
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lateral migration of hillcrests in response to channel incision in
soil-mantled landscapes

Citation for published version:
Mudd, S & Furbish, DJ 2005, 'Lateral migration of hillcrests in response to channel incision in soil-mantled
landscapes' Journal of Geophysical Research, vol 110, no. F4., 10.1029/2005JF000313

Digital Object Identifier (DOI):
10.1029/2005JF000313

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher final version (usually the publisher pdf)

Published In:
Journal of Geophysical Research

Publisher Rights Statement:
Published in the Journal of Geophysical Research. Copyright (2005) American Geophysical Union.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28962723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1029/2005JF000313
http://www.research.ed.ac.uk/portal/en/publications/lateral-migration-of-hillcrests-in-response-to-channel-incision-in-soilmantled-landscapes(0be8a318-bf0f-46b9-92bc-557e9267aa7e).html


Lateral migration of hillcrests in response to channel

incision in soil-mantled landscapes

Simon Marius Mudd
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee, USA

David Jon Furbish
Department of Earth and Environmental Sciences and Department of Civil and Environmental Engineering, Vanderbilt
University, Nashville, Tennessee, USA

Received 18 March 2005; revised 26 August 2005; accepted 16 September 2005; published 23 December 2005.

[1] We investigate lateral migration of hillcrests in response to vertical offsets or transient
incision rates of channels bordering these hillcrests in soil-mantled landscapes. For
hillslopes undergoing sediment transport that is linearly proportional to the slope, the
hillcrest offset distance is one quarter of the ratio of the vertical offset between the
channels to the relief of the symmetric hillslope. If channels are downcutting at different
rates, the speed of hillcrest migration will depend on the ratio of the downcutting rates
and the density ratio, which is the ratio of the bulk density of the bedrock to the bulk
density of the soil. The density ratio plays a fundamental role in determining the transient
response of the hillcrest; lower-density ratios lead to faster transient responses to
changes in channel downcutting rates. Other parameters that affect the transient response
of the hillcrest are the magnitude of transient differences in downcutting between the
two channels, the time-averaged incision rate, and a ratio of the elevation of the hillslope
to a length that characterizes the decay in soil production with increasing soil thickness;
different parameters will be important for different sediment flux laws. The profile of
soil thickness reacts to transient changes in downcutting at a different rate than surface
topography. Hillslopes experiencing transient channel downcutting may have surface
topography that is symmetric about the hillcrest but will at the same time have a soil
thickness profile that is asymmetric.

Citation: Mudd, S. M., and D. J. Furbish (2005), Lateral migration of hillcrests in response to channel incision in soil-mantled

landscapes, J. Geophys. Res., 110, F04026, doi:10.1029/2005JF000313.

1. Introduction

[2] Landscapes are dissected by drainage networks
following periods of base level fall. It has been suggested
[e.g., Gilbert, 1877; Hack, 1960] that after the landscape is
fully dissected it will adjust to a condition in which the
erosion rate averaged over the landscape will equal the rate
of base level fall. There is field evidence that in areas of
active tectonics, spatially averaged erosion rates equal the
rock uplift rate [e.g., Meigs et al., 1999; Reneau and
Dietrich, 1991]. Field evidence also suggests that some
drainage networks are stable over long periods of time in
that the stream locations and profiles, and the locations of
the drainage divides, do not vary significantly over time
[Bishop et al., 1985; Young and McDougall, 1993]. In some
cases, however, there is evidence of drainage network
change long after orogenesis. Postorogenic drainage
network reorganization can occur through the migration of
drainage divides [Meyerhof, 1972] or stream capture
[Harbor, 1997; Mather et al., 2000; Zaprowski et al.,

2001]. Drainage divide migration and stream capture may
be due to transient changes in the rate of base level fall.
Recent experimental results, however, suggest that even
with a constant rate of base level fall drainage divides may
migrate [Hasbargen and Paola, 2000]. This is in contrast to
some numerical studies that have found that a constant rate
of downcutting or uplift leads to stable channel and ridge
networks [e.g., Howard, 1994; Tucker and Bras, 1998;
Willgoose et al., 1991]. Pelletier [2004], however, found
that altering the flow routing algorithm of a landscape
evolution model can lead to simulations that predict drain-
age divide migration, whereas Densmore et al. [1998]
simulated migrating divides when stochastically driven
landslides contributed to hillslope erosion.
[3] In their experiments, Hasbargen and Paola [2000]

found that while the basin-averaged erosion rate may be
steady the local erosion rates of subbasins may be unsteady
if not cyclic. Such locally transient erosion rates can lead to
the migration of drainage divides (Figure 1). Channel
incision rates that vary in space and time will lead to
vertical offsets of the relative elevation of adjacent channels.
The hillslopes that bound the drainage divide will react to
the offsets over some delayed response time if the hillslope

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, F04026, doi:10.1029/2005JF000313, 2005

Copyright 2005 by the American Geophysical Union.
0148-0227/05/2005JF000313

F04026 1 of 18



is undergoing creep [e.g., Fernandes and Dietrich, 1997;
Roering et al., 2001], or nearly instantaneously if the
hillslopes are at a critical slope; such hillslopes will respond
to base level fall with landsliding [e.g., Burbank et al.,
1996]. Whatever the response time, vertical offsets between
adjacent channels will lead to the lateral migration of a
drainage divide. If the drainage divide moves laterally, this
will change the drainage area of the streams, thus changing
the hydrology and sediment supply of the affected basins.
[4] Field studies in tectonically quiescent regions have

reported erosion rates in adjacent streams that vary by up to
a factor of two [Kirchner et al., 2001; Matmon et al., 2003].
Others have used stream gradients and the stream power law
to estimate spatially variable stream erosion rates in tecton-
ically active regions. Kobor and Roering [2004] investigated
stream gradients in the Oregon Coast Range and reported
that local stream downcutting rates are spatially variable,
although in the Oregon Coast Range it is thought that
erosion rates are in equilibrium with uplift rates over large
spatial scales [Reneau and Dietrich, 1991]. In addition,
Finlayson et al. [2002] found that the erosion index, a
metric that combines topographic and hydrologic data used
to assess potential erosion rates, varies over several orders
of magnitude across the Himalaya, despite the relatively
uniform convergence of the Indian subcontinent.
[5] Whereas a basin may be denuding at a constant rate

averaged over geologic time, at shorter timescales stream

incision is forced by various stochastic processes [e.g.,
Benda and Dunne, 1997; Snyder et al., 2003; Tucker,
2004]. Because the stochastic forces (such as streamflow
and sediment supply) controlling incision rates in bedrock
channels may be nonlinear functions of drainage area,
adjacent streams that have different drainage areas may
experience time histories of downcutting events that are of
different magnitude and frequency, causing local disequi-
librium of erosion rates. Such local disequilibrium may
force the migration of drainage divides if the signal of
changing incision rates can propagate up the hillslope and
reach the divide. The likelihood that changes in channel
downcutting rates will affect the divide in the case of a
symmetric hillslope has been found to increase for varia-
tions in downcutting rates that have longer periods [Furbish
and Fagherazzi, 2001].
[6] Here we present analytical and numerical results of

our investigations of the migration of drainage divides on
1-D hillslopes (which we refer to as hillcrests) under the
conditions of vertical channel offsets and transient local
incision rates. First, we develop and nondimensionalize the
governing equations that describe conservation of mass on a
hillslope. A numerical model is then used to solve these
governing equations. We use the numerical model as a
virtual laboratory [e.g., Bras et al., 2003] to explore the
behavior of hillcrests in a number of different scenarios.
These scenarios are selected to approximate natural con-

Figure 1. (a and b) Two scenarios for erosion in a basin. The basin-averaged erosion rate of both basins
does not vary in time. In Figure 1a the local erosion rates equal the basin-averaged erosion rate, and the
ridges are stationary. This is predicted by many numerical models for a case of constant downcutting at
the basin outlet [e.g., Howard, 1994]. In Figure 1b, local erosion rates vary between subbasins, and
divides can migrate, despite a constant rate of downcutting at the basin outlet. This has been observed in
the laboratory setting [e.g., Hasbargen and Paola, 2000].
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ditions that have been hypothesized to lead to hillcrest
migration [e.g., Hasbargen and Paola, 2000; Mather et
al., 2000; Smith and Bretherton, 1972]. Analytical solutions
are presented for specific instances of lateral hillcrest
migration due to vertical channel offsets and differential
channel downcutting rates. We then explore the nature of
hillcrest migration on one-dimensional hillslopes that are
subject to transient downcutting rates in the bounding
streams, and which obey several different sediment flux
laws. Two transient cases are investigated with a numerical
model. The first set of model runs investigates the transient
behavior of the hillcrest when knickpoints of an equal
height pass through the two channels, separated by some
time delay; a simplification of pulses of incision, manifested
in knickpoints, that migrate through basins at different
celerities [e.g., Crosby and Whipple, 2005]. The second
set of simulations tracks the migration of the hillcrest when
the time-averaged downcutting rate is the same in both
channels but the instantaneous rates vary in time with
different amplitudes and frequencies.

