
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A statistical evaluation of a 'stress-forecast' earthquake

Citation for published version:
Seher, T & Main, IG 2004, 'A statistical evaluation of a 'stress-forecast' earthquake' Geophysical Journal
International, vol. 157, no. 1, pp. 187-193. DOI: 10.1111/j.1365-246X.2004.02186.x

Digital Object Identifier (DOI):
10.1111/j.1365-246X.2004.02186.x

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Geophysical Journal International

Publisher Rights Statement:
Published in Geophysical Journal International by Oxford University Press (2004)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28962764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1111/j.1365-246X.2004.02186.x
https://www.research.ed.ac.uk/portal/en/publications/a-statistical-evaluation-of-a-stressforecast-earthquake(b3e6ab1b-a570-4ce9-b6e4-534b11489bea).html


Geophys. J. Int. (2004) 157, 187–193 doi: 10.1111/j.1365-246X.2004.02186.x

FA S T T R A C K PA P E R

A statistical evaluation of a ‘stress-forecast’ earthquake

T. Seher and I. G. Main
School of GeoSciences, The University of Edinburgh, Grant Institute, West Mains Road, Edinburgh, EH9 3JW, UK.
E-mails: Ian.Main@glg.ed.ac.uk; tseher@web.de

Accepted 2003 June 18. Received 2003 May 27; in original form 2002 November 1

S U M M A R Y
The goodness of fit for competing statistical models with different numbers of degrees of
freedom cannot be assessed solely by the residual sum of squares, because more complex
models will naturally have lower residuals. A standard approach to hypothesis testing for
large data sets is to use the objective Bayesian information criterion (BIC), which penalizes
models with larger numbers of free parameters appropriately. We apply this method to the
analysis of time delays from data on seismic shear-wave splitting in SW Iceland. The same
data set has previously been used to estimate the time at which stress-modified micro-cracking
reaches an inferred state of fracture criticality. The method does not forecast the location of
the event, however, the time and magnitude were consistent with the actual occurrence of an
M = 5 earthquake in the region. The forecast was based on a multi-line model with 17 degrees
of freedom (five straight lines, each with a start and end point, plus the variance, with four
endpoints being fixed by the occurrence of a main shock), and a signal-to-noise ratio near
unity. The BIC is used to assess this forecast in comparison with competing curve fits for
Poisson, multiline, sinusoidal, or polynomial (truncated Taylor expansion) hypotheses. The
null hypothesis of random occurrence can only be rejected formally for the sinusoidal model,
implying cyclical recurrence with a period of 134.6 days. All other models we consider have
a lower BIC. We also analyse the selected portion of the data set used to make the forecast
of fracture criticality using Gaussian statistics. The 95 per cent confidence intervals on the
predicted main shock magnitude range between magnitudes of 3.9 and 6.7. The time range
indicated by the same confidence limits starts 42 days before the actual event; a clear end cannot
be located. The relation between predicted magnitude and waiting time is not significantly
different from that inferred from the background Gutenberg–Richter frequency–magnitude
relation within the model uncertainties. Thus, it is not possible, based on the data, to formally
reject the hypothesis that the magnitude 5 event was part of the normal background seismicity.

Key words: earthquake prediction, fractures, shear-wave splitting, statistical methods.

1 I N T RO D U C T I O N

It has been suggested that analysis of time delays resulting from
seismic shear wave splitting can be used to establish an estimate
of the time and magnitude at which stress-modified microcrack-
ing reaches fracture criticality (Crampin 1994). This technique has
been applied to ‘stress-forecast’ an M = 5 earthquake in Iceland
(Crampin et al. 1999). However, statistical models like that used to
make the forecast have many degrees of freedom and the data is
relatively noisy, both in terms of errors of measurement and statisti-
cal fluctuation between individual data points. In fact, the effective
signal-to-noise ratio is near unity, even for the single station (out of a

total of four) chosen to make the quantitative forecast. The statistical
significance of such forecasts needs to be analysed and, in partic-
ular, there must be an evaluation of the model or prediction error
compared to the null hypothesis of random occurrence. Obviously,
adding extra parameters to a model will improve the curve fit to the
data, as it reduces the sum of squares of the residuals between the
best-fitting curve and the data-points. It is, therefore, necessary to
introduce a penalty parameter for the extra degrees of freedom in a
more complex model. This approach is commonly used in a variety
of applications in science, engineering, demography etc. For large
data sets, the appropriate criterion to use is the Bayesian informa-
tion criterion (BIC) of Leonard & Hsu (1999). This approach has
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recently been applied to detecting statistically significant breaks of
slope in geophysical data by Main et al. (1999). Here we apply this
technique to assess whether there is a statistically significant signal
with predictive power in the time-delay data used by Crampin et al.
(1999). To complement this exercise in inference, we also apply
standard Gaussian curve fitting techniques to calculate the errors of
extrapolation associated with the time-magnitude window for the
earthquake.

