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ABSTRACT

Biases and uncertainties in large-scale radiosonde temperature trends in the troposphere are critically

reassessed. Realistic validation experiments are performed on an automatic radiosonde homogenization

system by applying it to climate model data with four distinct sets of simulated breakpoint profiles. Knowl-

edge of the ‘‘truth’’ permits a critical assessment of the ability of the system to recover the large-scale trends

and a reinterpretation of the results when applied to the real observations.

The homogenization system consistently reduces the bias in the daytime tropical, global, and Northern

Hemisphere (NH) extratropical trends but underestimates the full magnitude of the bias. Southern Hemi-

sphere (SH) extratropical and all nighttime trends were less well adjusted owing to the sparsity of stations.

The ability to recover the trends is dependent on the underlying error structure, and the true trend does not

necessarily lie within the range of estimates. The implications are that tropical tropospheric trends in the

unadjusted daytime radiosonde observations, and in many current upper-air datasets, are biased cold, but

the degree of this bias cannot be robustly quantified. Therefore, remaining biases in the radiosonde tem-

perature record may account for the apparent tropical lapse rate discrepancy between radiosonde data and

climate models. Furthermore, the authors find that the unadjusted global and NH extratropical tropospheric

trends are biased cold in the daytime radiosonde observations.

Finally, observing system experiments show that, if the Global Climate Observing System (GCOS) Upper

Air Network (GUAN) were to make climate quality observations adhering to the GCOS monitoring

principles, then one would be able to constrain the uncertainties in trends at a more comprehensive set of

stations. This reaffirms the importance of running GUAN under the GCOS monitoring principles.

1. Introduction

There has been much debate surrounding tropical

tropospheric temperatures since the first attempt to

create a satellite-based climate dataset (Spencer and

Christy 1990). Climate models predict amplification of

the observed tropical warming trends at the surface

(Santer et al. 2005; Karl et al. 2006), with maximum

warming rates expected in the middle and upper tro-

posphere. The observations are currently inadequately

characterized to statistically robustly inform on this issue

(Santer et al. 2008). The Remote Sensing Systems (RSS)

(Mears and Wentz 2005), the University of Maryland

(Vinnikov et al. 2006), and the National Environmental

Satellite Data and Information Service (Zou et al. 2006)
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Microwave Sounding Unit (MSU) datasets all yield trends

that are more or less consistent with model predictions.

So do some more recent radiosonde temperature data-

sets (Sherwood et al. 2008a; Haimberger et al. 2008) and

temperatures inferred from radiosonde winds (Allen

and Sherwood 2008). However, other recently produced

radiosonde datasets (Haimberger 2007; Thorne et al.

2005b; Free et al. 2005) and the University of Alabama

in Huntsville (UAH) (Christy and Norris 2006) MSU

dataset have all reported less warming aloft than ex-

pected since 1979 (Karl et al. 2006). Here we aim to

robustly reassess the uncertainty in the manually ho-

mogenized Met Office Hadley Centre radiosonde tem-

perature dataset (HadAT) (Thorne et al. 2005b), which

should better inform where the truth lies.

There have been numerous changes to the global ra-

diosonde observing network throughout the last few

decades, many of which have been poorly documented.

This has resulted in many sudden changes (inhomoge-

neities or breakpoints) within the long-term time series.

The challenge is to remove these breakpoints and re-

cover the large-scale trends, which are small relative to

both the natural variability and the magnitude of many

of the identified breakpoints. However, our ability to

do this is highly dependent on the decisions made dur-

ing homogenization (Thorne et al. 2005a). The result-

ing structural uncertainty is reflected in the different

trend estimates produced by the existing datasets (Free

and Seidel 2005; Karl et al. 2006).

McCarthy et al. (2008) developed an automated sys-

tem, adapted from the manual HadAT dataset (Thorne

et al. 2005b), that attempts to homogenize a radiosonde

dataset using neighbor-based iterative breakpoint iden-

tification and adjustment. The homogenization is con-

trolled by a number of system parameters that can be

set to different values, akin to making different meth-

odological decisions during the dataset development.

The system can be used to output a large ensemble of

different dataset realizations. McCarthy et al. (2008)

used a very simple validation ensemble and found that,

when trends are systematically biased, many experi-

ments did not fully recover the true large-scale trend.

In this study we develop four error (or breakpoint)

models based on different, much more complex, as-

sumptions in order to produce breakpoint profiles that

could exist in the real world. This extends the idealized

experiments performed by McCarthy et al. (2008). The

four different error models are applied to homoge-

neous third Hadley Centre Atmospheric Model

(HadAM3) (Pope et al. 2000) climate simulation data

from a run with prescribed historical sea surface tem-

peratures and natural and anthropogenic forcings. Tem-

poral and spatial sampling characteristics of the daytime

and nighttime observed radiosonde data are imposed on

the model data. The resulting heterogeneous data are

passed through the automatic homogenization system,

and a population of 100 realizations is produced by

varying the homogenization system parameters in a series

of experiments. The only difference between each of the

100 experiments therefore relates to the homogeniza-

tion method used. The same 100 experimental setups

are used for each of the daytime and nighttime error

model input datasets as well as the observations. Knowing

the original model ‘‘truth’’ we can assess the ability of the

system to recover the large-scale trends from heteroge-

neous data. These validation experiments permit a criti-

cal reappraisal of the trends produced when the system

is applied to the real observations, enabling us to make

inferences about the real world trends. We also run

some observing system experiments using the error

models in order to assess the impact of future possible

changes to the radiosonde network and possible av-

enues to improve our knowledge of historical data. Al-

though our homogenization experiments are performed

on levels between 850 and 30 hPa, we focus on the

troposphere, particularly on the tropics. Our main aim

is to assess whether the apparent tropical tropospheric

lapse rate discrepancy, supported by many, but not all,

currently available radiosonde datasets, could be due to

uncertainty in the radiosonde records.

2. Input data

a. Radiosonde data

The radiosonde observations used within this study

were derived from the raw daily data that were input

into the Radiosonde Observation Correction Using Re-

analyses (RAOBCORE) dataset (Haimberger 2007).

This dataset is a merge of radiosonde ingest to the 40-yr

European Centre for Medium-Range Weather Fore-

casts (ECMWF) Re-Analysis (ERA-40) (Uppala et al.