2. A 1-D Model of Hillcrest Migration

2.1. Governing Equations

[7] The basis for our hillcrest migration analysis is an
equation for conservation of mass on a soil-mantled hill-
slope, which is depth-averaged from the soil-bedrock
interface to the soil surface. In one dimension, the equa-
tion is

rs
@h

@t
þ rs

@ hvxð Þ
@x

� rhph ¼ 0; ð1Þ

where h (L) is the soil thickness, rs (M L�3) is the dry bulk
density of the soil, vx (L T�1) is the velocity of the sediment
in the x direction, rh (M L�3) is the density of the parent
material, ph (L T�1) is the rate of bedrock lowering due to

soil production, and the overbars denote depth-averaged
quantities (Figure 2). Equation (1) is a version of the
equation derived by Mudd and Furbish [2004] that contains
the assumptions that there are no sources or sinks of mass in
the soil (e.g., chemical denudation) and that the depth-
averaged dry bulk density is constant in time and spatially
homogenous. The second assumption is reasonable for
bioturbated soils, in which mechanical disturbances can loft
soil to a constant porosity [Brimhall et al., 1992]. We focus
on hillslopes where diffusion-like sediment transport
processes dominate (e.g., porous forested soils with little
overland flow); we do not consider hillslopes where
sediment flux due to overland flow plays a significant role.
[8] The soil thickness, h, is defined as

h ¼ z� h; ð2Þ

where z (L) is the elevation of the soil surface and h (L) is
the elevation of the soil-bedrock boundary. The rate of soil
production, ph, has been found to be a function of the soil
thickness,

ph ¼ W0 e�
h
g; ð3Þ

[e.g., Heimsath et al., 1999] where W0 (L T�1) is the
nominal rate of soil production when the soil thickness is
zero and g (L) is a length scale that characterizes the rate of
decline in the soil production rate with increasing soil
thickness.
[9] Dynamic hillslope evolution is driven in part by

incision at the base of the hillslope. We designate a
coordinate system where the shape of the hillslope is
measured relative to local base level (chosen as the eleva-
tion at the base of the hillslope):

zbl ¼ z� z0; ð4aÞ

hbl ¼ h� z0; ð4bÞ

where the subscript bl indicates elevation relative to base
level and z0 is the elevation of local base level (Figure 2).
The lowering of the soil-bedrock interface relative to base
level is then

@hbl
@t

¼ � W0e
�h

g þ @z0
@t

� �
; ð5Þ

The second term on the right of equation (5), @z0/@t, is the
rate of base level lowering. If the channel at the base of
the hillslope is incising into bedrock, @z0/@t will be
negative. In the Lagrangian coordinate system, equation (1)
becomes

@zbl
@t

þ @ hvxð Þ
@x

þ 1�
rh
rs

� �
W0e

�h
g þ @z0

@t
¼ 0: ð6Þ

The second term in equation (6) describes the change in
surface elevation of the hillslope relative to base level due
to mechanical transport processes within the soil layer. The
third term is a change in surface elevation due to soil

Figure 2. Schematic of the coordinate system. When
incision rates in the primary and secondary are equal and
constant in time, the hillcrest is at x = l.
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production; it is nonzero when the dry bulk density of the
soil is different from the dry bulk density of the bedrock.
[10] Mechanical sediment transport processes in the ab-

sence of overland flow can include soil creep [e.g., Culling,
1963; Heimsath et al., 2002; Kirkby, 1967; Roering et al.,
1999; Young, 1978], animal burrowing and disturbance
[e.g., Gabet, 2000], frost heave processes [e.g., Anderson,
2002], and tree throw and root growth [e.g., Gabet et
al., 2003; Roering et al., 2002]. In order to close
equation (6), one must use a sediment flux law [e.g.,
Dietrich et al., 2003] to describe the sediment transport
processes. A number of flux laws have been proposed and
tested using field data. There is evidence that on low-relief
hillslopes, sediment flux is linearly proportional to slope
[McKean et al., 1993; Small et al., 1999]. The one dimen-
sional linear sediment flux law can be stated as

hvx ¼ �D
@zbl
@x

; ð7Þ

where D (L2 T�1) is a sediment diffusivity. (Another
coefficient occasionally reported in the literature, K, is in
units of M L�1 T�1 [e.g., Fernandes and Dietrich, 1997].
This coefficient is related to D by K = rsD. Some authors
invert these two symbols [e.g., Roering et al., 2001]; the
quantities may be identified by their units). On steeper
hillslopes, the interactions between disturbances, friction
and gravity may lead to sediment flux that increases
nonlinearly with slope [Andrews and Bucknam, 1987;
Roering et al., 1999]. This can be stated, in one dimensional
form, as

hvx ¼ �D
@zbl
@x

1� 1

Sc

@zbl
@x

� �2
" #�1

ð8Þ

where Sc (dimensionless) is a critical slope. We refer to
equation (8) as the linear-critical flux law.

2.2. Scaling and Nondimensionalization of the
Governing Equations

[11] The number of parameters in the system described by
equations (5)–(8) can be reduced by nondimensionalizing
the system. The variables of dimension length are non-
dimensionalized with

x̂ ¼ x

l
; ẑ ¼ zbl

l
; ĥ ¼ hbl

l
; ĥ ¼ h

g
; ð9Þ

where dimensionless quantities are denoted with carats and
l (L) is half the distance between adjacent channels
(Figure 2). At both x = 0 and x = 2 l there are channels
that set the boundary condition of the hillslopes (the two
hillslopes are separated by the hillcrest). We name the
channel at x = 0 the primary channel and set its elevation to
z0 (the scaling of z0 will be defined below). The channel at
x = 2 l is called the secondary channel.
[12] A length scale ratio (dimensionless) is defined as

qL ¼ l
g
: ð10Þ

Note that ĥ = qL(ẑ � ĥ). A density ratio, td, is defined as

td ¼
rh
rs
: ð11Þ

We form a timescale defined by the parameters of the soil
production function, and name this the production timescale:

TP ¼ g

W0

: ð12Þ

The rate of base level lowering (@z0/@t = I) is scaled by

Î ¼ TP

g

@z0
@t

¼ 1

W0

@z0
@t

: ð13Þ

[13] We also define a timescale based on the relaxation
time of the hillslope [e.g., Fernandes and Dietrich, 1997;
Furbish and Fagherazzi, 2001; Jyotsna and Haff, 1997].
The relaxation time is the time it takes for a hillslope to
attain a new steady configuration after it has been perturbed.
We define a diffusive timescale, TD, as

TD ¼ l2

D
: ð14Þ

This timescale is related to the relaxation time by a constant
[e.g., Fernandes and Dietrich, 1997; Furbish and
Fagherazzi, 2001; Jyotsna and Haff, 1997]. Time is scaled
by TD:

t̂ ¼ t

TD
: ð15Þ

The production and diffusive timescales are used to define a
timescale ratio, qt (dimensionless):

qt ¼
TD

TP
¼ l2W0

Dg
: ð16Þ

A discussion of typical timescales and timescale ratios is
given byMudd and Furbish [2004]. The linear and nonlinear
flux laws described by equations (7) and (8) are scaled using
equations (9) and (14). The resulting two equations can be
written in the general form:

hvx ¼
l2

TD
f; ð17Þ

where f is a dimensionless function of slope with

f ¼ @ẑ
@x̂

ð18Þ

in the case of the linear sediment flux law and

f ¼ @ẑ
@x̂

1� 1

Sc

@ẑ
@x̂

 !2
2
4

3
5
�1

ð19Þ

in the case of the linear-critical flux law.
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2.3. Dimensionless Governing Equations

[14] Inserting equations (9)–(19) into equations (5) and
(6) gives the nondimensionalized governing equations for
the hillslope system:

@ĥ
@ t̂

þ qt
qL

e�ĥ þ Î
� �

¼ 0; ð20Þ

@ẑ
@ t̂

� @f
@x̂

þ qt
qL

1� tdð Þe�ĥ þ Î
h i

¼ 0: ð21Þ

Equations (20) and (21) allow the investigation, through
both analytic and numerical techniques, of scenarios that
will lead to hillcrest migration.