2 S T R E S S F O R E C A S T I N G

According to Geller (1997) earthquake prediction is a term that
should be reserved for warnings on a timescale of, at most, a few
days. The prediction should be based on a scientific hypothesis and
should specify time, magnitude and a spatial window. Furthermore,
the author’s level of confidence in the prediction should be clearly
stated and the chances of the earthquake to occur as a random event
should be calculated.

In this sense, the notion of stress-forecasting is not the same as
earthquake prediction, but is more like weather forecasting, where
one uses observable parameters to forecast the probabilistic behav-
ior of a non-linear system. One reason why individual earthquakes
may be so hard to predict is the fact that the Earth’s brittle crust
seems to be maintained close to a critical state by constant tectonic
forcing. This notion is referred to as self-organized criticality (Bak
et al. 1988) and is consistent with the first-order scaling features of
faulting and seismicity (Main 1996). One aspect of this criticality
may be the narrow range of crack densities inferred from analysis
of shear wave splitting and interpretation of the results in terms of
a distribution of stress-aligned microcracks just below the percola-
tion threshold (Crampin 1994). The ongoing debate on the degree of
earthquake predictability then rests on the magnitude of stress fluc-
tuations between events relative to the critical state and the ability
to detect precursors with statistical significance (Scholz 2002).

In appropriate seismic data shear wave splitting (seismic bire-
fringence) is observed for almost all kinds of rocks in the Earth.
Crampin & Lovell (1991) suggest anisotropy induced by cracks,
which have been aligned by external stress, as the most likely cause
in the brittle part of the crust. Laboratory studies under true triaxial
stress conditions (σ 1 > σ 2 > σ 3) (Crawford et al. 1995) or under
uniaxial loading with anisotropic material (Gao 2001) have con-
firmed that an increase in time delay between the fast and slow split
shear waves is systematically correlated with an increase in stress.

In order to examine the possibility of such observations scaling
to conditions in the Earth, Crampin et al. (1999) monitored the
shear wave splitting recorded by the South Iceland Lowland (SIL)
seismic network (maintained by the Iceland Meteorological Office)
over a period of 23 months. Of the four stations used to calculate
time delays in this network, one, the BJA station, appeared to show
systematic fluctuations that were most closely correlated with the
occurrence times of the four largest main shocks that occurred in this
period. The selected data set was interpreted in terms of the approach
to and retreat from fracture criticality and used in prospective mode
to stress-forecast a future earthquake of magnitude between M =
5 and M = 6 within an 108 day time range. The method does not
predict location and no attempt was made formally to demonstrate
that the forecast was beyond chance. In fact an M = 5 earthquake
did occur within the specified time and magnitude window. A later
earthquake (2000 June 17, M = 5.6, in southwest Iceland) was not
forecast following a microseismicity gap of 2–3 months where no
data were available to test the criticality hypothesis. The details of the
published forecast, especially the calculation of the time-magnitude
window, are described by Crampin et al. (1999). There, no attempt

was made to calculate the statistical significance of the empirical
line fit to the data or any formal errors of extrapolation associated
with the forecast. The aim of this paper is to assess these questions
using the same data set, except for 14 additional points provided
by T. Volti. The exercise is purely statistical: all models are treated
with equal potential merit and, for clarity, the limitations of such
analyses are also noted.

3 M E T H O D

To model the time-delay data from the BJA seismic station we gen-
erated models using a least-squares approach. We fitted Poisson,
multi-line, sinusoidal and polynomial (truncated Taylor expansion)
models with varying dimensions to the data. A linear model for
example has three parameters: slope, intercept and variance. We
reproduced the model of the increase in normalized time delays
suggested by Crampin et al. (1999) and calculated the residual sum
of squares for all models. The confidence limits were derived from
the uncertainty as outlined by Draper & Smith (1998).