2005) and the Integrated Global Radiosonde Archive

(IGRA) (Durre et al. 2006), with preference given to

ERA-40 ingest data. Data at 12 standard pressure lev-

els (850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50,

and 30 hPa) were used from 1958 to 2003.

Daytime and nighttime observations were separated

as they have different biases (e.g., solar biases in the

daytime, Sherwood et al. 2005) as illustrated by the

WMO radiosonde intercomparison campaigns (Nash et

al. 2005 and references therein). A simple timing crite-

rion was used, counting 908E–908W as daytime for 1200

UTC and nighttime for 0000 UTC, and vice versa for all

other longitudes. Only stations between 708N and 708S
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were included, to limit the seasonality of polar day and

night. We excluded Indian stations, which have previ-

ously been found to be problematic (Thorne et al.

2005b; Lanzante et al. 2003; Parker et al. 1997). Sea-

sonal anomalies were calculated relative to 1981–2000

climatology. This increased the coverage by 28 stations

in the tropics (208S–208N) during the satellite era,

which is the focus of this paper, compared with using

1966–95 climatology, as done by McCarthy et al. (2008)

and Thorne et al. (2005b) to maximize the global cov-

erage for the full period. The resulting daytime dataset

contained a total of 586 (79 in the tropics) stations and

the nighttime dataset contained 513 (29 in the tropics)

stations (Fig. 1a).

We also use metadata documenting known changes

of instruments and observing practices. These came

from the IGRA dataset [Gaffen(1996) and subse-

quent updates]. While these metadata provide valuable

information regarding the timing of potential breaks,

they are often incomplete. Around 70% of identified

breakpoints in the HadAT (Thorne et al. 2005b) and

RAOBCORE (Haimberger 2007) datasets had no

known metadata events associated with them. Many of

these breaks were large and very likely arose from un-

recorded changes at the stations, rather than from false

breakpoint identifications.

b. Simulated data

We perform validation experiments using simulated

data from HadAM3 (Pope et al. 2000), forced with

observed sea surface temperature and sea ice distribu-

tions from the Hadley Centre Sea Ice and Sea Surface

Temperature (HadISST) dataset (Rayner et al. 2003)

and prescribed anthropogenic and natural external

forcings (Tett et al. 2007). The advantage of using these

data, instead of simply producing a randomly generated

series, is that they contain a representation of real

variations in the climate (such as ENSO) that may be

expected to interact with the ability of any homogeni-

zation system to identify and adjust for breaks.

The monthly model data were available at 10 of the

12 radiosonde observation pressure levels (all except 70

and 30 hPa) on a 2.58 latitude by 3.758 longitude grid.

Data from the nearest grid box to each station were

extracted. The data were subsampled twice, once using

the daytime observation coverage and once using the

nighttime coverage, to produce two datasets. Seasonal

anomalies were created for each station relative to a

1981–2000 climatology. Random noise with a Gaussian

distribution and standard deviation of half that of the

model gridbox series was added to approximate sam-

pling effects and to ensure that no two station series

arising from the same grid box would contain exactly

the same data. The two resulting model datasets pro-

vide homogeneous records with the same spatial and

temporal sampling as the daytime and nighttime obser-

vational datasets. We refer to these as control datasets.

3. Methods

a. Homogenization system

The homogenization system developed by McCarthy

et al. (2008) uses an iterative neighbor-based break-

point identification and adjustment technique similar to

that employed in the development of the HadAT ra-

diosonde dataset (Thorne et al. 2005b). Reference

anomaly series are generated as weighted composites of

neighboring stations, with weightings derived from

temperature correlation coefficients calculated using ei-

ther National Centers for Environmental Prediction

(NCEP) (Kalnay et al. 1996) or ERA-40 (Uppala et al.

2005) reanalyses since 1979. A station minus neighbor

difference series is then calculated, which is intended to

remove the majority of the natural climatic variations

and large-scale trends and emphasize nonclimatic

change points. The success of this depends upon how

well errors in the neighbor series cancel when averaged

together.

The Kolomogorov–Smirnov (K–S) test (Press et al.

1992), a nonparametric statistical homogeneity test, is

used to identify breakpoints in the station minus neigh-

bors difference series. Pressure levels are considered in

unison during the breakpoint identification, as the

breakpoints are assumed to affect multiple (although

not necessarily all) levels. Information regarding the

sign of the potential breakpoints is not used at this

stage. The statistical breakpoint test result series is

combined with information based on the metadata. The

metadata therefore provide additional evidence but are

not usually crucial for the identification of a break-

point. A critical threshold is used to assign breakpoints

within this combined series. See Fig. 1 in McCarthy et

al. (2008) for an example of this breakpoint identifica-

tion method.

Adjustments are calculated for all assigned break-

points at all levels, taking the difference between the

median values of the neighbor difference series before

and after the breakpoint. The process is iterative: the

critical threshold for identifying a breakpoint is relaxed

between each iteration. Therefore we should identify

and adjust only the most severe breakpoints in the early

iterations. With each iteration the neighbor series

should improve, as well as the station series itself. The

system is likely to perform best in areas with a high
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FIG. 1. Station coverage for (a) all stations, (b) GUAN stations, and (c) non-GUAN sta-

tions. Stations that contain both daytime and nighttime data are denoted by green crosses,

whereas daytime-only stations are denoted by red diamonds, and nighttime-only stations are

denoted by blue triangles.
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density of stations that do not have contemporaneous

breaks. There are 14 tunable parameters within the sys-

tem (appendix A of McCarthy et al. 2008), which affect

the location and timing of the breakpoints identified

and how the adjustments are calculated. For a more

detailed description of the system, parameters, and

limitations see section 3 of McCarthy et al. (2008).

Once the homogenization is completed, the anoma-

lies are averaged onto a 58 latitude by 108 longitude

grid, as in HadAT (Thorne et al. 2005b). They are then

vertically weighted to replicate lower-tropospheric

T2LT (Karl et al. 2006) temperature anomalies mea-

sured by MSU and to allow dataset comparisons (see

section 5). Static MSU weighting functions have been

provided by the University of Alabama in Huntsville.