3. Analytical Solutions of Hillcrest Migration

[15] Analytical solutions can be obtained for specific
cases of hillcrest migration. We solve equations (20) and
(21) for two cases: in the first case the channels are incising
at the same rate but are offset vertically, and in the second
case the adjacent channels are incising at constant but
different rates.

3.1. Hillcrest Offset Due to Channel Elevation
Differences at Topographic Steady State

[16] Consider a one-dimensional hillslope between two
channels that is at topographic steady state relative to local
base level (@ẑ/@ t̂ = @ĥ/̂t = 0). The steady state condition
implies that the production rate of soil is spatially uniform.
If the channels that bound the ridge are at the same
elevation, the hillslopes on either side of the ridge will be
symmetric. If, however, the channels are at different ele-
vations, the hillcrest will be offset toward the channel at a
higher elevation. In this section we determine how the offset
distance is affected by the dominant sediment flux law, the
characteristics of the hillslope (e.g., hillslope relief) and the
vertical offset of the two channels bounding the hillslope.
[17] The horizontal offset of the hillcrest can be found

analytically by solving equations (20) and (21) simplified
for topographic steady state. Setting the time derivative in

equation (20) to zero yields exp (ĥ) = �Î . We assume
sediment transport is linearly proportional to the slope
(equations 7, 17 and 18) and set the time derivative in
equation (21) to zero, giving an equation for the curvature
of the hillslope:

@2ẑ
@x̂2

¼ qt
qL

td Î : ð22Þ

The surface topography may be found by integrating
equation (22) twice and applying the appropriate boundary
conditions. The dimensionless surface elevation is set to
zero at x̂ = 0. At x̂ = 2, which is the location of the
secondary channel, the surface elevation is offset from the
elevation of the channel at x̂ = 0. This vertical offset is
measured as a fraction of the elevation of the hillcrest if
both channels were incising at the same rate. The elevation
at the hillcrest for a steady state hillslope when both
channels are at the same elevation (Ẑls, dimensionless) is

Ẑls ¼ � tdqt
2qL

Î : ð23Þ

The offset ratio, qO, is defined as

ẑjx̂¼2 ¼ qOẐls ð24Þ

where ẑjx̂¼2 is the dimensionless elevation of the secondary
channel (see Figure 3). Using equations (23) and (24) as the
second boundary condition for equation (22), the hillslope
profile may be found:

ẑ ¼ tdqt
qL

Î
x̂2

2
� qO

4
þ 1

� �
x̂

� �
: ð25Þ

The hillcrest offset, Ŵ (dimensionless), is measured as the
distance from x̂ = 1 (see Figure 3) and may be found by
setting the slope of equation (25) to zero, solving for x̂, and
subtracting one:

Ŵ ¼ qO
4
: ð26Þ

Equation (26) demonstrates that the hillcrest offset in the
case of the linear sediment flux law is a simple function of
geometry. That is, the hillcrest offset is one quarter of the
offset ratio.
[18] For comparison, we can calculate the hillcrest offset

distance for the case of rapidly incising, steep topography.
Burbank et al. [1996] found that in the Himalaya in a region
of rapid incision, slope angles were independent of the
incision rate, suggesting that a threshold slope had been
attained. Imagine two rivers separated by hillslopes at a
threshold slope, ST (this slope was found to be �0.8
[Burbank et al., 1996]). The dimensionless elevation of
the hillcrest when both channels are at the same elevation is
simply ST, and if the river is offset by the product of qO and
ST, the hillcrest offset distance will be

Ŵ ¼ qO
2
: ð27Þ

Figure 3. Dimensionless hillslope profiles. Dashed line is
a symmetric hillslope pair, solid line shows a profile where
the secondary channel is offset vertically, and the hillcrest in
this profile is offset horizontally from the hillcrest of the
symmetric profile.
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Recall that the linear sediment flux law applies to
landscapes with gentle slopes. These two cases can be
thought of as end member scenarios. In landscapes where
slopes are gentle and incision rates are lower, vertical offsets
in the elevations of adjacent channels will move the hillcrest
a quarter of the offset ratio according to equation (26),
whereas in rapidly eroding landscapes a vertical channel
offset can cause twice the hillcrest offset as a fraction of the
relief of the symmetric hillslope.
[19] It should be noted, however, that landscapes where

rivers are bounded by critical hillslope are generally high-
relief landscapes, such as the Himalaya [e.g., Burbank et al.,
1996]. Suppose a knickpoint of some arbitrary height is
generated due to a faulting or rapid sea level change. This
knickpoint then migrates through a lower-relief, soil-
mantled foreland and subsequently into a high-relief moun-
tainous area which has hillslopes at a threshold angle. In
such a case the knickpoint would be a much smaller fraction
of the relief in the high-relief mountainous region than in
the lower-relief, soil-mantled region. The ratio of the
dimensional hillcrest offset distances in such a case is

Wts

Wlr

¼ �ltstd
DST

@z0
@t

; ð28Þ

where the subscript ts denotes the high-relief, threshold
slope landscape and the diffusivity, base level lowering rate,
and bedrock to soil density ratio are all measured in the soil-
mantled landscape where sediment transport follows
equation (18).
[20] As an example, consider a knickpoint that is 10 m in

height (the 1996 Chichi earthquake in Taiwan had a vertical
offset of 3–8 m [Chen et al., 2002]) that is generated on a
landscape which has a background base level lowering rate
of 0.01 mm yr�1 in the foreland area. Suppose that in the
hillslopes throughout this landscape are on average 500 m
long, there is no density contrast between the soil and the
bedrock, the diffusivity in the soil-mantled foreland is
0.025 m2 yr�1, and the threshold slope is 0.8 in the
mountainous area. Note that the base level lowering rate

could be significantly higher in the mountainous area
compared to the foreland area; background base level
lowering plays no role in the amount of relief in landscapes
with hillslopes at a threshold angle. Under these conditions,
the knickpoint would cause the hillcrest in the foreland area
to be offset by 25 m, whereas the offset in the mountainous,
threshold portion of the landscape from this same knick-
point would be 6.25 m.
[21] We may also compare the behavior of the above

instances with the case of a hillslope where sediment
transport follows a linear-critical sediment flux law (equa-
tion (8)). The profile of a hillslope experiencing linear-
critical sediment transport at steady state is described by:

ẑ ¼ Sc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2c

16Z2
ls

þ X̂ 2

s
� Sc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2c

16Z2
ls

þ x̂� X̂
� �2s

þ S2c

4Ẑls
ln 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

16 x̂� X̂
� �2

Ẑ2
ls

S2c

vuut
2
64

3
75

� S2c

4Ẑls
ln 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16X̂ 2Ẑ2

ls

S2c

s2
4

3
5; ð29Þ

where X̂ (dimensionless) is the location of the hillcrest. The
symmetric case, where there is no hillcrest offset, is found
by setting X̂ to one. We may solve for the elevation at the
secondary channel by setting x̂ to two. This leads to a
transient (nonalgebraic) equation in X̂ ; an analytic solution
of the hillcrest offset as a function of Sc, Ẑls, and qO has not
been found. We may solve for the vertical channel offset for
various values of the hillcrest offset and the elevation of the
hillcrest in the symmetric case and compare these offsets
with the linear and critical hillslope cases. Figure 4 plots
contours of the dimensionless hillcrest offset (Ŵ) as
functions of the relief of the hillslope when it is in
symmetric state (Ẑ) and the elevation of the secondary
channel (recall the primary channel is always at an elevation
of ẑ = 0). We have plotted the hillcrest offset as a function of
the relief of the hillslopes in the symmetric state because it
is not a function of the elevation of the secondary channel.
For low-relief hillslopes (low values of Ẑ), the behavior of
the hillslopes obeying a linear-critical flux law approaches
the behavior of the hillslopes obeying the linear sediment
flux law. As the relief of the hillslopes increase, the linear-
critical slopes behave more like the threshold slopes. If two
hillslopes experience a vertical offset of the same
dimensionless height, the hillslope with less relief will
experience the greater hillcrest offset. For hillslopes with the
same vertical offset and the same relief, the hillcrest offset
will be greatest for the threshold slopes, followed by the
linear-critical slopes, with the hillslopes where sediment
flux goes linearly with slope having the lowest hillcrest
offset.