A complex model with many degrees of freedom, applied to noisy
data, may result in an over-interpretation of the data. For example,
any estimate based on a method that minimizes the residual sum of
squares will select the model with the highest permissible number of
parameters, even when not justified by the data. A critical problem
is the primary determination of the appropriate dimensionality of
the model. Here we used a selection criterion to balance model fit
and complexity, choosing a model that maximizes the BIC proposed
by Leonard & Hsu (1999):

BIC = L(θ̂ | y) − p

2
ln

N

2π
, (1)

where y stands for the vector of measurements y = (y1, . . . , yN )T , θ̂

denotes the maximum likelihood estimate of the vector of unknown
parameters θ = (θ 1, . . . , θ p)T , N is the number of measurements
and p is the number of parameters. θ̂ denotes the vector θ that, out
of all possible choices for the parameters θ i, best fits the data. The
number of unknown parameters is the number of degrees of freedom
for the model plus one for the variance. For the likelihood function
l(θ | y) the following applies:

l(θ | y) ∝ (σ 2)−N/2 exp

{
−

N∑
i=1

[yi − f (θ | xi )]2

2σ 2

}
, (2)

where σ stands for the standard deviation. Main et al. (1999) take the
natural logarithm and maximize with respect to the unknown param-
eters, which gives the maximized logarithmic likelihood L(θ̂ | y):

L(θ̂ | y) = −(N/2) ln

{
N∑

i=1

[yi − f (θ̂ | xi )]
2

}
, (3)

where the term in the curly brackets is the residual sum of squares
that we calculated for each of our models. The likelihood function
should include terms that are independent of p and the fit to the data,
but in practice this simplified form is used.

The BIC is preferable to the more commonly used Akaike infor-
mation criterion (AIC) when the number of data points is greater
than 46 (Leonard & Hsu 1999; Main et al. 1999). This is because
although AIC finds the best statistical model in synthetic tests for
small data sets, it does not for larger ones. When n = 46, AIC =
BIC, therefore, this number represents the point of transition. The
number of data points used here was 145. From eq. (1) a model
with a high BIC is preferable to one with a lower value. We regard
a change in BIC of a value equivalent to increasing p by one unit to
be significant.
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Figure 1. Comparison of the BIC for various models as a function of the number of degrees of freedom. The variance is included as one parameter. The 10-line
model has 17 parameters, including the start and endpoint of each line minus the four previous main shocks whose occurrence time was known precisely. This
is the model of Crampin et al. (1999) except for the connecting lines between the end point of one and the start point of another increase.

4 R E S U LT S

A comparison of BIC as a function of the number of model param-
eters for the different statistical models is shown in Fig. 1. The sim-
plest model was the constant (time-independent or Poisson) model,
which had one of the highest BIC values. This has two parame-
ters: mean and variance. We consider that the five-line model using
the additional earthquake information suggested by Crampin et al.
(1999) has 17 degrees of freedom (five lines with start and endpoint
plus one for the variance, minus the four endpoints where the time
of occurrence of the main shocks could be considered known). We
do not consider the start point fixed because this will have a finite
degree of error in its estimate as a local minimum in a nine-point
moving average. The BIC for this model was calculated first assum-
ing a linear interpolation between the start and endpoints to generate
10 lines. This assumption uses all of the data points, not just those
in the parts of the model with positive slope, and hence minimizes
the residual sum of squares without introducing any additional free
parameters. This model had a slightly lower BIC than other models
having similar numbers of parameters. Furthermore, its BIC was
significantly lower than the BIC for the constant (Poisson) model
implying that the Poisson model is a better statistical model in this
direct comparison. We fitted a sinusoidal model (five degrees of
freedom: amplitude, intercept, frequency, phase and variance) to
the data. The BIC was −567.3 for the constant model and −567.0
for the best-fitting sinusoidal model. This difference was small and
corresponds to less than the equivalent for one degree of freedom
(	BIC = (1/2) ln(145/2π ) ≈ 1.57), therefore, it is not significant
by our criterion above. The various polynomial models showed a
systematic decrease of the BIC, when we increased the number of
parameters.

Crampin et al. (1999) used only the increasing parts of the ap-
parent slope to the data curves, whereas in Figs 1 and 2 we have
examined all of the data assuming the simplest linear connection
between end points. If the segments of the data with linear decreas-
ing trend are removed from the analysis, the BIC from the Poisson
model (p = 2 on the reduced data set of N = 82 data points) is
−298.1. This compares with −304.9 for p = 17 parameters for the
five-line model of Crampin et al. (1999). Once again, an appropriate

penalty for the large number of parameters overwhelms any small
statistical gain in reducing the residual sum of squares achieved by
segmenting the data.