Latitude bands are averaged and cos(lat) weighted to

calculate global, tropical (208S–208N), Northern Hemi-

sphere (NH) extratropical (208–708N), and Southern

Hemisphere (SH) extratropical (208–708S) mean time

series. Linear trends for the satellite era were estimated

using the median of pairwise slopes method (Lanzante

1996) to minimize the effect of outliers. It is important

to note that the true time series behavior is not neces-

sarily linear and that alternative time series descriptors

may be equally valid (Seidel and Lanzante 2004;

Thorne et al. 2005b).

b. Derivation of error models

To rigorously test the homogenization system we ap-

ply artificial breakpoint profiles to the daytime and

nighttime control datasets from the climate model. The

numbers, dates, and profiles of the breakpoints varied

between four different error models (Table 1). Each

error model was based on different assumptions regard-

ing the size, distribution, etc., of the breakpoints (see

appendix A for more details). They were applied at the

same dates in the daytime and nighttime datasets, al-

though different breakpoint profiles were used for

these two datasets. This is consistent with published

results from radiosonde intercomparisons (Nash et al.

2005) that yield different error structures for day and

night.

Figure 2 shows the distribution of daytime break-

point sizes for each error model at 50 hPa. A positive

(negative) breakpoint is said to occur when there is

an increase (decrease) in the mean of the later part

time series compared to the mean in the earlier part of

the time series. Although we will later concentrate on

the troposphere, we chose to illustrate the break-

points applied at 50 hPa because they are larger than

in the troposphere, as is also strongly believed to be

the case in the observations (Karl et al. 2006), and

hence the systematic biases can be more easily seen.

The main features of each error model are summa-

rized below.

d Current understanding. This error model is our cur-

rent understanding based upon existing literature of

the breakpoints that afflict the observed temperature

record in the radiosonde network. The breakpoints

above 500 hPa have a negative mean (Table 1, Fig.

2a) in order to produce a cooling bias in the long-

term trends. Breakpoints in the daytime dataset have

an additional negative offset, as McCarthy et al.

(2008) and Sherwood et al. (2005) found in observa-

tions.
d Many small breakpoints. Although this error model

does contain some large breakpoints, it contains a

large number of smaller ones (Table 1, Fig. 2b).

These small breakpoints have only a very small sys-

tematic bias.
d Removal of signal. Breakpoints at or below 150 hPa

have a negative offset and those above have a posi-

tive offset (Table 1, Fig. 2c) similar in magnitude to

the temperature trend in the model. The net result is

TABLE 1. The total number of breakpoints applied within each error model and a summary of the breakpoint sizes applied at

500 hPa and 50 hPa.

Error model

Total number

of breaks

(average

per station)

Time

of day

Median

bias at

500 hPa

(K)

Median

absolute

bias at

500 hPa (K)

Standard

deviation

of biases at

500 hPa (K)

Median

bias at

50 hPa

(K)

Median

absolute

bias at

50 hPa (K)

Standard

deviation

of biases at

50 hPa (K)

Current understanding 5232 (8) Day 20.06 0.35 0.46 20.23 0.48 0.64

Night 20.05 0.32 0.49 20.10 0.49 0.64

Many small breaks 9810 (15) Day 0.00 0.14 0.28 20.01 0.18 0.38

Night 0.00 0.12 0.24 20.02 0.17 0.38

Removal of signal 4578 (7) Day 20.06 0.33 0.49 0.17 0.43 0.65

Night 20.06 0.30 0.44 0.03 0.42 0.63

Few large breaks 2616 (4) Day 20.10 0.62 0.97 20.20 0.90 1.34

Night 0.09 0.71 1.14 0.25 0.93 1.28
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to remove most of the underlying climate change sig-

nal.
d Few large breakpoints. This error model contains

fewer breakpoints than the other error models but

with a larger standard deviation, resulting in a higher

proportion of large breakpoints (Table 1, Fig. 2d).

Except in the case of the current understanding error

model, where daytime breakpoints are given a negative

offset in comparison to nighttime breakpoints, the dif-

ferences between the daytime and nighttime error

structures only arise from random differences in the

generation of the breakpoint profiles. The differences

in median biases (Table 1) are more evident at 50 hPa

where the sample is smaller, as in the real observations.

The main difference between the daytime and night-

time datasets is that nighttime has a much poorer spa-

tial coverage, particularly outside the NH extratropics

(Fig. 1a).

The error models can be used to assess the skill of a

homogenization method on data containing different

error structures, as the breakpoint locations and mag-

nitudes, and climate change signal are known. They are

also more complex than idealized test cases employed

in many earlier tests of homogenization methods (e.g.,

McCarthy et al. 2008; Haimberger 2007; Sherwood et

al. 2008a) and allow for a more comprehensive under-

standing of the trend uncertainties. The four error mod-

els used within this study were deliberately designed to

be as different as possible so that the system is not

tuned toward a given set of assumptions. They span a

range of possible error structures, all of which may con-

tain at least some characteristics (e.g., phasing, bias,

magnitude, clustering) that exist within the true obser-

vations.

c. Homogenization ensembles

We perform an ensemble of 100 homogenization ex-

periments on each dataset by randomly varying the 14

tunable system parameters listed in appendix B. Each

homogenized output represents a different set of meth-

odological choices and can be used to investigate un-

certainty in trends resulting from the homogenization

FIG. 2. Breakpoint distributions at 50 hPa for each daytime error model. A positive (negative) breakpoint is said

to occur when there is an increase (decrease) in the mean of the later part time series compared to the mean of

the earlier part of the time series. The number of breakpoints and the shape of the distributions vary between error

models. The distribution also varies with height, with lower levels showing a similar shape but with a smaller

absolute spread. The zero line is marked by the vertical dashed line, which highlights the negative bias in the current

understanding error model and the positive bias in the removal of signal error model, at this level.
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(McCarthy et al. 2008). The same 100 random param-

eter configurations were used for each ensemble so that

the only difference between each ensemble was the in-

put dataset. The variations within a given ensemble are

therefore entirely due to differences in the tuning of

the homogenization method. Ensembles were created

for each of the daytime and nighttime datasets: the

observations, the control datasets, and the four error

models. Ensembles using the original control datasets

were produced simply to assess the impact of homog-

enizing breakpoint-free data. It is important to as-

certain whether the system significantly alters these

data as that would clearly be an undesirable character-

istic.

d. Homogenization skill rankings

As well as assessing the absolute values of the trends

produced from the homogenization system for error

model ensembles, we also assess the relative skill within

ensembles by ranking local error recovery and large-

scale fidelity (see below). By comparing the rankings

between each error model we can see whether particu-

lar experiments consistently do well (or poorly) and,

therefore, determine how dependent the homogeniza-

tion skill is on the underlying error structure. If there is

little dependence, then we will be able to unambigu-

ously tune our system toward a more reliable set of

experiments and exclude the experiments we know to

be ineffective. The two approaches we use to rank the

experiments are summarized below.