3.2. Migrating Hillcrest Due to Steady But Unequal
Channel Incision Rates

[22] To examine the possibility of stream capture associ-
ated with hillcrest migration, we consider the case in which
two adjacent channels are incising at steady, but different,
rates. The incision rate of the channel at x̂ = 0 is Î , and at

Figure 4. Contours of the dimensionless hillcrest offset
(Ŵ) as a function of hillslope relief and vertical channel
offset. The solid line is for hillslopes experiencing a linear
sediment flux law, the dashed line is for linear-critical
slopes, and the dotted line is for threshold slopes.
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x̂ = 2 the incision rate is set to a fraction of Î , which we call
qI (dimensionless). If the channel at x̂ = 2 is incising at a
different rate than the channel at x̂ = 0, then the relative
elevation of the channel at x̂ = 2 will change:

@ẑ
@ t̂

�����
x̂¼2

¼ qt
qL

Î qI � 1ð Þ: ð30Þ

Numerical solutions have demonstrated that from arbitrary
initial conditions and steady but unequal downcutting rates
at x̂ = 0 and x̂ = 2, the soil thickness reaches a steady state
after some finite period of time (@ĥ/@t = 0). We call this a
pseudo steady state because while the soil thickness does
not change in time, the surface topography is transient, and
the pseudo steady state condition only exists until the
channel that is incising at a slower rate is captured by the
fast eroding channel. When the dimensionless soil produc-
tion rate, exp(�ĥ), reaches its steady state condition it is a
linear function of x̂. This linear function is:

e�ĥ ¼ Î 1� qIð Þ
2

x̂� Î : ð31Þ

Equation (31), combined with the dimensionless equation
for soil thickness using the linear flux law, results in an
equation for the curvature of the pseudo steady state
hillslope:

@2ẑ
@x̂2

¼ qttd
qL

Î � qttd
qL

Î 1� qIð Þ
2

x̂: ð32Þ

At x̂ = 0, the boundary condition is ẑ = 0. At x̂ = 2, the
boundary condition may be found by integrating with
respect to time and letting ẑ at t̂ = 0 be equal to zero:

ẑ
��
x̂¼2

¼ qt
qL

Î qI � 1ð Þ̂t: ð33Þ

These two boundary conditions may be used to solve for the
pseudo steady state topography:

ẑ ¼ � tdqt Î 1� qIð Þ
12qL

x̂3 þ tdqt Î
2qL

x̂2

þ qt Î
2qL

1� qIð Þ̂tx̂� tdqt Î
qL

� tdqt Î 1� qI½ 	
3qL

� �
x̂: ð34Þ

The dimensionless elevation of the hillslope (ẑ) is a function
of both x̂ and t̂. The hillcrest is located where the slope of
the soil surface equals zero. The location of the hillcrest, x̂d,
is found to be:

x̂d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6td 2td þ 2qI 3̂t þ td½ 	 þ q2I 2td � 3̂t½ 	 � 3̂t
� �q

� 6td
3 qI � 1ð Þtd

:

ð35Þ

The dimensionless lateral migration speed of the hillcrest,
ûd, is found by differentiating equation (35) with respect to
dimensionless time:

ûd ¼
3 1� qIð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6td 2td � 3̂t þ 2qI 3̂t þ td½ 	 þ q2I 2td � 3̂t½ 	
� �q : ð36Þ

Figure 5. Pseudo steady state hillcrest migration. The parameter qI is the ratio of the rate of incision in
the secondary channel to the rate of incision in the primary channel. (a) Profile of a hillslope where the
secondary channel is incising at a slower rate than the primary channel. Dots denote the location of the
hillcrest. Parameters are td = 2, qt = 10, qD = 100, Î = �0.1, and qI = 0.9. (b) Dimensionless velocity of
the hillcrest for td = 1. (c) Dimensionless velocity of the hillcrest for td = 1.5. (d) Dimensionless velocity
of the hillcrest for td = 2. In Figure 5b, for qI = 0.5, qI = 0.6 and in Figure 5c for qI = 0.5 the plots end
where the location of the hillcrest is x̂ = 2. Note the change in vertical scale in Figures 5b and 5c.
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The dimensionless incision rate (Î) of the primary channel
and the time and length ratios (qt and qD) are important in
determining the curvature, slope, and relief of the pseudo
steady state hillslope, but they play no role in determining
the location and migration speed of the hillcrest. The
behavior of the hillcrest is solely a function of qI, td, and t̂.
Figure 5 shows some of the behavior of the pseudo steady
state hillslope. As the secondary channel incises at a slower
rate than the primary channel, the relative elevation of the
secondary channel increases, and the hillcrest migrates
away from the primary channel (Figure 5a). In all cases the
migration speed of the hillcrest increases with time. As qI
approaches one, the relationship between ûd and t̂ may be
approximated as linear, but at smaller values of qI (when the
secondary channel is being offset from the primary channel
at a faster rate), ûd increases nonlinearly with time
(Figures 5b–5d). The density ratio (td) is inversely related
to ûd (equation 36), and ûd also decreases with increasing qI.
Lower values of qI mean that the vertical offset distance
between channels will increase more rapidly (equation 34),
and the faster this relief between channels is generated, the
faster the hillcrest migrates.
[23] Stream capture occurs when the location of the

hillcrest equals the location of the secondary channel
(x̂d = 2). The dimensionless time to stream capture (̂tsc)
is found by setting the hillcrest location equal to the
location of the secondary channel in equation (35) and
solving for time:

t̂sc ¼ � 2td 1þ 2qIð Þ
3 qI � 1ð Þ ð37Þ

Figure 6 shows how t̂sc varies with variations in qI. For
small values of qI, meaning that the vertical offset elevation
between the primary and secondary channel grows rapidly,
t̂sc can approach or be less than one (the time to stream
capture approaches the relaxation time of the hillslope). As
qI moves to values of 0.3–0.4, the time to stream capture
begins to increase rapidly, and as qI approaches one the time
to stream capture approaches infinity.
[24] BothMatmon et al. [2003] and Kirchner et al. [2001]

have measured qI values approaching 0.5 in the field (see

Table 1). In the drainage basins measured for these two
studies, the channel spacing is large enough (O(103–104 m))
that the imbalance in erosion rates over adjacent basins
would need to persist for tens of millions of years for a
basin to capture the adjacent stream via this mechanism. For
example, with l = 500 m (the approximate spacing between
basins one and two in the work by Kirchner et al. [2001]),
D = 0.025 m2 yr�1, no density difference between the soil
and bedrock (td = 1), and qI = 0.5, the time to stream
capture from a symmetrical state (the two channels are at the
same elevation) would be 2.66 
 107 years. The hillcrest
migration speed in such a case would be on the order of
0.01 mm yr�1. This rate may seem negligible, but consider
a situation in which l = 100 m, a scale at which the basin-
averaged erosion rates in adjacent basins have yet to be
measured using detrital cosmogenic radionuclides. With all
other parameters the same as above excluding the channel
spacing, the time to stream capture decreases to �1 

106 years. This time would reduce to five hundred thousand
years if qI were 0.2, which is the ratio of erosion rates
between adjacent catchments reported by Riebe et al. [2000]
at Fort Sage, California. The cosmogenic isotope method
used to calculate the spatially varying erosion rates by both
Matmon et al. [2003] and Kirchner et al. [2001] averages
rates over this timescale; such a duration of an average
imbalance in erosion rates between adjacent basins is
reasonable. To dimensionalize the hillcrest migration veloc-
ity, the dimensionless velocity is multiplied by the factor
l/D, so shorter slopes with higher diffusivities will have
faster hillcrest migration velocities. More field studies
quantifying spatially varying rates of erosion in adjacent
basins at the l � 100 m scale could better constrain the
likelihood of stream capture through a mechanism of
differential downcutting rates in adjacent basins.
[25] Consider also the problem of escarpment retreat. A

number of authors have suggested that escarpments can
retreat at rates of 1 mm yr�1 if the escarpment has retreated
at a constant rate since the time of rifting, whereas others
have suggested that the recent retreat rates are considerably
slower, and that a majority of the retreat occurred shortly
after rifting (for an overview, see van der Beek et al. [2002]
and references therein). On the southeastern Australian
escarpment Heimsath et al. [2000] found that on the coastal
side of the escarpment the basin-averaged erosion rate
(measured using 10Be concentration in river sand) was

Figure 6. Dimensionless time to stream capture (̂tsc) as a
function of the incision ratio qI and the density ratio td. As
qI approaches 1, t̂sc asymptotically approaches infinity.