The fit of the Poisson model to the time-delay data set is shown
in the upper graph of Fig. 2. The model has two degrees of free-
dom: intercept with the vertical axis and variance. This was our
simplest model and assumed that the data points are scattered ran-
domly around the mean value. The middle graph of Fig. 2 shows
the best fitting sinusoidal model. In the bottom graph (Fig. 2) we
examine the model for the increase in normalized time delays prior
to an earthquake by Crampin et al. (1999). Every increase started
at the minimum of the nine-point moving-average filtered data and
ended with the occurrence of a major earthquake. The endpoint and
the start point of two line segments were joined to calculate the BIC
in the simplest statistical model, i.e. without adding extra degrees of
freedom associated with a more physically-based stress relaxation
model. Given the variance in the data, it is unlikely that such a model
could be validated in this data set. The confidence limits for the true
mean value of every line segment and for values at a certain point
in time as given by the model are shown.

The result of fitting a straight line to the specific part of the data
set that was used to make the stress forecast by Crampin et al.
(1999) is shown with the appropriate confidence limits in Fig. 3.
It is important to clarify that this part of the analysis was only a
standard least-squares analysis of errors consistent with the method
of line fitting used by Crampin et al. (1999) and does not rely on the
concept of an information criterion. The minimum in the moving-
average filtered data was used as a starting point for the line. We then
extrapolated this line assuming that the linear increase in normal-
ized time delays will continue until the limit of fracture criticality
will be reached and an earthquake will occur, exactly as Crampin
et al. (1999) have done. We used the linear relationship between
waiting time and magnitude as Crampin et al. (1999) to generate
the equivalent magnitude scale shown on the right side of the plot.
This magnitude and waiting time correlation is based only on four
points, and hence it is not possible to validate the relationship, due
to the small number of data points. Ignoring any, possibly gross,
uncertainty associated with such a poor calibration, we then calcu-
lated the time-magnitude window from the slope of the increase in
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Figure 2. Normalized time delays between split shear waves versus time.
The lower time axis is in units of 106 s from the start of the data set, the upper
axis shows the actual time in months/years. Graph (a) shows the constant
model (the Poisson model) with its 95 per cent confidence limits. Graph (b)
shows the sinusoidal model and (c) shows the model of Crampin et al. (1999)
plus the connecting lines. In the text a similar comparison is made for the
case when the data for the connecting lines are ignored.

normalized time delays and the inferred level of fracture criticality
at which previous earthquakes occurred. Using the equivalent mag-
nitude scale the M = 5 earthquake of 1998 November 13 lies inside
the suggested time-magnitude window (Fig. 3). When the 95 per
cent confidence limits are included, the uncertainty in magnitude
and particularly waiting time is much larger than the range speci-
fied solely by the least squares line used by Crampin et al. (1999).
The forecast by Crampin et al. (1999) gives an early and a late time
estimate for time and magnitude but no estimate of the uncertainty.
According to their analysis the earliest the earthquake could occur
was on 1998 November 13 with a magnitude of M = 5. The latest
the earthquake could occur was on 1999 February 28 with a mag-
nitude of M = 6. Explicitly ignoring any variance in the data, their
time magnitude window spans 108 days and one magnitude unit.
When the confidence limits are calculated formally in Fig. 3, at the
time of the earthquake the errorbar starts at magnitude M = 3.9 and
ends at magnitude M = 6.7. The errorbar for the time starts 42 days
before the event; a clear end cannot be located. This gives a range of
2.8 magnitude units and a time range, that lasts significantly longer
than 108 days. We conclude that the large error of line fitting and
extrapolation precludes a formal validation of the forecast made.
In summary, the close correspondence of the predicted magnitude
and time of the 13 November 1998 event with the centre of this
large cross, although appealing, is simply not statistically signifi-
cant when the large formal error bars in magnitude and time are
taken into account.

Finally we compared the linear waiting time-magnitude relation
with the background seismicity and its 95 per cent confidence limits
in Fig. 4. The former plots as a curve on this graph. On this log-
linear graph the recurrence data plot as a straight line following the
Gutenberg–Richter law. The graph also shows the estimated waiting
time that might be predicted from the background seismicity (inverse
frequency) so that a direct comparison can be made. The two are
statistically indistinguishable from each other within the magnitude
range used, implying that the waiting time–magnitude relation used
to make the forecast in Crampin et al. (1999) is not statistically
distinguishable from a Poisson process over the magnitude range of
interest.