d Local skill. Provides a measure of how well each ex-

periment identifies breakpoint locations and magni-

tude. We compare the root-mean-square difference

(RMSD) between the known error model time series

and the control series for each station and level with

the RMSD between the homogenized series and

the control series. The values are summed over all

stations and levels to yield a single value for each

experiment within a given ensemble. The experiment

values are then ranked between 1 and 100 (1 indi-

cating closest agreement to the known error struc-

ture). A high local skill score therefore indicates an

experiment that provides accurate local observations

relative to the other experiments within the given

ensemble.
d Trend recovery. Provides a measure of how success-

ful each experiment is at capturing the ‘‘true’’ mean

T2LT trend in the satellite era for a given large-scale

region (global, tropical, NH extratropical, or SH ex-

tratropical). The experiments are ranked between 1

and 100 (1 indicating the best) based on how closely

they estimate the trend in the unbiased control series.

4. Error model results

a. Ranking results

Using the method outlined in section 3d, Fig. 3 com-

pares the local skill rankings for the many small breaks

and removal of signal daytime ensembles. The cluster-

ing around the 1:1 line and the high correlation be-

tween the rankings show that there is good agreement

as to how the homogenization system performs on

these two error models. The correlations between the

other error models for both daytime and nighttime

were also found to be high (Table 2). This is encourag-

ing and indicates that the ability of the system to reduce

RMSD is not very dependent on the underlying error

structure. A total of 35 (32) experiments consistently

rank in the top half for the daytime (nighttime) error

model ensembles. Assuming that the error models are

uncorrelated, if the system showed no skill, it would

effectively become a random number generator. Under

this assumption the degree of agreement actually found

is considerably more than would be expected from a set

of four random number populations (100 3 0.54 5 6).

We also produced separate rankings for the tropo-

sphere only and found very similar results (not shown).

The absolute RMSD values reveal that nearly all ex-

FIG. 3. A comparison of the local skill rankings for the many

small breaks and the removal of signal daytime error models. Each

point (100 in total) represents a homogenization experiment per-

formed with a particular random parameter configuration using

each of the error models. The clustering around the 1:1 line and

the high correlation (0.90) of the ranks shows that if the homog-

enization system performed well (badly) for one error model,

then it also performed well (badly) for the other. The dashed lines

denote the rankings for each unhomogenized error model.
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periments improve local skill relative to making no ad-

justments (Table 3). Any breakpoints identified and

adjusted for in the control experiments are false, and so

are detrimental to the local skill and trend. However,

the RMSD values for the control ensembles were found

to be an order of magnitude smaller than the RMSD

values for error models. The benefit (in terms of

RMSD, i.e., the accuracy of local observations) of ad-

justing data in the presence of biases is therefore much

greater than the cost if no errors exist.

Figure 4 compares the tropical trend recovery rank-

ings for the current understanding and many small

breaks daytime ensembles. The correlations (Table 4)

show that these rankings are less consistent than the

local skill rankings. Therefore, skill in recovering large-

scale trends depends on the underlying error structure.

Also, an experiment that is relatively skillful at mini-

mizing RMSD error is not necessarily skillful at recov-

ering the large-scale trends (Sherwood et al. 2008b).

However, there are still 17 experiments that consistently

rank in the top half for all daytime error models, which

is more than expected by chance. A total of 12 daytime

experiments rank in the top half for both tropical trend

recovery and local skill (only 100 3 0.58 , 1 is expected

by chance), 7 of which also rank in the top half for the

global and NH extratropical trend recovery. We refer to

these seven experiments as our ‘‘top’’ experiments

throughout the rest of this paper. SH extratropical re-

sults are ignored as there is poor agreement between the

error model trend rankings in this region (only three

experiments consistently rank in the top half using these

rankings alone) owing to the sparsity of SH extra-

tropical stations (Fig. 1a). Although the tropical stations

are equally sparse, their neighbor correlation regions

are larger, so the homogenization performs better there,

as reflected in the better agreement between error

model rankings. We only consider the best performing

experiments for the daytime data as there is extremely

poor agreement between the nighttime error models:

only 7 consistently rank in the top half using the tropical

trend recovery rankings alone, again owing to data

sparsity.

An examination of the parameter settings for the

‘‘top’’ experiments did reveal that they all used an

‘‘adaptive’’ adjustment method (i.e., all adjustments are

recalculated during every iteration unlike the ‘‘non-

adaptive’’ adjustment method; see appendix A and sec-

tion 3 of McCarthy et al. 2008 for more details). No

other parameter settings stand out as being optimal.

However, 100 experiments is not a large enough sample

TABLE 2. Rank correlations between local error recovery skill for each error model based on the day (lower-left-hand triangle) and

night (italic, upper-right-hand triangle) RMSD. Correlations between the day and night RMSD rankings for each individual error model

are given on the diagonal (bold).

Current understanding Many small breaks Removal of signal Few large breaks

Current understanding 0.80 0.89 0.95 0.66

Many small breaks 0.68 0.97 0.86 0.48

Removal of signal 0.85 0.90 0.98 0.78

Few large breaks 0.84 0.90 0.97 0.80

TABLE 3. The number of homogenized series that have a lower

RMSD or trend error than each unadjusted error model for day

and night.

Error model

RMSD Trend

Day Night Day Night

Current understanding 98 98 88 21

Many small breaks 94 84 70 2

Removal of signal 100 100 93 38

Few large breaks 100 100 98 94

FIG. 4. As in Fig. 3 but using the tropical T2LT satellite-era

trend recovery rankings for the current understanding and many

small breaks daytime error models. The large departures from the

1:1 line and the low correlation (0.25) indicate that the relative

tropical trend recovery skill depends on the underlying error

structure.
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with purely random parameter setting choices to thor-

oughly investigate the effect of parameter values, as

there are too many possible settings and many are

likely to interact nonlinearly. A more detailed study

with a larger number of experiments would be required

to achieve this and is not the purpose of the current

study.

b. Absolute trend results

We now consider the tropical T2LT satellite-era

trend results from the daytime error model ensembles

(Fig. 5a). By comparing the ensembles with the original

control trend we can infer how well the system is likely

to recover the true trend in the real observations. It can

be seen that the spread in the daytime ensembles en-

compasses the original (control) trend for all error

models except for the removal of signal case. Although

the median trends underestimate the original trend, in

all cases they reduce the trend bias. This is also re-

flected in the daytime results for trend error in Table 3,

which indicates that most experiments improve the

tropical trend recovery in comparison to each unad-

justed error model. The underestimation of the bias is

partly due to the known inclusion of poor homogeni-

zation experiments that are very conservative in the

detection and adjustment of breakpoints and result in

little or no change in trend compared to the unadjusted

data. The trend in the unadjusted data does lie outside

of or near the edge of the interquartile range for all

error models. The medians of the top experiments are

better at estimating the magnitude of the trend bias

compared to the median of all experiments, and the

original trend is almost recovered for the few large

breaks error model, which is a priori the most tractable.

