entropy phase spaces.
It can be seen from Figure 1 that only for the case B =0
(no degeneracy) that the critical point occurs at the point
of maximum possible entropy for both (InE) and (E). In
the case of B = 2/3, the critical point is below the point of
maximum entropy along the x-axis and the curve is similar
to that observed for real earthquake populations [Main and
Al-Kindy, 2002]. The opposite is true for the B = —2/3.
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For B = —2/3 and B = 2/3, the global maximum entropy
(Smax ~ 1.7) is lower than the maximum possible entropy
for B = 0 (Spax ~ 2.3) due to the effect of the degeneracy
term. It can also be seen from the plots of S against (InE)
that equation (13) does apply at the critical point, indicated
by the arrows in the diagrams. Thus any curvature in the
relation between S and (InE), or deviations in the
underlying slope B, would imply fluctuations away from
the critical state.

3. Data Analysis

[14] We investigate the criticality question in two ways.
First, we calculate the regional properties such as energy,
entropy, and B and investigate if statistically significant
variations occur between the various properties for differ-
ent tectonic settings. Second, we look at the energy-
entropy phase space and investigate, with reference to
equation (13), if the phase space is more indicative of a
SOC or SOSC system. In this study we used data from
the Harvard centroid moment tensor (CMT) catalogue
(http://www.seismology.harvard.edu/). The data used are
for the time period 1977-2000 inclusive for all energies
corresponding to scalar moment-magnitudes M > 5.5 and
for all depth ranges available, giving a total of 9042 events.
The scalar moment magnitudes were converted to energy
(Joules) using standard relationships [Kanamori and
Anderson, 1975]. The Flinn-Engdahl (FE) regionalization
of data was done using modified code acquired from the
United States Geological Survey (ftp://ghtftp. cr.usgs.gov)
dividing the Earth in to 50 “‘tectonic” zones. The data, for
regional comparison, were broadly grouped in to four
main tectonic deformation styles following the classifica-
tion of Kagan [1997]. These are subduction zones,
collision zones, intracontinental zones, and mid-ocean
ridges. The advantage of FE regionalization is that it
predates the establishment of the CMT catalogue, and
therefore any systematic differences between regions can-
not be accredited to retrospective data or region selection
bias.

[15] The energy-probability distributions for each zone
were calculated by binning data in to bins with widths
equivalent to a magnitude bin width &m = 0.25. This was
the highest resolution possible while insuring there were no
empty bins that could destabilize the calculations of S. The
p(E) was normalized such that ¥p(F) = 1 with the limits
Epnin < E < Ea and S for each zone was then calculated
from p(E) using equation (3). The (InE) and (E) were
calculated taking the means of InE and E, respectively, of
all data available within a given FE region. In the analysis,
any regions containing fewer than 30 seismic events were
not used, as they are considered not to contain a sufficient
number of events to stablely calculate S and B, leaving a total
of 7689 events spread over 32 zones.

4. Results
4.1. Regional Variations

[16] Table 1 gives all variables calculated for each FE
zone. The B exponents were calculated using a least squares
fit on the linear part of the power law (LSF) distributions on
a log-log scale, and the b values were calculated using a

5-5

maximum likelihood fit (MLF) for comparison using [Aki,
1965]:

logyo e

b:<m>*mc7

(18)

were (m) is the mean magnitude and m,. is the catalogue
magnitude threshold for complete reporting (the minimum
value of m in the population). The phase variations
between zones are shown in Figure 2 where the values of
S against (InE) lie along a curve. The relative statistical
significance of the best line fit is discussed in section 4.3.
Table 1 also shows that subduction zones are clustered at
the higher end of the phase curve ((S) = (1.1)) and mid-
ocean ridges at the lower end ((S) = 0.88) with the
collision zones scattered between the two, and also
constituting the extreme maximum and minimum points.
The entropy variation between the deformation styles is
somewhat expected since mid-ocean ridges are along well-
defined (organized) zones and therefore earthquake
epicenters are clustered differently compared to subduction
zones [Nicholson et al., 2000]. Looking at this from an
“information” point of view, we can say that we are more
certain of what will occur in an ocean ridge than, say,
along a subduction zone. This is because we are more
certain (lower entropy) that large energy fluctuations (great
earthquakes) will not occur. The difference is also
represented in the higher » and B values for the mid-
ocean ridges ((b) = 1.24, (B) = 0.81), consistent with the
results of Kagan [1997], and also implying a more
clustered (ordered) distribution of events.