Table 1. Measured Incision Ratios of Adjacent Basinsa

Basin Reference qI Source

25,27 0.68 ± 0.18 1
26,27 0.69 ± 0.19 1
14,15 0.71 ± 0.21 1
1,2 0.55 ± 0.14 1
GSCS-1, GSCS-2 0.49 ± 0.12 2
GSBC-1, GSCA-1 0.59 ± 0.15 2
GSCO-4, GSRF-11 0.57 ± 0.14 2
Fall River 0.50 ± 0.11 3
Fort Sage 0.16 ± 0.07 3

aBasin reference are the location names used by Kirchner et al. [2001]
(source 1), Matmon et al. [2003] (source 2), and Riebe et al. [2000] (source
3) of the adjacent basins used to calculate qI. The data from Riebe et al.
[2000] were derived from their Figure 1.
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51.49 
 10�6 m yr�1, whereas the basin-averaged erosion
rate on the upland side of the escarpment was 15.47 

10�6 m yr�1. This difference in erosion rates could lead to
migration of the hillcrest, contributing to escarpment retreat;
the difference in erosion rates gives a qI value of 0.3
between the coastal and upland side of the escarpment.
Heimsath et al. [2001] also found the diffusivity to be
0.004 m2 yr�1. We consider the hillslope length in this case
the distance from the hillcrest to the channel head. For
hillslopes with lengths on the order of 10–100 m and with a
density ratio (td) of 1.5, the hillcrest retreat rates would be
on the order of 10�4 to 10�5 m per year. This should be
considered only a rough estimate of escarpment retreat rates
due to the fact that as the hillslope on the fast eroding side
of the escarpment grows in length as the hillcrest migrates
toward the upland, the location of the fluvial network is
likely to change.
[26] For hillcrests that migrate rapidly, the diffusivities

would have to be extremely high, the hillslopes short,
density differences between soil and bedrock low, and the
difference in erosion rates on either side of the escarpment
pronounced. For example, with no difference in the densi-
ties of soil and bedrock (td = 1), hillslopes that are 20 m
long, a difference in erosion rates of a factor of 20 (qI =
0.05), and a diffusivity at the upper range of any measured
(D = 0.03 m2 yr�1; see Fernandes and Dietrich [1997] for a

range of diffusivities) the hillcrest would migrate at a rate on
the order of 1 mm per year.

4. Numerical Simulations of Transient Hillcrest
Migration

[27] To investigate the transient response of the hillslope
hillcrest to unsteady downcutting in the primary and sec-
ondary channels we solve equations (20) and (21) numer-
ically. We focus the numerical investigation on two
scenarios of transient channel incision. The first scenario
models knickpoints propagating through a drainage basin.
Two knickpoints of identical elevation travel through the
primary and secondary channel, but there is a delay between
the time these knickpoints pass the base of the hillslope.
This delay is a natural feature of knickpoint propagation
because the celerity of the knickpoint varies between basins
if they have different sediment supplies or water discharges
[Crosby and Whipple, 2005; Whipple and Tucker, 1999].
The second scenario models the effect of having incision
rates that vary with different frequency and amplitude in the
primary and secondary channels. This variation is an
approximation of downcutting of streams that have different
thresholds for channel incision and flood distributions that
cause temporal variations in downcutting rates [e.g., Snyder
et al., 2003; Tucker, 2004]. For these two cases, the long-

Figure 7. (a and b) Transient behavior of a hillslope subjected to two knickpoints of the same elevation.
Plots are read from bottom to top for advancing dimensionless time (̂t); a horizontal slice through
Figures 7a and 7b would represent a profile at a given t̂. In Figure 7a, contours represent surface
elevation. In Figure 7b, contours represent soil thickness The dotted lines in Figures 7a and 7b show the
location of the hillcrest.
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term average erosion rate is set to be the same in both the
primary and secondary channel.

4.1. Effect of Delayed Knickpoint Migration

[28] In the first set of simulations the two channels
bounding a 1-D hillslope pair are incising at a background
rate Î . A knickpoint passes through the primary channel at
t̂ = 0. It incises a fraction of the total relief of the hillslope
qkp. After a delay time of t̂kpd, a knickpoint of the same
elevation passes through the secondary channel. A finite
difference model is used to track the transient response of
the hillslopes separating the channels to the passage of these
knickpoints. The response of a hillslope with a linear flux
law (equation (7)) has been explored by Fernandes and
Dietrich [1997] and Roering et al. [2001], but the simu-
lations presented here differ in both the forcing (in the form
of incision rates) and the incorporation of soil production.
Additionally we allow asymmetry of the hillslope, which
leads to hillcrest migration.
[29] Inclusion of soil production in modeling the transient

response of a hillslope is significant in two important ways.
First, as will be shown later in this section, the expansion
(or contraction) of the material on the hillslope as it is
converted from bedrock to soil (encapsulated in the param-
eter td) acts as a first-order control on the transient response
of the hillslope. Second, the response of the soil thickness
can lag behind the response of the surface topography.
4.1.1. Linear Flux Law
[30] In the first set of delayed knickpoint migration

simulations, a linear sediment flux law is used
(equation (7)). When a knickpoint in the primary channel
reaches the base of the modeled hillslope, the hillslope is
steepened near the channel and responds with increased
sediment flux. The increased sediment flux from the distur-
bance causes soil to be evacuated (Figure 7). Evacuation of
soil causes a reduction in the soil thickness, thus causing an
increase in soil production (see equation 3). After the initial
wave of increased sediment flux and the corresponding
decrease in soil thickness, the soil recovers back to its
steady thickness, but at a rate different from the rate of
return to steady surface topography. Figure 7a shows the
response of the surface topography to the passage of the two
knickpoints, and Figure 7b shows the response of the soil
thickness. After the passage of each knickpoint the distur-
bances in soil thickness move away from the disturbed
channel, widen, and decay (Figure 7b). The disturbance to
the surface topography propagates upslope until it reaches
the hillcrest, at which point it begins to ‘‘push’’ the hillcrest
away from the disturbed channel. As the disturbance in
topography and soil depth moves away from the primary
channel and approaches the hillcrest, soil is evacuated
toward the disturbed channel, and the sediment flux toward
the undisturbed channel is reduced. This reduces the soil
depth downslope of the hillcrest away from the disturbed
channel. We call the period during which the hillcrest moves
away from the primary channel the push phase. As the
hillcrest moves toward the secondary channel a wave of
increased erosion propagates away from the secondary
channel. At some time after the second channel has been
disturbed the hillcrest begins to migrate back toward its
equilibrium position at x̂ = 1. We refer the period of time
between the time the hillcrest begins to migrate back toward

the primary channel due to the passage of the second
knickpoint and the time when the hillcrest returns to the
equilibrium position the restore phase.
[31] The motion of the hillcrest has a characteristic shape

(e.g., the dotted lines in Figure 7) determined by the
processes described in the previous section. Numerical
simulations have shown this motion to be a function of
the knickpoint delay t̂kpd, the density ratio td, the knickpoint
ratio qkp, and a ratio qZ:

qZ ¼ 1

2

l2

Dg

@z0
@t

: ð38Þ

The quantity qZ is the ratio between the time it takes soil
eroding at the background rate @z0/@t to erode through soil
of thickness 2g and the relaxation time of the hillslope. For
example, a hillslope with a background incision rate of
2.5 
 10�5 m yr�1 (similar to the erosion rates measured
with 10Be in the Smokey Mountains [Matmon et al., 2003]
and southeast Australia [Heimsath et al., 2001]), a soil
production length scale (g) of 0.5 m, a diffusivity of
0.01 m2 yr�1, and a hillslope length (l) of 100 m would
have a qZ value of 25.
[32] At an approximation, both the push phase and the

restore phase may be described by an exponential decay
function of the form:

F t̂ð Þ ¼ Fe þ Fs � Feð Þe� t̂
k; ð39Þ

[e.g., Howard, 1988; Roering et al., 2001] where F(t) is
some function of time (in this case the location of the
hillcrest) Fs is the value of the function at the start time (and
perturbed from equilibrium), and Fe is the value at the
function at equilibrium. In the case of the push phase Fe is
the theoretical maximum push distance (equation (26)) and
in the case of the restore phase Fe is x̂ = 1. The decay
constant, k, is a dimensionless parameter that determines
how quickly the system will adjust to perturbations. It is a
response time that is scaled, like t̂, by the relaxation time of
the hillslope. The decay constant, k, represents the time it
takes the hillcrest to respond to perturbation as a fraction of
the hillslope relaxation time. For example, if k = 0.1, the
disturbed hillcrest will have migrated ninety percent of the
distance to the maximum theoretical offset after a period of
0.23 times the hillslope diffusive timescale (TD = l2/D),
whereas if k = 1 the hillcrest will have migrated back to a
tenth of the original disturbance after period of 2.3 times TD.
[33] In some cases, the exponential approximation may

be relatively poor. Closer examination of the motion of the
hillcrest reveals that the exponential fit of the hillcrest
relaxation time varies in dimensionless time. To illustrate
this more complex behavior, we linearize equation (39) with
respect to t̂:

X ¼ t̂

k
; ð40aÞ

where

X ¼ � ln
F t̂ð Þ � Fe

Fs � Fe

� �
: ð40bÞ
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The slope of the line that defines X as a function of t̂ is
related to the hillcrest relaxation time as a fraction of the
hillslope relaxation time:

dX

d̂t
¼ 1

k
: ð41Þ

We define two decay coefficients, kp(̂t) for the push phase
and kd(̂t) for the restore phase. This approach allows us to
examine the adjustment rate of the hillcrest as a function of
time. This approach is necessary because the hillslope-soil
system is responding on two different timescales which lead
to a complex response of the system to transient perturba-
tions. The two timescales are related to the adjustment of
topography from sediment fluxes (which respond to
changes in slope), and the adjustment of soil production
(which respond to changes in soil depth). A time varying k
measures the changing rate of adjustment of the hillcrest to
the equilibrium state as the coupled system responds to
transient changes in channel incision rates. Greater hillcrest
relaxation times (e.g., greater k values) represent slower
adjustment of the hillcrest to channel perturbations, whereas
smaller hillcrest relaxation times (e.g., smaller k values)

represent faster adjustment of the hillcrest to channel
perturbations.
[34] Variations in the density ratio td and the offset ratio

qkp lead to systematic variations in the hillcrest relaxation
time throughout the duration of the push phase. Increasing
qkp leads to increasing hillcrest relaxation times in both the
push and restore phases (kp and kr, e.g., Figure 8a).
Increasing qkp increases the disturbance of the surface
topography relative to the relief of the hillslope, which
would presumably lead to faster response times, but the
hillcrest also must move farther from equilibrium, increas-
ing the response time. The numerical results imply that the
increased distance the hillcrest must migrate to reach
equilibrium is more significant in determining the adjust-
ment rate than the perturbation in surface topography
caused by the knickpoint.
[35] Increasing td (greater soil lofting) increases the

relaxation time of the hillcrest (Figures 8c and 8d), except
in some cases shortly after the passage of the second
knickpoint (Figure 8d). The relaxation time of the hillcrest
is more sensitive to changes in td than to changes in qkp
early in the push phase and throughout the restore phase
(compare Figure 8a to Figure 8c and Figure 8b to Figure 8d).

Figure 8. Relaxation time of hillcrest migration as a fraction of hillslope relaxation time (k). All runs have
a t̂kpd of 1. Figures 8a and 8b show variation in qkp with other parameters held constant for (a) push and
(b) restore phases. Figures 8c and 8d show variation in td with other parameters held constant for (c) push
and (d) restore phases. Figures 8e and 8f show variation in qZ with other parameters held constant for
(e) push and (f) restore phases. Figures 8g and 8h show variation in qkpwith td= 1 for (g) push and (h) restore
phases. In Figures 8g and 8h, there is no sensitivity to qZ. Note the change in vertical scale.
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For example, consider a hillslope with a diffusivity (D) of
0.02 m2 yr�1 and a length (l) of 40 m, and all other
parameters the same as those used to generate Figure 8b.
The diffusive timescale of this hillslope is then 80 ka. Such
a hillslope whose soil is half as dense as the bedrock
(td = 2) will have its hillcrest migrate ninety percent of
the distance to its maximum theoretical offset (determined
by equation 26) within approximately 50 ka. If the soil is
density ratio is lowered to 1.25, however, this time becomes
approximately 30 ka.
[36] The relaxation time of hillcrest migration responds in

a complex way to changes in qZ (Figures 8e and 8f). When
the disturbance caused by a knickpoint first reaches the
hillcrest the rate of response is greater for hillslopes with
smaller values of qZ (with smaller values of k corresponding
to faster response rates, Figures 8e and 8f). As time passes
however, the response rates adjust, and for larger values of
time the response rate increases with increasing values of qZ.
The physics of this complex response can be further
elucidated by examining the special case of td = 1.
Examination of equation (21) reveals that if td = 1, then
the first term in the brackets goes to zero. This term is the
transient response of the surface due to the lofting of the soil
as it is converted from its parent material. When td = 1, the
response of the hillcrest has no dependance on qZ. The
changes in the relaxation time of the hillcrest through time

for td = 1 are shown in Figure 8g and 8h. Changes in the
relaxation time of the hillcrest due to lofting processes can
be found by subtracting the lines in Figures 8g and 8h from
the lines in Figure 8e and 8f. The difference in these trends
demonstrates that lofting process can have a significant
effect on the transient behavior of the hillslope.
[37] Figure 9 shows dimensionless hillcrest offset distan-

ces for runs with different values of qZ and t̂kpd. These
curves show that the trend in faster response times (lower k
values) for lower values of qZ shortly after the passage of the
knickpoint dominates the behavior of the hillcrest. Specif-
ically, for lower values of qZ the initial response of the
hillcrest to perturbations is faster than for lower values of qZ,
and most of the divides motion occurs in these early stages.
Recall that lower values of qZ would result from shorter
hillslopes, lower background incision rates, greater diffu-
sivities, and greater soil production length scales.
4.1.2. Linear-Critical Flux Law
[38] When hillslope sediment transport follows the linear-

critical sediment flux law (equation 8), we define qkp to be
the ratio of the height of the knickpoints to Ẑls. Unlike the
linear case, linear-critical hillslopes with the same value of
qZ do not lead to identical hillcrest migration behavior if td
and qkp are the same. Because we do not have an analytical
solution for the maximum offset distance as a function of
the other model parameters, using equation (40) to calculate
the decay rates is difficult because the final state of the
hillcrest may only be calculated by iterative numerical
means. We have chosen instead to directly compare the
motion of the hillcrest for various parameter values
(Figure 10). For low-relief slopes, the behavior of hillslopes
with linear-critical sediment transport approximates the
behavior of slopes with linear sediment transport for reasons
discussed in section 3.1. As the relief increases, however,
the nonlinear flux terms begin to dominate transport
[Roering et al., 2001], and the behavior of the hillcrest
departs from the behavior of hillslopes with a linear
sediment flux law.
[39] Figure 10a compares the migration of the hillcrest for

linear-critical slopes with varying dimensionless relief but
identical values of qZ. As the relief increases, the distance
that the hillcrest migrates also increases. Although the
hillcrest migrates further for the hillslopes with higher relief,
the adjustment rate is faster such that they spend less time
out of the symmetry after the second knickpoint has
migrated past the base of the hillslope (Figure 10a). If the
relief is held constant, varying the knickpoint ratio qkp
affects the distance the hillcrest travels but has only a
negligible effect on how long the hillcrest spends away
from x̂ = 1 after the passage of the second knickpoint
(Figure 10b). This implies that the adjustment rate for
hillslopes with variations in qkp is approximately the same
during the restore phase, a result that mirrors the behavior of
the linear case (see Figure 8b). Similarly, the response of the
hillcrest mirrors the linear case for variations in qZ
(Figure 10c) and td (Figure 10d). As noted in section 4.1.1.,
the richest variation in the behavior of the hillcrest occurs
when qZ is varied. Variations in the dimensionless relief, the
density ratio, and the knickpoint ratio lead to systematic
variations in the response rate in that varying these parameters
will either increase or decrease the response rate in the same
manner regardless of the knickpoint delay.