TABLE 4. Rank correlations as in Table 2 except using the tropical T2LT trend recovery skill.

Current understanding Many small breaks Removal of signal Few large breaks

Current understanding 0.02 20.04 0.06 0.11

Many small breaks 0.25 0.12 0.25 20.04

Removal of signal 0.38 0.53 0.14 20.12

Few large breaks 0.33 0.14 0.54 0.25

FIG. 5. Tropical (a) daytime and (b) nighttime T2LT equivalent trends for the satellite period for

the four error models and the control. The black crosses denote the trends in the unadjusted error

models and each box plot denotes the spread from the 100-member homogenized ensemble, where

the central line gives the median trend, the box gives the interquartile range (25th to 75th percentiles)

of the trends, and the whiskers give the full range of trends. The triangles denote the median trends

from the 7 ‘‘top’’ experiments. The vertical dotted line shows the model ‘‘truth.’’
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We infer that a median trend from a daytime ensemble

is likely to correctly capture the sign of the trend bias,

but is likely to underestimate the adjustment required

(see also McCarthy et al. 2008). We can therefore infer

the sign of the trend bias and place a strong lower limit

on its magnitude from the median of the full ensemble.

It is also likely that the true trend bias will be at least as

large as the median of the top performing experiments,

and possibly larger.

The nighttime tropical trend results are less encour-

aging, which is reflected in the larger spread of solu-

tions (Fig. 5b). Thus, there is a larger dependence on

the error structure. Adjusted trends from all error mod-

els except removal of signal do manage to encompass

the original trend, but in many experiments there is a

tendency for the adjustment to move the trend further

from the truth. The bias in the median trend for all

cases, except few large breaks (recall this is a priori the

most tractable), is similar to or worse than the trend in

the unadjusted data. These results are also seen in

Table 3 and must be due to the data coverage, which we

recall is much poorer than for the daytime data (Fig.

1a). We therefore have very little confidence that re-

sults from our system for the nighttime data in the trop-

ics can provide a robust indication of the sign or mag-

nitude of the systematic bias in the data.

Any breakpoints identified in the control experi-

ments are false. In some control experiments this erro-

neously shifted the tropical T2LT trends up to 0.1 K

decade21 away from the already homogenous trends in

the daytime data, and up to 0.2 K decade21 away in the

nighttime data. This highlights the risk of relying upon

a single homogenization method for trend estimation.

However, 96 (86) daytime (nighttime) experiments

shifted the trends by less than 0.05 K, and the median

trends changed by less than 3% from the original con-

trol trends. This suggests that false breakpoint detec-

tion is not likely to be the major failing of a majority of

the homogenization members. Further analysis of the

error model ensembles (not shown) supports this and

revealed that the underestimation of the trend bias in

the majority of experiments occurred mainly as a result

of missed breakpoints or incorrect adjustments, and not

from falsely identified breakpoints.

The global tropospheric results are similar to those

for the tropics, although the spread in the trend esti-

mates tends to be smaller (Figs. 6a and 7a). The same

applies to other subregions (Figs. 6b,c and 7b,c), al-

though the SH extratropical trends for the daytime cur-

rent understanding error model (which are unbiased in

the raw data) are shifted away from the truth, probably

owing to sparsity of data. The NH extratropical night-

time data perform better than for the tropics and other

subregions, as the median trend captures the right sign

of the trend bias for all error models (albeit the median

trend shifts very little for two of the error models). This

is likely due to higher station density, better station

management, and better quality metadata—all of which

are important for the homogenization methodology.

5. Observation results

Figure 8 shows the tropical T2LT satellite-era trends

for the adjusted observations produced from the same

100 experimental setups as those used for the error

model ensembles. The unadjusted daytime trend is bi-

ased cold relative to the climate model expectation of

0.14–0.20 K decade21 based upon amplification of sur-

face trends (Santer et al. 2005). The median trend from

the daytime ensemble shifts the trend closer, but the

full spread, 20.01–0.14 K decade21, does not quite en-

compass the range of model estimates. The top experi-

ments shift the median trend closer to the range based

upon model expectation. The unadjusted daytime trend

lies on the edge of the interquartile range, 0.03–0.07 K

decade21. This is a relatively large spread compared to

the daytime control ensemble, for example, which shifts

the median trend very little.

The unadjusted nighttime trend, 0.19 K decade21,

lies within the range of model expectation, although the

median trend from the adjusted ensemble, 0.13 K de-

cade21, is out of this range. The very large spread of the

adjusted trends, 0.03–0.23 K decade21, even encom-

passes the raw daytime trend.

We can make inferences about these real world

trends using the results from the model-based experi-

ments, although we are unable to calculate exact prob-

abilities. The pink bar in Fig. 8 represents the true trend

implied from the findings. However, we must caveat

that the results are based on four out of an infinite

number of possible error structures (see section 7). The

following statements can be made about the tropical

tropospheric trends:

d The trend in the raw daytime observations (0.03 K

decade21) is very likely biased cold (consistent with

McCarthy et al. 2008, Randel and Wu 2006, and Sher-

wood et al. 2005), but we cannot comprehensively

quantify the magnitude of the bias and its uncer-

tainty.
d Our findings suggests that the true tropical trend is

not only warmer than the median trend produced

from the daytime ensemble (0.05 K decade21), but

also as warm or warmer than the median trend from

the top experiments (0.08 K decade21).
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d The tropical trends from many current datasets, in-

cluding HadAT (0.05 K decade21), are likely to be

biased cold.
d The true tropical trend may be warmer than the

range estimated from the daytime ensemble. There-

fore remaining biases may still account for the appar-

ent tropical lapse rate discrepancy between the ob-

servations and climate models.