[17] In equation (13), B is a constant so variations in S
are assumed to be due to changes in (InE). Testing the
relationship between B and b with S, we see that there is a
strong correlation between them (Figure 3a), suggesting
that the scaling exponents b and B can be used as a proxy
for the entropy and hence the level of self-organization in a
power law system. Following from this, we see a strong
correlation between B and b with (InE) (Figure 3b) that is
consistent with equation (18) above since B = 2/3b
[Turcotte, 1997] and m is proportional to InE [Kanamori
and Anderson, 1975]. Although b and B can depend on the
catalogue and methods used to calculate them [Frohlich
and Davis, 1993], the values of the exponents for mid-
ocean ridges are still systematically higher (S systemati-
cally lower) than those for subduction zones. The results
for the collision zones at present cannot be resolved with
this degree of accuracy.

4.2. Data Reliability

[18] In order to verify if the results above may be
skewed or influenced by the number of data points n
available per zone [Kagan, 1997], Figure 4 shows a plot of
n against b and B for all zones showing no significant
dependence on n (slopes ~ 0). This shows that the
calculated scaling exponent values for different zones are
not systematically influenced by data availability although
the scatter roughly reduces with n as predicted by the
central limit theorem. Also, in order to further confirm that
the regional variation observed between the different
tectonic regions is real, we perform a randomization of
earthquake data between the different tectonic zones. This
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Table 1. Results of Parameters (In(E)), S, b, and B for Different
Deformation Styles With Mean Values (Bold) and Standard
Deviations (Parentheses)

AL-KINDY AND MAIN: TESTING SELF-ORGANIZED CRITICALITY IN THE CRUST

FE n (In(E)) s b -MLF B- LSF
Subduction Zones

1 340 31.71 1.16 0.91 0.63

5 249 31.82 1.22 0.85 0.54

6 200 31.67 1.13 0.93 0.66

7 83 31.58 1.09 0.98 0.68

12 927 31.44 1.01 1.08 0.75

13 367 31.38 0.93 1.13 0.81

14 595 31.83 1.23 0.85 0.64

15 579 31.69 1.18 0.91 0.69

16 318 31.71 1.18 0.90 0.76

18 232 31.72 1.16 0.90 0.68

19 606 31.66 1.14 0.93 0.62

20 107 31.59 1.04 0.97 0.64

21 121 31.70 1.13 0.91 0.64

22 395 31.73 1.17 0.90 0.68

23 422 31.53 1.04 1.02 0.64
24 423 31.62 1.12 0.96 0.63

46 83 31.44 0.94 1.08 0.75
Total 6047 31.64 (0.13) 1.11 (0.09)  0.95 (0.08)  0.67 (0.06)

Collision Zones

25 53 31.79 1.19 0.86 0.61

26 62 31.90 1.19 0.85 0.52

27 52 31.44 0.96 1.08 0.81

29 107 31.80 1.20 0.86 0.57

30 108 31.73 1.17 0.90 0.51

31 52 31.37 0.93 1.15 0.70

41 57 32.09 1.33 0.74 0.45

47 33 31.09 0.59 1.46 0.70
48 93 31.69 1.13 0.94 0.66
Total 617 31.65 (0.31)  1.08 (0.22)  0.98 (0.22)  0.62 (0.11)

Intracontinental
37 62 31.62 1.08 1.00 0.61
Mid-Ocean Ridges

32 287 31.32 0.88 1.18 0.81

33 251 31.45 1.01 1.09 0.66
40 41 31.07 0.79 1.55 0.89
43 276 31.22 0.81 1.28 1.15

45 108 31.41 0.92 1.12 0.53
Total 963  31.29 (0.16) 0.88 (0.09) 1.24 (0.19)  0.81 (0.24)
is done by randomly shuffling all magnitude data and
keeping the positions of the events the same and then
repeating the analysis as outlined above. For statistical
stability, the shuffling is repeated 200 times. Table 2

1.6
¢ sub
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Figure 2. Entropy energy phase diagram with best fit
linear and quadratic fits to data (sub = subduction, col =
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intracontinental, and mor

mid-ocean

ridge).
1.4 ‘
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0.8
0.7f

0.6 A

slope ~ -0.79

shows the results of the randomization for three deforma-
tion styles and the mean standard deviation for the runs
given in brackets. It can be seen that the variations
between deformation styles disappear for the shuffled
catalogues and that the parameters acquire values closer
to global means similar to those found for a temporal
ensemble [Main and Al-Kindy, 2002]. This is particularly
true for mid-ocean ridges where (S) increases from 0.88
for the unrandomized data to 1.01 for the randomized data
and (b) decreased from 1.24 to 0.98. This further confirms
that mid-ocean ridges show a statistical deviation in their
properties from those observed for continental settings
contrary to the requirements of SOC, according to the
criteria outlined above.