5 D I S C U S S I O N

In general, simple models with fewer parameters are better statisti-
cal models for the whole data set analysed here whether or not the
data are split into sections. The time delays of shear-wave splitting
do show some correlation with the four largest mainshocks. The
marginally optimal model is a simple sinusoid rather than the 17-
parameter model of Crampin et al. (1999). However, it is important
to note that many filters have been applied to the data prior to our
analysis. First, the data have been filtered with respect to earthquake
location to be within the shear-wave window. This is an objective
filter based on independent knowledge of the velocity structure in
the region. Second, only data from a part of the shear-wave window
have been used, so there is a potential directional bias to the data.
However, we found no systematic correlation between event location
and time delay, so this filter is unlikely to propagate into spurious
time-delay anomalies. Third, only reliable time delays (small errors)
have been used. Again this seems appropriate, although the choice
of cut-off introduces an additional free parameter. Fourth, only data
from one station were used to make the quantitative forecast. Overall
these spatial and temporal filtering exercises all potentially introduce
additional degrees of freedom, that have not been statistically ac-
counted for in our analysis. As a consequence our BIC values for
the non-Poissonian models, if anything, are probably overestimates.
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Figure 4. Incremental frequency magnitude relationship, compared to the time-magnitude relationship of Crampin et al. (1999). The bins were of
0.3 magnitudes each.

When re-examining the data we were able to reproduce some of
the results published by Crampin et al. (1999). Prior to the four ma-
jor mainshocks the moving-average filtered data showed an apparent
increase in normalized time delays. All the higher order models (in
retrospective mode) showed maxima at the same time as one or more
of these earthquakes. The earthquake of 1998 November 13 lies in
the (rather large) time-magnitude window predicted by extrapola-
tion. This window was calculated from data for only four previous
earthquakes and neglected the effect of the uncertainties involved in
the curve fit and its extrapolation. With only four events, the purely
empirical linear relation between waiting time and magnitude cannot
be established with any confidence. Our extrapolations of the model
for the selected last part of the data set are consistent with a crust ap-
proaching the limit of fracture criticality, however, the uncertainties

involved are too great to allow the null hypothesis of background
random occurrence to be clearly rejected. Perhaps this is not sur-
prising given the data scatter. More accurate measurements of time-
dependent anisotropy would have to be made to reduce this scatter,
most obviously by using controlled sources in quiet borehole sites.
Given the uncertainty in all aspects listed above, it is not possible at
this stage to estimate the degree of accuracy required, except to say
that an order of magnitude increase in signal-to-noise ratio would be
desirable.

Our main conclusion is that the data are not yet adequate
to make forecasts of individual events. However, the laboratory
data indicate that higher stresses are associated with higher time
delays (Crawford et al. 1995; Gao 2001). We plotted time delay
against magnitude on Fig. 5 to see if there are systematic effects
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in the population. In fact, the results show essentially no correla-
tion of the time delay between the fast and slow shear wave and the
magnitude of the event (r 2 = 0.004).

6 C O N C L U S I O N S

From the whole data set used by Crampin et al. (1999), it is not
possible formally to reject the null hypothesis of a Poisson process
in favour of any multi-line model. Excluding the effect of hidden
degrees of freedom from data filtering, the only model compara-
ble with the Poisson hypothesis was a periodic signal with a period
of 134.6 days. For the selected portion of the data used to make
the forecast of fracture criticality, the statistical errors of extrap-
olation were significantly bigger than the suggested deterministic
time-magnitude window. The forecast individual event could not be
distinguished from the background frequency of occurrence within
the uncertainties of the two curve fits. We conclude that at least
an order of magnitude increase in signal-to-noise ratio would be
required to validate forecasts for individual events. The population
shows essentially no correlation between time delay and magnitude.
A positive correlation would be consistent with laboratory results
if large-magnitude events are more likely to occur when the stress
is higher. Again, the basic scatter in the data is the main reason for
the lack of definitive results. The main source of scatter is probably
the use of ray paths with different azimuths, thereby mixing trans-
verse and azimuthal anisotropy. This problem could, in principle,
be surmounted by using a narrow range of azimuths. For natural
seismicity this is not possible as a result of the large reduction in
the number of data points. A more definitive test of the fracture crit-
icality hypothesis awaits the application of controlled source, con-
stant azimuths, borehole-derived data. Fundamentally, the signal-
to-noise ratio needs to be improved before firmer conclusions can
be drawn, most likely by using borehole data and a controlled
source.

N O T E A D D E D I N P RO O F

We note that Crampin et al. (2004) have published a comment on our
paper. We respectfully disagree with their conclusions, but feel we

have nothing to add to the clear case made above. We simply invite
the reader to examine the two publications carefully and decide
which is the more appropriate analysis.
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