We now consider the T2LT satellite-era trends for

the other large-scale regions (Fig. 9). The median en-

semble trends indicate that the unadjusted daytime

trends are biased cold globally and in the NH extra-

tropics. In both cases the unadjusted trends also lie

outside the interquartile range. We note that the me-

dian trends from the global nighttime ensembles are

only able to capture the correct sign of the bias for two

FIG. 6. As in Fig. 5 but for the (a) global, (b) NH extratropical, and (c) SH extratropical daytime

trends.
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of the error models (Fig. 7a). However, in the other

cases the median trend is shifted very little and the

unadjusted trend falls well within the narrow interquar-

tile range. The unadjusted trend from the night obser-

vations (Fig. 9a), however, falls above the upper quar-

tile. There is, therefore, some evidence for a warm glob-

al nighttime bias, although this is not robust. The

median nighttime trend for the NH extra tropics does

capture the correct sign of the bias for all error models,

even though the unadjusted trend sometimes lies within

the interquartile range (Fig. 7b). Therefore Fig. 9b hints

at a cold bias in the observed NH nighttime trends,

although again this is not a robust result particularly as

the unadjusted trend lies within a narrow interquartile

range. Given the poor results from the validation ex-

periments in the SH extratropics, we can say very little

FIG. 7. As in Fig. 5 but for the (a) global, (b) NH extratropical, and (c) SH extratropical

nighttime trends.
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about the SH extratropical daytime and nighttime

trends. The homogenization system therefore has little

or no skill in this region.

We can only make the following inferences regarding

Fig. 9 using the results from the validation experiments

that are shown in Fig. 7:

d The unadjusted global daytime trend is very likely

biased cold, but we cannot comprehensively quantify

the magnitude of the bias and its uncertainty.
d Our findings suggest that the true global trend is not

only warmer than the median trend from the daytime

ensemble (0.11 K decade21), but also warmer than the

median trend from the top experiments (0.12 K

decade21).
d The unadjusted NH extratropical daytime trend is

very likely biased cold, but we cannot comprehen-

sively quantify the magnitude of the bias and its un-

certainty.
d Our findings suggest that the true NH extratropical

trend is not only warmer than the median trend pro-

duced from the daytime ensemble (0.27 K decade21),

but also warmer than the median trend from the top

experiments (0.28 K decade21).

6. Assessing the value of the GUAN network

The error models can also be used to understand the

effects of systematic changes to either the method em-

ployed or the data used. The latter can guide us on

future possible changes to radiosonde network. We

perform two additional sets of experiments using the

error models to assess the value of the Global Climate

FIG. 8. Tropical T2LT MSU equivalent trends for the satellite period. The red (daytime) and blue

(nighttime) crosses denote the trends in the unadjusted observations and the box plots denote the

spread from each 100-member ensemble. The triangle shows the median trend from the ‘‘top’’

daytime experiments. The green diamond and horizontal bar denote the range of expected trends

based on an ensemble of transient simulations using 19 different climate models (Santer et al. 2005,

2006). These were derived using the model tropospheric amplification estimates assuming that

the Hadley Centre Climatic Research Unit, version 3 (HadCRUT3) surface trend (green square;

Brohan et al. 2006) is perfect. Trend estimates from other radiosonde datasets are given in black

(RAOBCORE version 1.4; Haimberger 2007); HadAT2 (Thorne et al. 2005b), Radiosonde Atmo-

spheric Temperature Products for Assessing Climate (RATPAC; Lanzante et al. 2003; Free et al.

2005), and MSU datasets are given in purple [UAH version 5.2 (Christy and Norris 2004, 2006); RSS

version 2.1 (Mears et al. 2003; Mears and Wentz 2005)]. The pink bar denotes the true trend implied

from the error model experiments in section 4a (the arrow represents our inability to place an upper

bound on the range). The solid section denotes the range of estimates for which we have a higher

confidence based on our findings.
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Observing System (GCOS) Upper Air Network

(GUAN). This is a small network of stations with a

worldwide coverage sufficient for the detection of

global-mean trends (McCarthy 2008).

a. Obtaining perfect metadata for GUAN stations

First, we assess the impact of accurately recording

known instrumental or observational changes for the

GUAN stations. We subsampled the GUAN stations

(Fig. 1b) in the daytime (giving a total of 123 stations)

and nighttime (giving a total of 77 stations) error model

datasets and passed them through the system with no

metadata. We then used the same data but this time

with perfect metadata containing the correct timings of

all breakpoints. The system was forced to apply adjust-

ments at these breakpoint timings, although in some

cases where breakpoints were close together only one

adjustment may have been applied (see section 3 of

McCarthy et al. 2008 for more details). We did this

using the seven top experimental setups on the daytime

and nighttime datasets for each error model.

High quality metadata do not have a beneficial im-

pact on the T2LT tropical trends compared to using no

metadata at all (Fig. 10). The median trend of each

daytime ensemble changes very little. At night, perfor-

mance with metadata is worse in two ensembles. This

may seem surprising given that the system is given per-

fect knowledge of breakpoint locations, but there is still

a requirement for the system to provide accurate ad-

justments, which is particularly a challenge when only a

few bad quality neighbors are used. It is likely that the

GUAN nighttime coverage (Fig. 1b) is too sparse to

create a sufficiently homogeneous neighbor composite

series when only GUAN stations are used. It has al-

ready been seen in section 4b that the poor coverage in

the nighttime data inhibits the ability of our system to

recover the large-scale trends even when the full net-

work is used (albeit incomplete metadata were used).

Sparsity of the GUAN nighttime stations may also

cause more of a problem when given perfect metadata

because the system is being forced to adjust all break-

points, including the very small ones, in the early itera-

tions because knowledge of metadata in these experi-

ments all but guarantees breakpoint identification.

b. Non-GUAN stations using perfect GUAN
stations as neighbors

We now investigate the impact of using a high quality

set of GUAN stations (Fig. 1b) for homogenizing the

rest of the network (Fig. 1c). This assesses the potential

benefits of maintaining the GUAN network according

to the GCOS climate monitoring principles. First, we

FIG. 9. (a) Global, (b) NH extratropical, and (c) SH extratropical observed T2LT equivalent

trends. The box plots denote the spread in the daytime and nighttime 100-member ensembles and the

crosses denote the trend in the unadjusted observations.
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used the biased GUAN stations within each given error

model to create the neighbor composite series, and

then we used the perfect breakpoint-free GUAN sta-

tions from the original control dataset. Again we used

the seven top experimental setups for each of the day-

time and nighttime error model datasets.