4.3. Ciriticality

[19] It has been shown that equation (13) is linear for the
case 0 — oo (critical). To establish if equation (13) holds for

32.4

Figure 3. (a) Correlation of S with b and B. (b) Correlation
of (Ln(E)) with » and B. Note both correlations are
negative.
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Figure 4. Plot of exponents » and B as a function of the
number of points n per FE region.

the regionalized data, a linear (critical) least squares fit is
compared to a quadratic (intermittently critical) fit through
the phase data. Figure 2 shows both a linear and quadratic fit
with R-squared values of 0.93 and 0.95 respectively. A better
fit (smaller residual error or higher R-squared) for a quadratic
fit model is expected as it has an extra free parameter. We are
therefore required to penalize for the extra free parameter in
the quadratic fit in order to compare its fitness to a linear
model. The penalization is done using Akaike’s information
criteria (AIC) [Akaike, 1978; Draper and Smith, 1998; Main
et al., 1999]. If data points can be defined by

=)+ (19)
where vy is the theoretical model, € is an error term, and 7 is
the number of points (here n = 32), the residual sum of
squares is then

Sx= > i =), (20)
i=1
with ¥ the maximum likelihood model estimate and
L(y,x*) = —gln(s,i). 1)

Table 2. Comparison of Randomized With Unrandomized Data
for Different Deformation Styles®

Subduction Zones Collision Zones Mid-Ocean Ridges

Unrandomized

(Ln(E)) 31.64 (0.13) 31.73 (0.31) 31.35 (0.16)
S 1.11 (0.09) 1.14 (0.22) 0.90 (0.09)
b 0.95 (0.08) 0.92 (0.22) 1.17 (0.19)
B 0.67 (0.06) 0.60 (0.11) 0.78 (0.24)
Randomized
(Ln(E)) 31.60 (0.10) 31.59 (0.17) 31.59 (0.09)
S 1.09 (0.07) 1.06 (0.011) 1.09 (0.06)
b 0.98 (0.06) 1.00 (0.11) 0.98 (0.06)
B 0.67 (0.09) 0.60 (0.13) 0.66 (0.08)

Standard deviations of parameters are given in brackets.
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The Akaike information criterion is then

AIC = L(Y) — ¢, (22)
where ¢ is the number of free parameters. Figure 5 shows
that a quadratic fit gives a higher value for AIC when
compared to a linear fit despite the penalty for the additional
free parameter. The difference in AIC of 3.5 between the
linear and quadratic fit is considered significant since
AIC,; — AIC, > 1. That is, by putting in an extra
parameter AIC decreases by 1, but the likelihood increases
by 4.5, so the resultant gain of 3.5 is significant. It can be
concluded from Figure 5 that a quadratic fit statistically
better describes the data than a linear fit. The sense of
curvature is also similar to that predicted in Figure 1 from
the analytical theory.

5. Discussion
5.1. Subcriticality

[20] The notion of criticality has been tested with refer-
ence to the requirements of SOC as outlined by Bak et al.
[1987], in two ways: first, by investigating regional varia-
tions in earthquake parameter properties, and second, by
referring to the theoretical predictions of statistical physics
derived above. It has been seen from Figure 2 that the
entropy-energy phase space for the various FE regions is
projected along a statistically distinguishable curve rather
than a straight line with subduction zones at the higher
entropy level and mid-ocean ridges at the lower entropy
level (Table 1). Subcriticality is therefore suggested in two
ways:

[21] First, SOC requires that the global dynamics should
be independent of local dynamics. This would require that
the statistical properties of the system should be the same
everywhere, implying there should not be any regional

with n =32
51 T
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46 : : :
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order of polynomial
Figure 5. Akaike information criterion (AIC) for poly-
nomials of order 1, 2, 3, 4, and 5. The highest AIC (best fit)
is for a second-order (quadratic) polynomial.
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variations in the statistical properties observed, nor should
the parameters rely on local mechanisms (subduction,
spreading, etc.). Although it has been suggested that such
regional variations might be the product of variations in
data quality [Kagan, 1997], other studies have shown that
local mechanisms such as slab temperature [Wiens and
Gilbert, 1996] and spatial distribution of faults with plate
deformation mechanism [Nicholson et al., 2000] may
influence the B value. As has been shown in Figure 3
above, the B and b values are closely related to the
entropy S and therefore may be used as an analogue for
it. There has also been no systematic correlation found
between the amount of data available per region and the
calculated B values as shown in Figure 4. As with Wiens
and Gilbert [1996] and Nicholson et al. [2000], the results
here also show regional variations in statistical properties
but with the advantage of there being no possible retro-
spective bias in the method of data selection.