Figure 9. Hillcrest offset through dimensionless time for
hillslopes with linear sediment transport, td = 2, and qkp =
0.3: (a) t̂kpd = 1, (b) t̂kpd = 0.5, and (c) t̂kpd = 0.2. The solid
lines have qZ = 0.1, the dashed lines have qZ = 1.0, the dash-
dotted lines have qZ = 10, and the dotted lines have qZ = 100.
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4.1.3. Soil Storage and Thickness Effects
[40] To track soil storage, we measure the ratio of the total

storage of sediment on the hillslope at dimensionless time t̂
to the total soil storage at steady state. We name this ratio
the soil storage ratio qss. For both flux laws, the soil
thickness, ĥ, reacts more slowly than the surface topography
(Figure 7b) such that when the hillcrest returns to the
symmetric position at x̂ = 1, the soil has not returned to a
steady state (where @ĥ/@ t̂ = 0 and qss = 1). Typical plots of
the time evolution of soil storage after perturbations by
knickpoints are shown in Figure 11. The lines in Figure 11
end when the hillcrest in the simulation has returned to the
equilibrium position at x̂ = 1. The reduction in soil storage
on the hillslopes caused by the evacuation of sediment due
to the knickpoints will be greater for increasing td and qkp.
Hillslopes with faster background incision rates Î have
smaller changes in soil storage on the hillslope because
slower incision rates lead to thicker soils, and the amount of
sediment evacuated from the hillslope will be a smaller
percentage of the total soil storage in thicker soils. We
restrict our description of the dynamic behavior of soil

Figure 10. Hillcrest offset as a function of dimensionless time. All runs use a linear-critical sediment
flux law except where labeled. The knickpoint delay (̂tkpd) is 0.5. (a) Variations in Ẑls. (b) Variations in
qkp. (c) Variations in qZ.. (d) Variations in td. The solid line in Figures 10a–10d is from the same model
run.

Figure 11. Change in soil storage ratio through time. All
runs have qZ = 10, t̂kpd = 0.5, and qkp = 0.3. All runs have
td = 2 unless noted. Hillslope with linear-critical flux law
has a Ẑls value of 0.5.
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storage following perturbation to this simple summary, as a
detailed analysis is beyond the scope of this contribution.

4.2. Effect of Variations in Amplitude and Frequency
of Incision Rates

[41] The incision rate of a channel is related to water
discharge and sediment flux [e.g., Howard et al., 1994;
Sklar and Dietrich, 2004; Whipple and Tucker, 1999], both
of which are likely to be stochastic in time [e.g., Snyder et
al., 2003; Tucker, 2004]. The probability distribution of
discharge and sediment flux will vary depending on the size
of the basin, so, for example, if two adjacent basins are of
different size and are eroding at the same rate averaged over
a time far greater than the time of individual events, one
basin may be incising with frequent but low-magnitude
incision events while the other may be incising in infrequent
but high-magnitude events. This discrepancy in the
frequency and magnitude of incision events in adjacent
basins with the same long-term lowering rate can perturb
the location of the hillcrest separating these basins.

[42] Here we approximate the time varying nature of
stream incision by modeling the incision rate in the primary
and secondary channels with sine waves of different ampli-
tudes and frequencies. We make this simplification because
the computational time required to run the large number of
simulations that would need to be performed to quantify
hillcrest migration based on a stochastic distribution is
prohibitive. The approach of modeling erosion rate vari-
ability using sinusoidal functions has been taken by Furbish
and Fagherazzi [2001] in investigating the transient re-
sponse of a hillslope with a fixed hillcrest and a linear
sediment flux law. Here we expand this analysis to inves-
tigate the behavior of the hillcrest as the two channels incise
with the same average incision rate but with different
frequencies and amplitudes.
[43] We model adjacent channels that, on a long-term

average, incise at the same rate Î avg. The incision rate of the
primary channel has a dimensionless amplitude Âp and a
dimensionless period P̂p such that the incision rate of the
primary channel (Î p) through time is:

Îp ¼ Îavg � Âp sin
2p
P̂p

t̂

 !
: ð42Þ

All dimensionless amplitudes and incision rates are scaled
analogously to Î (see equation (13)) and all dimensionless
periods are scaled analogously to dimensionless time (see
equation (15)). The incision in the secondary channel has an
amplitude and period that are related to the amplitude and
period of the primary channel by

Âs ¼ qAÂp; ð43aÞ

P̂s ¼ qPP̂p: ð43bÞ

We call qA and qP the amplitude and period ratios,
respectively. The downcutting rate of the secondary channel
is then

Îs ¼ Îavg � qAÂp sin
2p
qPP̂p

t̂

 !
: ð44Þ

[44] We present here a general overview of the behavior
of the hillslopes and hillcrests subject to sinusoidal varia-
tions in the downcutting rates of the bordering channels,
rather than perform a complete study of parameter space.
Our numerical experiments focus on hillslopes on which
sediment transport can be described by the linear-critical
sediment flux law. We illustrate typical behavior of the
hillcrest for hillslopes where qZ = 10, Ẑls = 0.5 (this means
the relief of the linear-critical hillslope will be �0.4 because
the linear-critical flux law limits the steepness of the hill-
slope gradient on high-relief hillslopes), and td = 2. From
the results in section 4.1.2., it should be noted that the
hillcrest will move greater distances than the runs presented
here if td were reduced, and the hillcrest would move more
slowly and move a shorter distance if Ẑls were decreased.
[45] If the two channels have different instantaneous

incision rates (e.g., qA and qp are not equal to one), vertical

Figure 12. Vertical channel offset and hillcrest offset for
hillslopes bounded by channels with oscillating incision
rates. All runs use a linear-critical flux law and have qZ = 10,
td = 2, Ẑls = 0.5, Î avg = �0.2, Âp = 0.2, and qA = 1. The
dotted lines are the vertical channel offset, and the solid
lines are the hillcrest offset. The P̂p and qP values are listed
above each plot.

F04026 MUDD AND FURBISH: LATERAL MIGRATION OF HILLCRESTS

14 of 18

F04026



channel offsets will be generated though time. Greater
channel offsets will lead to greater distances of hillcrest
migration. The migration of the hillcrest is similar to the
temporal pattern of channel offset, but the oscillation of the
hillcrest will be damped and shifted in phase compared to
the oscillations in the vertical channel offset. The phase shift
is significant because it means that when vertical channel
offsets are nil, the divide will still be offset.
[46] Furbish and Fagherazzi [2001] found that higher-

frequency oscillations (e.g., lower values of P̂p, more cycles
of the incision rate in a given time period) in the channel
incision rate are less likely to reach the drainage hillcrest
than lower-frequency oscillations (e.g., higher values of P̂p,
fewer cycles of the incision rate in a given time period). We
find this to be true in the case where the hillcrest is free to
migrate and break the symmetry of the hillslope. The
average offset over time may be solved analytically; this
average offset will increase linearly with Âp, increase
monotonically with qA and P̂p, and decrease monotonically
with qp.

[47] Three examples of vertical channel offsets and hill-
crest offsets as a function of time are plotted in Figures 12a,
12b, and 12c. The high-frequency oscillations in Figure 12a
result in smaller hillcrest offsets than the lower-frequency
examples of Figures 12b and 12c. The oscillations in the
incision rate of the bounding channels will lead to oscil-
lations in the vertical channel offset, and higher-frequency
oscillations in the vertical offset will be less likely to
influence the migration of the hillcrest than lower-frequency
oscillations. Figure 12 demonstrates that the response of the
hillcrest reflects the vertical channel offset, but this signal is
damped and delayed. We point out that the dimensionless
time t̂ is scaled by the diffusive timescale TD, which ranges
from 104 to 106 years [Mudd and Furbish, 2004]. Variations
in downcutting on the human timescale (e.g., a 10 year
cycle of incision rates caused by, for example, El Nino
climate cycles, gives a P̂p of 10