The system is always better at capturing the true con-

trol trend in tropical T2LT when the perfect GUAN

stations are used as neighbors (Fig. 11). The improve-

ments in the removal of signal ensembles are particu-

larly noticeable, which is encouraging as this error

model was the hardest to homogenize in the previous

experiments (section 4b), though only seven experi-

ments were used here. These results indicate a high

quality reference series is important for trend recovery,

and this may be a problem when a biased sparse net-

work is used. If we could gain a high quality GUAN or

similar-sized network, then it is very likely we would be

able to adequately constrain the uncertainties in the

trends for the rest of the global network.

7. Conclusions and discussion

The main aim of this study was to assess whether the

tropical tropospheric lapse rate discrepancy between

climate models and some radiosonde datasets could

conceivably be accounted for by uncertainty in the ra-

diosonde records. To assess this uncertainty we devel-

oped four substantially different error models. These

error models contained artificial breakpoint profiles

based on different assumptions about the underlying

error structure. They were applied to HadAM3 climate

model data, which were subsampled to the daytime and

nighttime observations. These biased data were ad-

justed using the automatic radiosonde homogenization

system developed by McCarthy et al. (2008). We then

assessed the ability of the system to recover the original

large-scale trends, enabling us to make inferences

about the biases and uncertainties in the real world

observations.

The homogenization system produces a number of

different realizations based on different methodological

assumptions. A 100-member ensemble was created us-

ing each daytime and nighttime error model dataset, as

well as the observations. Changing the parameter set-

tings influenced the breakpoints identified and the ad-

justments calculated during the homogenization. This

in turn affected the large-scale trends produced from

each adjusted dataset.

Our prior knowledge of the original model trends

FIG. 10. Error model tropical T2LT trends using GUAN stations only for the (a) daytime and (b)

nighttime data. Median trends for the ‘‘top’’ seven homogenization experimental setups are given

using no metadata (diamonds) and perfect metadata (triangles). The trends in the unadjusted data

are denoted by the black crosses and the original control trends are marked by the vertical dotted

lines.
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and the breakpoints within each error model enabled

us to assess the homogenization skill of the system.

Most experiments exhibited skill on a local observation

basis relative to undertaking no homogenization at

all. It was found that the performance of each member

was fairly independent of the underlying error struc-

ture when ranked according to this local skill, but more

dependent when ranked according to the large-scale

tropospheric trend recovery skill (also see Sherwood

et al. 2008b).

Our results indicate that the bias in the daytime

tropical tropospheric trends was underestimated by the

majority of error models experiments. One of the four

daytime error model ensembles (the removal of signal

ensemble) was unable to capture the original model

trend at all. We are therefore unable to guarantee that

the spread in daytime observation ensemble encom-

passes the real world trend. The change in the sign of

the trend bias between the troposphere and strato-

sphere is unlikely to have caused the poor performance

using the removal of signal error model, as the system’s

breakpoint identification and adjustment methodology

should not be affected by such a change (see section 3a

and McCarthy et al. 2008 for methodology details).

However, a close examination of the removal of signal

error model revealed that it contained randomly gen-

erated clustering of breakpoints at some times through-

out the series. This could cause problems during the

homogenization and inhibit the system’s ability to re-

cover the large-scale trends. It is possible that such clus-

tering may occur in the real world observations. The

cause could also be more complex still and relate to

regional clustering and cancellation of errors, for ex-

ample. The bottom line is that we have no unimpeach-

able basis on which to reject at least some aspects of

each error model being prevalent in the poorly under-

stood real world raw data.

However, the bias in each unadjusted error model

trend was correctly reduced to some extent both in the

median ensemble member trend and even more so in

an identified set of optimal experimental setups. We

are therefore confident that the system correctly iden-

tifies a cooling bias in the daytime observations, al-

though we cannot robustly estimate the magnitude of

the bias. Our analysis provides evidence that a lower

bound of 0.08 K decade21 can be placed on our real

world tropical T2LT trend uncertainty estimate, but

does not provide an upper bound. This lower bound

indicates that many current upper-air datasets, such as

HadAT, are biased cold. Unfortunately, the tropical

nighttime observation ensemble results are unable to

provide an upper or lower bound, as many of the error

model experiments were unable to reduce the night-

time trend bias owing to the sparsity of data. Hence,

FIG. 11. As in Fig. 10 except using non-GUAN stations homogenized with error model biased

GUAN stations as neighbors (diamonds) and homogeneous control GUAN stations as neighbors

(triangles).
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our analysis using realistic validation experiments is un-

able to discount or confirm the presence of a tropical

tropospheric lapse rate discrepancy between the radio-

sonde observations and climate model expectations.

The daytime observations indicate that the unad-

justed NH extratropical and global daytime trends are

biased cold, although again we are unable to quantify

the magnitude of these biases. There is some evidence

that the unadjusted nighttime NH extratropical and

global trends contain a cold and warm bias respectively,

but this is not a robust result. Additional experiments

would be required to investigate these biases further.

The homogenization system performed particularly

poorly in the SH extra tropics for some error models in

both daytime and nighttime (likely owing to data spar-

sity), therefore it has little or no skill in this region and

we have no confidence in the observational results.

The results from the error models, and hence the

implications for our current understanding, depend on

a number of factors. There are an infinite number of

error structures that could be created by further varying

the different assumptions. There are a large number of

assumptions that we have not varied, such as the data

used to create our control dataset. The effect of using a

particular set of randomly generated breakpoints for

each error model has also not been properly investi-

gated (although this has been varied to some extent

between the different error models). Although there is

uncertainty in our results related to these influences,

the four error models used within this work spanned a

sufficiently large range to provide useful results regard-

ing the performance of the homogenization system and

the true observational trends.

Results are also dependent on the actual homogeni-

zation system being applied, therefore we will make our

error model data freely available online at http://www.

hadobs.org/ and encourage others to use them to criti-

cally reassess their systems also. The range of trend

estimates produced from each ensemble highlights the

risk of relying upon a single homogenization method

for trend estimation, particularly when there is no or

little knowledge of optimal parameter settings or meth-

odological choices. We therefore believe that much

would be gained from a coordinated comparison of in-

dependent radiosonde homogenization methods, par-

ticularly if realistic validation experiments are per-

formed. The error model data have proven useful al-

ready in examining the new dataset produced by

Sherwood et al. (2008a).