[22] Second, it is a prediction of equation (13) that for a
strictly critical system, the entropy-energy phase space
should be clustered at a point or plot along a straight line
with very small fluctuations in S relative to (InE). It can
be seen from Figure 2, however, that the phase space lies
along a curve rather than a straight line, as confirmed
quantitatively by AIC (Figure 5). The curvature indicates
deviation from the prediction of equation (13) for a
precisely critical state. The relatively large fluctuation in
S along the y-axis is also indicative of a subcritical state. It
must be stressed here that the observed curvature is
strongly influenced by the presence of the extreme max-
imum and minimum points from the collision zone data. If
the collision zone data are to be removed, the phase space
may be better describes as a straight line (SOC), although
this would be considered a bias in the data selection. This
conclusion nonetheless can be taken as a reinforcement of
point 1 above and perhaps can be resolved in the future by
analysis of larger catalogues.

5.2. Hallmarks of SOSC

[23] SOSC systems are unique in that they can organize
themselves into a power law over a given region of the system
rather than over the system as a whole, implying a finite
correlation length, as expressed by the exponential term in the
size-frequency gamma distribution. This finite correlation
length can fluctuate with time and may intermittently reach a
critical point when the resulting cluster spans the size of the
region observed, producing a “large” earthquake. An SOSC
state also has the advantage in that it does not rule out long or
short-term observations that would otherwise be ruled out by
a purely SOC state such accelerated seismicity before large
events [e.g., Zdoller et al., 2001] as well as regional variations
in the B value both in space and time [Ogata et al., 1991;
Kagan, 1997; Wyss and Wiemer, 2000].

[24] What mechanisms, though, could be responsible
for systematic regional statistical variations in the spatial
ensemble? There are several candidates behind the varia-
tions observed. In reference to local dynamics, it has been
found that heat flow, for example, plays an important role
on the rheology of the crust [Ranalli, 1991] and therefore on
seismicity [Sibson, 1982]. Given that heat flow varies
systematically between tectonic regions worldwide, in par-
ticular when comparing oceanic to continental settings of
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different age, thickness, etc. [Fowler, 1990], it is therefore
not surprising that regional variations in the way the Earth
self-organizes should exist. This is contrary to what is
predicted from pure SOC models that have uniform and
stationary boundary conditions. Another perhaps related
mechanism is system energy dissipation or “seismic effi-
ciency,” which at least for models of seismicity has been
found to strongly affect B [Olami et al., 1992] as well as (E)
[Main et al., 2000]. These mechanisms will be examined
more closely in a subsequent publication. Finally, it can be
concluded from the myriad of possible statistical outcomes,
as outlined in the regional study above, that SOSC may be a
more flexible tool to describe a range of natural “power
law” phenomenon including earthquakes. More important,
SOSC suggests a degree of statistical predictability, at least
spatially, in the population dynamics of the system whereas
pure SOC does not. This gives an independent rationale for
applying time-space dependent seismic hazard analysis to a
population of events.

6. Conclusions

[25] In this paper we have shown, using the tools of
statistical physics, the analysis of earthquake data from the
CMT catalogue, and with reference to the original definition
of SOC outlined by Bak et al. [1987], the following:

[26] 1. The entropy for a power law system such as the
Earth’s crust is related to the expectation of the logarithm of
the radiated energy where S= A + B(In E) when 6 — co. A
system that deviates from this expression can be said to be
subcritical or supercritical.

[27] 2. The analytical solutions show that for a power
law system, the maximum possible entropy occurs at the
critical point when B = 0. When B > 0 (B < 0), the critical
point occurs below (above) the point of maximum entropy.

[28] 3. A good correlation was found between S and
scaling exponents b and B. The exponents can therefore be
said to be a good proxy for the entropy S and therefore the
level of self-organization in a power law system.

[29] 4. Analysis of the regional CMT data shows sub-
duction zones lie at the higher entropy regime (less ordered)
with (S) = 1.11, and mid-ocean ridges at the lower end
(more ordered) with (S) = 0.88, with collision-zones scat-
tered between the extremes. This variation vanishes when
the data are randomized, suggesting that the spatial fluctua-
tions are significant. It was also found that the entropy
energy phase space lies along a curve rather than a straight
line, implying a state of SOSC. The curve is also in the
same sense as that predicted from the analytical prediction
from statistical physics for a degenerate set of energy levels.

[30] 5. SOSC is a better way of describing the regional
variations in earthquake phenomenology as it can accom-
modate a range of observations including anomalous stress
diffusion, accelerated seismicity, and regional variations in
B and b that are otherwise ruled out by pure SOC. SOSC
also suggests a degree of statistical predictability in earth-
quake population dynamics.
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