�5 for a 100 m long hillslope
with a diffusivity of 0.01 m2 yr�1) will likely not be
reflected in the hillcrest, whereas variations caused by
long-term climate change will be reflected in the motion
of the hillcrest. In Figures 12a and 12b, all parameters are
the same except for the periods of the incision rate fluctua-
tions. Note that in Figure 12a, which has a shorter period
(lower P̂p), the hillcrest offset is a smaller fraction of the
channel offset than in the case of Figure 12b.
[48] Consider a dimensional realization of Figure 12

where the hillslope has a length of 20 m and a diffusivity
of 0.01 m2 yr�1. This gives a TD value of 40 ka. The relief
of the hillslope is �8 m. In the case of Figure 13a, where
P̂p = 0.25, the incision rate of the primary channel varies
over a period of 10 ka, whereas the secondary channel
varies over a period of 3 ka (qp = 0.3). These periods change
to 20 ka and 6.67 ka for the hillslope modeled in Figure 12b
(P̂p = 0.5, qp = 0.3). In both these cases, the hillcrest will
migrate with a period that is approximately the period of the
primary (low frequency) channel (10 and 20 ka for
Figures 12a and 12b, respectively). Dimensional vertical
offsets between the two channels would be 0.8 m in the case
of Figure 12a and 1.6 m, in the case of Figure 12b. The
maximum hillcrest offsets would be 0.28 m for the case of
Figure 12a and 0.66 m for the case of Figure 12b.
[49] The damping of high-frequency variations is also

reflected in the soil storage and soil thickness. Figure 13
shows the spatial variation in soil thickness as a function of
time. The secondary channel has higher-frequency oscilla-
tions; these oscillations in soil thickness are not transmitted
from the secondary channel to the hillcrest, rather the soil
thickness at the hillcrest is dominated by the signal from the
primary channel with a lower frequency of oscillation. In
summary, the transient behavior of the surface topography,
the location of the hillcrest, and the soil thickness will be
dominated by channels whose incision rate varies with low
frequency.

5. Conclusions

[50] We have investigated the behavior of lateral hillcrest
offset and migration under conditions of vertical offsets in
the elevation of channels bounding a hillcrest and locally
varying incision rates in the bounding channels. For hill-
slopes on which sediment transport takes on specific trans-
port relations (linear or linear-critical flux laws), the offset

Figure 13. Soil thickness as a function of time and space
for a hillslope bounded by channels with oscillating incision
rates. A linear-critical flux law is used. Parameter values are
qZ = 10, td = 2, Ẑls = 0.5, Î avg = �0.2, Âp = 0.2, and qA = 1,
P̂p = 0.5, and qP = 0.3.
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from symmetry of the hillcrest is a geometric function of the
vertical channel offset. The transient response of the hill-
crest is faster for knickpoints with greater relief (larger qkp,
the ratio between the relief of the knickpoint and the relief
of the hillslope) and slower for increasing density ratios on
the hillslope (the ratio of the dry bulk density of the rock to
the dry bulk density of the soil, td). The rate of hillcrest
migration is sensitive to the ratio between the diffusive
timescale of the hillslope and the time it takes to erode
through a fixed thickness of soil (2g) at the background
incision rate; we name this ratio qZ. Although the response
rate of the hillcrest varies in time, most of the divide
migration take place early after disturbance of a channel;
the divide will migrate faster for lower values of qZ. All else
being equal, shorter hillslopes, lower background incision
rates, greater diffusivities, and greater soil production length
scales will lead to faster hillcrest migration. Within a
reasonable range of parameter values (e.g., qZ = 1–100,
td = 1–2, qkp = 0.1–0.3), the divide offset will reach a
significant portion (e.g., exp[�1]) of its theoretical maxi-
mum offset within a fraction (e.g., <0.5) of the diffusive
timescale (TD = l2/D) of the hillslope. For hillslopes where
sediment transport follows a linear-critical flux law, increas-
ing hillslope relief will also lead to faster responses of the
hillcrest to channel perturbations.
[51] The hillcrests of hillslopes that are bounded by

channels whose incision rates vary in time migrate in a
manner that reflects the vertical channel offset generated by
the transient channel downcutting rates. Higher-frequency
oscillations in the channel downcutting rate are less likely to
influence the position of the hillcrest than low-frequency
oscillations. While we have not performed an exhaustive
study of the effect of incision rate oscillations, we have
found that for incision rates that vary periodically over a
time that is less than one quarter of the diffusive timescale
(TD = l2/D, for typical hillslopes TD = 103–107 years), the
migration of the hillcrest in our simulations was less than
2% of the hillslope length. If the incision rates of the two
channels bounding a hillslope are periodic through time,
then the horizontal offset of the hillcrest is also periodic in
time. The oscillation of the hillcrest will be out of phase
with the oscillation of the vertical offset of the channels, and
we have found that the hillcrest can be in an asymmetric
position when there is no difference in the elevation in the
channels. If channels bounding a hillcrest are at the same
elevation, but the hillcrest is not equidistant from the two
channels, the this could be a indication of an imbalance in
the erosion rates of the two channels bounding the hillslope.
[52] We have focused primarily on situations in which the

long-term average incision rates in the two channels are the
same. This situation leads to hillcrests that oscillate about a
central location, but we do not invoke a feedback that can
fix a hillcrest in a new location after a transient disturbance
in the channel downcutting rates or permanently change the
spatial distribution of the hillcrests. The presence of features
such as stream capture in the field and the experiments of
Hasbargen and Paola [2000] indicate that there may be
positive feedbacks between divide migration, channel off-
sets, and local incision rates. It is generally agreed that the
longitudinal profiles and incision rates of fluvial channels
are nonlinearly related to both drainage area and sediment
supply [e.g., Sklar and Dietrich, 2004; Whipple, 2004]. A

migrating divide will change both the drainage area and
sediment supply to the two channels bounding it. If a
transient change in channel downcutting persists long
enough and is great enough to change the drainage area
or sediment supply in a manner that affects the incision
rate and profile of the channel, the position of the
hillcrest may become ‘‘fixed’’ such that the hillcrest does
not move back to its original position, and the drainage
basin configuration may change to reflect a new equilib-
rium configuration.

Notation

Âp, Âs amplitude of the incision rate in the primary and
secondary channel, respectively (dimensionless).

D sediment diffusivity (L2 T�1).
h elevation of soil bedrock boundary (L).
h0 elevation of soil-bedrock boundary at x = 0 (L).
hbl elevation of soil-bedrock boundary relative to

base level (L).
ĥ dimensionless elevation of soil-bedrock boundary

relative to base level.
f dimensionless function of slope that varies with

the sediment flux law.
g soil production decay length scale (L).

h, ĥ soil thickness (L) and dimensionless soil thick-
ness, respectively.

I, Î dimensional (L T�1) and dimensionless incision
rate, respectively.

Î p incision rate of secondary channel (dimension-
less).

Î s incision rate of primary channel (dimensionless).
Î avg long-term average incision rate(dimensionless).
K sediment dispersion coefficient (M L�1 T�1).
kp decay coefficient for the push phase of hillcrest

migration (dimensionless).
kr decay coefficient for the restore phase of hillcrest

migration (dimensionless).
l length of the hillslope (half the distance between

channels) (L).
Ŵ dimensionless hillcrest offset.

Ŵlr, Ŵcs dimensionless hillcrest offset of a low-relief and
critical slope hillslope, respectively.

ph soil production rate (L T�1).
P̂p, P̂s period of the variation in incision rate in the

primary and secondary channel, respectively
(dimensionless).

rs depth-averaged dry bulk density of hillslope soil
(M L�3).

rh dry bulk density of parent material (M L�3).
Sc critical slope for linear-critical flux law (dimen-

sionless).
ST threshold slope (dimensionless).
qL length ratio (dimensionless).
qt time ratio (dimensionless).
qkp knickpoint ratio (dimensionless).
qI incision ratio (dimensionless).
qO offset ratio (dimensionless).
qA amplitude ratio (dimensionless).
qP period ratio (dimensionless).
qss soil storage ratio (dimensionless).
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qZ ratio of erosion timescale to diffusive timescale
(dimensionless).

td density ratio (dimensionless).
t, t̂ dimensional (T) and dimensionless time.
t̂sc dimensionless time to stream capture.
t̂kpd dimensionless time of knickpoint delay.
Tp production timescale (T).
TD diffusive (or relaxation) timescale (T).
ûd Dimensionless velocity of the hillcrest.
vx depth-averaged sediment velocity in the x direc-

tion (L T�1).
W0 nominal rate of soil production (L T�1).
x, x̂ dimensional (L) and dimensionless distance from

the primary channel.
x̂d dimensionless location of the hillcrest.
Ẑ dimensionless elevation of the hillcrest.
Ẑls dimensionless elevation of the hillcrest for a

symmetric hillslope with a linear sediment flux
law.

z elevation of soil-bedrock boundary (L).
z0 elevation of soil-bedrock boundary at x = 0 (L).
zbl elevation of soil-bedrock boundary relative to

base level (L).
ẑ dimensionless elevation of soil-bedrock boundary

relative to base level.
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