Sparsity of the network is likely to be accountable for

the poor performance in some ensembles, particularly

when compared to the ensembles that used a more

comprehensive network, although the bias was consis-

tently underestimated even in these cases. One expla-

nation may be that the system is unable to construct a

sufficiently high quality neighbor reference series. The

ability of the system to recover the trends in some or all

ensembles may be improved if alternative methodologi-

cal decisions are made in addition to those already

tested. We are therefore undertaking further experi-

ments on the error models by adding additional flex-

ibility to the system to try to ascertain whether we can

better constrain our trend estimates. These include re-

moval of data around assigned breakpoints in the

neighbor series, an assessment of sensitivity to the time

interval of the input data, and use of different break-

point statistical identification tests.

This study has not only given us a better understand-

ing of the trend uncertainties, but it also allowed us to

investigate the impacts of possible targeted changes to

the radiosonde network. A number of further valida-

tion experiments indicated that perfect metadata were

unable to constrain the tropical tropospheric trend un-

certainties using only GUAN stations. Results were

much more encouraging when a GUAN network con-

sisting of perfect station records was used as a reference

series to homogenize the rest of the available stations.

We therefore recommend that the GUAN network is

maintained to a high standard, including adherence to

the GCOS monitoring principles (GCOS 2004) so that

we can have a better understanding of future trends in

the free atmosphere.
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APPENDIX A

Error Model Assumptions

The four error models were based on substantially

different assumptions regarding breakpoint numbers,

locations (i.e., station and date), sizes, and overall im-

pacts on large-scale means. The average number of

breakpoints per station (and therefore the total number

of breakpoints) assigned to each error model (Table 1)

was broadly based on the numbers found in existing

literature (e.g., Thorne et al. 2005b; Haimberger 2007).

Within each individual error model, the same break-

point locations were assigned for both daytime and
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nighttime series under the assumption that discontinu-

ities will occur at both times with any change in prac-

tice. However, breakpoint profiles applied differed be-

tween day and night. There is strong quantitative evi-

dence for such behavior to be associated with

radiosonde changes—at least through the series of

WMO intercomparison projects (Nash et al. 2005 and

references therein). Differences between the daytime

and nighttime series within each individual error model

therefore relate to these differing assumptions as to

average day and night error structures as well as to

coverage differences and to random differences in the

breakpoint magnitudes.

The metadata record containing known breakpoints

in the real world (Gaffen 1996, and subsequent up-

dates) was used to assign some breakpoint locations

within each error model. In some of these cases the

same breakpoint profiles were applied to all break-

points associated with a particular class of change. For

example all changes from Vaisala RS80 to Vaisala

RS90 had identical day breakpoints and identical night

breakpoints applied.

Extra breakpoints were chosen by randomly select-

ing stations and dates until the chosen total number of

breakpoints was reached. In some error models a pro-

portion of these extra breakpoints were assigned at the

same date to all stations within the same country as a

randomly selected station. In this case common day-

time breakpoint profiles and common nighttime break-

point profiles were applied to all stations within the

country.

Vertically correlated breakpoint sizes were derived

in order to create each breakpoint profile:

breakz 5 ð0:9 3 breakz�1Þ1 nðmz;sÞ; ðA1Þ
where breakz is the breakpoint size at a given pressure

level z (numbered 1 to 10, increasing height from 850 to

50 hPa), and n is an offset derived from a random dis-

tribution with mean mz (at level z) and standard devia-

tion s. Here breakZ21 5 0 for z 5 1 (i.e., at 850 hPa);

mz and s were varied between each error model, and

sometimes between different breakpoint profiles within

an individual error model. Once each breakpoint pro-

file was generated it was added to the daytime/night-

time control series (section 2b) at and before the break-

point date.

Table A1 summarizes the different assumptions

made during the derivation of the error models and

includes the values used in Eq. (A1). See Table 1 for a

summary of the resulting set of breakpoints applied to

each error model.

APPENDIX B

System Parameter Settings

The automated homogenization system contains a

number of parameters that affect various components

TABLE B1. Possible settings for system parameters used in the ensemble experiments. Refer to McCarthy et al. (2008) for more

information.

Parameter name Description Possible settings

Neighbor weighting

coefficients

Weighting coefficients for possible neighbor stations derived from

reanalysis fields

NCEP or ERA-40

Country/metadata Excludes any neighbor stations within the same country/with similar

metadata records as the target station

Either both on or both off

K–S window width Number of seasons used for the K–S test used to assign breakpoints 8–20 seasons

Metadata weighting Weighting given to metadata events during the breakpoint identification

procedure (0 5 no weight, 1 5 breakpoint at every metadata event)

0.–1.

Metadata_function Shape of inversion in the metadata statistic series at known events Exponential or step

Vary metadata

background

Alters the background value of the metadata probability series for each

station based on the number of metadata events (i.e., penalizes stations

with poor metadata records)

On or off

Range Minimum number of seasons required between each breakpoint 6–20 seasons

Critical value Initial critical threshold used to identify breakpoints in the first iteration 0.005, 0.02, or 0.05

Max iteration Number of iterations performed 3, 6, or 9

Iteration step Increment that the critical value is increased by with each iteration 0.005, 0.01, or 0.02

Adjustment method Adjustment method used. Adaptive recalculates all adjustments at each

iteration. Semiadaptive recalculates only if the breakpoint is found

again at a later iteration. Nonadaptive calculates adjustment only

when the breakpoint is first found

Adaptive or nonadaptive

Adjustment_period Number of seasons either side of each breakpoint used to calculate an

adjustment factor

5–20 or 40–55 seasons

Adjustment_threshold Thresholds for determining whether an adjustment should be applied or

not based on a points scoring system (appendix B; McCarthy et al. 2008)

[1, 1], [5, 8], [5, 11], or [7, 11]
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of the homogenization process. These parameters are

outlined in appendix A of McCarthy et al. (2008). Table

B1 gives the range of settings used for each of the pa-

rameters in the 100 experiments used within this study.

For each of the 100 experiments the parameter values

were randomly selected using a random number gen-

erator on each range of settings.
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